--- license: apache-2.0 tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.75 --- # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.8068 - Accuracy: 0.75 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.5613 | 1.0 | 113 | 1.7108 | 0.52 | | 1.1928 | 2.0 | 226 | 1.2290 | 0.67 | | 1.0137 | 3.0 | 339 | 0.9546 | 0.7 | | 0.7152 | 4.0 | 452 | 0.8872 | 0.76 | | 0.6655 | 5.0 | 565 | 0.8068 | 0.75 | ### Framework versions - Transformers 4.30.0.dev0 - Pytorch 2.1.0.dev20230607+cu121 - Datasets 2.13.1.dev0 - Tokenizers 0.13.3