--- library_name: transformers license: apache-2.0 base_model: google-bert/bert-base-multilingual-uncased tags: - generated_from_trainer metrics: - f1 - precision model-index: - name: bert-fraud-classification-test results: [] --- [Visualize in Weights & Biases](https://wandb.ai/sandeshrajx/ultron-nlp/runs/ehdpl54g) [Visualize in Weights & Biases](https://wandb.ai/sandeshrajx/ultron-nlp/runs/ehdpl54g) # bert-fraud-classification-test This model is a fine-tuned version of [google-bert/bert-base-multilingual-uncased](https://huggingface.co/google-bert/bert-base-multilingual-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6431 - F1: 0.7435 - Precision: 0.6605 - Val Accuracy: {'accuracy': 0.706} ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Precision | Val Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:---------:|:-------------------:| | 0.601 | 0.32 | 40 | 0.6152 | 0.7039 | 0.6597 | {'accuracy': 0.682} | | 0.6332 | 0.64 | 80 | 0.6143 | 0.7068 | 0.6515 | {'accuracy': 0.679} | | 0.4862 | 0.96 | 120 | 0.5791 | 0.7151 | 0.7137 | {'accuracy': 0.714} | | 0.6297 | 1.28 | 160 | 0.6323 | 0.7281 | 0.6495 | {'accuracy': 0.69} | | 0.6164 | 1.6 | 200 | 0.5010 | 0.7522 | 0.8345 | {'accuracy': 0.774} | | 0.6333 | 1.92 | 240 | 0.5824 | 0.7310 | 0.6828 | {'accuracy': 0.71} | | 0.4465 | 2.24 | 280 | 0.5335 | 0.7579 | 0.7695 | {'accuracy': 0.761} | | 0.5342 | 2.56 | 320 | 0.5065 | 0.7644 | 0.8040 | {'accuracy': 0.775} | | 0.5462 | 2.88 | 360 | 0.6431 | 0.7435 | 0.6605 | {'accuracy': 0.706} | ### Framework versions - Transformers 4.45.0.dev0 - Pytorch 2.4.0+cu121 - Datasets 3.0.0 - Tokenizers 0.19.1