--- language: - es license: apache-2.0 tags: - hf-asr-leaderboard - generated_from_trainer datasets: - facebook/multilingual_librispeech metrics: - wer model-index: - name: Whisper Small Es - Sanchit Gandhi results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Multilingual LibriSpeech type: facebook/multilingual_librispeech args: 'config: es, split: test' metrics: - name: Wer type: wer value: 60.16226172047142 --- # Whisper Small Es - Sanchit Gandhi This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the Multilingual LibriSpeech dataset. It achieves the following results on the evaluation set: - Loss: 1.2668 - Wer: 60.1623 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-08 - train_batch_size: 2 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 2500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 2.2112 | 0.2 | 500 | 1.7394 | 61.1126 | | 1.4913 | 0.4 | 1000 | 1.3758 | 62.8143 | | 1.6651 | 0.6 | 1500 | 1.3100 | 61.3261 | | 1.7031 | 0.8 | 2000 | 1.2752 | 60.5261 | | 1.4289 | 1.0 | 2500 | 1.2668 | 60.1623 | ### Framework versions - Transformers 4.25.0.dev0 - Pytorch 1.12.0 - Datasets 2.6.2.dev0 - Tokenizers 0.12.1