--- tags: - model_hub_mixin - pytorch_model_hub_mixin metrics: - rmse library_name: pytorch datasets: - gvlassis/california_housing pipeline_tag: tabular-regression --- # mlp-california-housing A multi-layer perceptron (MLP) trained on the California Housing dataset. It takes eight inputs: `'MedInc'`, `'HouseAge'`, `'AveRooms'`, `'AveBedrms'`, `'Population'`, `'AveOccup'`, `'Latitude'` and `'Longitude'`. It predicts `'MedHouseVal'`. It is a PyTorch adaptation of the TensorFlow model in Chapter 10 of Aurelien Geron's book 'Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow'. Code: https://github.com/sambitmukherjee/handson-ml3-pytorch/blob/main/chapter10/mlp_california_housing.ipynb Experiment tracking: https://wandb.ai/sadhaklal/mlp-california-housing ## Usage ``` ``` ## Metric RMSE on the test set: 0.5502 --- This model has been pushed to the Hub using the [PyTorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration.