--- library_name: transformers license: apache-2.0 base_model: answerdotai/ModernBERT-base tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: modernbert-base-conll2003-english-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: test args: conll2003 metrics: - name: Precision type: precision value: 0.7553173672751633 - name: Recall type: recall value: 0.7985127478753541 - name: F1 type: f1 value: 0.776314657027283 - name: Accuracy type: accuracy value: 0.9627651555938409 --- # modernbert-base-conll2003-english-ner This model is a fine-tuned version of [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.1457 - Precision: 0.7553 - Recall: 0.7985 - F1: 0.7763 - Accuracy: 0.9628 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Use adamw_torch_fused with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 439 | 0.1737 | 0.6772 | 0.7236 | 0.6996 | 0.9521 | | 0.2272 | 2.0 | 878 | 0.1518 | 0.7403 | 0.7840 | 0.7615 | 0.9605 | | 0.1047 | 3.0 | 1317 | 0.1459 | 0.7522 | 0.7937 | 0.7724 | 0.9625 | | 0.0835 | 4.0 | 1756 | 0.1460 | 0.7514 | 0.7964 | 0.7733 | 0.9626 | | 0.076 | 5.0 | 2195 | 0.1457 | 0.7553 | 0.7985 | 0.7763 | 0.9628 | ### Framework versions - Transformers 4.48.0.dev0 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.21.0