--- license: bsd-3-clause base_model: MIT/ast-finetuned-audioset-10-10-0.4593 tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.91 --- # ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan This model is a fine-tuned version of [MIT/ast-finetuned-audioset-10-10-0.4593](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.3414 - Accuracy: 0.91 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 6 - total_train_batch_size: 24 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6009 | 0.99 | 37 | 0.6286 | 0.8 | | 0.2809 | 2.0 | 75 | 0.5013 | 0.85 | | 0.0913 | 2.99 | 112 | 0.3566 | 0.88 | | 0.0217 | 4.0 | 150 | 0.3274 | 0.89 | | 0.0401 | 4.99 | 187 | 0.3379 | 0.91 | | 0.0016 | 6.0 | 225 | 0.3839 | 0.9 | | 0.0006 | 6.99 | 262 | 0.3449 | 0.9 | | 0.0027 | 8.0 | 300 | 0.4207 | 0.9 | | 0.0007 | 8.99 | 337 | 0.3600 | 0.92 | | 0.0003 | 9.87 | 370 | 0.3414 | 0.91 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3