--- tags: - generated_from_trainer datasets: - ml-superb-subset metrics: - wer model-index: - name: fine-tune-wav2vec2-large-xls-r-300m-xty_224s results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: ml-superb-subset type: ml-superb-subset config: xty split: test[:100] args: xty metrics: - name: Wer type: wer value: 1.0584538026398491 --- # fine-tune-wav2vec2-large-xls-r-300m-xty_224s This model was trained from scratch on the ml-superb-subset dataset. It achieves the following results on the evaluation set: - Loss: 0.7658 - Wer: 1.0585 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 40 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:------:| | 1.5419 | 5.5172 | 400 | 0.4368 | 0.9994 | | 0.423 | 11.0345 | 800 | 0.4315 | 1.0 | | 0.3795 | 16.5517 | 1200 | 0.3892 | 1.0151 | | 0.3306 | 22.0690 | 1600 | 0.4055 | 1.0013 | | 0.2464 | 27.5862 | 2000 | 0.4672 | 1.0421 | | 0.1454 | 33.1034 | 2400 | 0.6656 | 1.0333 | | 0.0883 | 38.6207 | 2800 | 0.7658 | 1.0585 | ### Framework versions - Transformers 4.41.0 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1