---
library_name: transformers
license: apache-2.0
base_model: google-bert/bert-base-multilingual-uncased
tags:
- generated_from_trainer
metrics:
- f1
- precision
model-index:
- name: bert-fraud-classification-test
results: []
---
[](https://wandb.ai/sandeshrajx/ultron-nlp/runs/ehdpl54g)
[](https://wandb.ai/sandeshrajx/ultron-nlp/runs/ehdpl54g)
# bert-fraud-classification-test
This model is a fine-tuned version of [google-bert/bert-base-multilingual-uncased](https://huggingface.co/google-bert/bert-base-multilingual-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6431
- F1: 0.7435
- Precision: 0.6605
- Val Accuracy: {'accuracy': 0.706}
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 | Precision | Val Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:------:|:---------:|:-------------------:|
| 0.601 | 0.32 | 40 | 0.6152 | 0.7039 | 0.6597 | {'accuracy': 0.682} |
| 0.6332 | 0.64 | 80 | 0.6143 | 0.7068 | 0.6515 | {'accuracy': 0.679} |
| 0.4862 | 0.96 | 120 | 0.5791 | 0.7151 | 0.7137 | {'accuracy': 0.714} |
| 0.6297 | 1.28 | 160 | 0.6323 | 0.7281 | 0.6495 | {'accuracy': 0.69} |
| 0.6164 | 1.6 | 200 | 0.5010 | 0.7522 | 0.8345 | {'accuracy': 0.774} |
| 0.6333 | 1.92 | 240 | 0.5824 | 0.7310 | 0.6828 | {'accuracy': 0.71} |
| 0.4465 | 2.24 | 280 | 0.5335 | 0.7579 | 0.7695 | {'accuracy': 0.761} |
| 0.5342 | 2.56 | 320 | 0.5065 | 0.7644 | 0.8040 | {'accuracy': 0.775} |
| 0.5462 | 2.88 | 360 | 0.6431 | 0.7435 | 0.6605 | {'accuracy': 0.706} |
### Framework versions
- Transformers 4.45.0.dev0
- Pytorch 2.4.0+cu121
- Datasets 3.0.0
- Tokenizers 0.19.1