--- license: apache-2.0 tags: - generated_from_trainer datasets: - medmcqa metrics: - accuracy model-index: - name: OntoMedQA results: [] --- # OntoMedQA This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the medmcqa dataset. It achieves the following results on the evaluation set: - Loss: 1.2874 - Accuracy: 0.4118 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 187 | 1.2418 | 0.2941 | | No log | 2.0 | 374 | 1.1449 | 0.4706 | | 0.8219 | 3.0 | 561 | 1.2874 | 0.4118 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1