---
base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
library_name: setfit
metrics:
- accuracy
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: Para saber si un negocio va a funcionar, es necesario realizar un estudio
de mercado, valorar la economía local durante un año, considerar la afluencia
de personas y la ubicación, así como determinar el tamaño de la inversión.
- text: Apoyo la opinión de Tyrexito y también reclamo al Banco Sabadell por sus comisiones.
- text: Los resultados del Banco Sabadell impulsan al IBEX 35.
- text: Aunque no pude retirar el bono de festividad en el cajero, ING y AKBANK rechazaron
mis quejas, pero tras anunciar una denuncia, me transfirieron el dinero en una
hora; si tienes razón, no te rindas.
- text: El Gobierno presentará al nuevo gobernador del Banco de España en una Comisión
del Congreso este jueves.
inference: true
model-index:
- name: SetFit with sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 0.7594202898550725
name: Accuracy
---
# SetFit with sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Model Details
### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 128 tokens
- **Number of Classes:** 2 classes
### Model Sources
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
### Model Labels
| Label | Examples |
|:---------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| relevant |
- 'Caixa y BBVA son los prestamistas que se benefician de la garantía en caso de impago en la financiación de inversiones, algo común también en las sociedades que avalan a comunidades autónomas.'
- 'El IBEX supera los 11.200 puntos gracias al impulso de la banca, liderado por Banco Sabadell con una subida del 2,05%.'
- 'Nuevo caso de phishing relacionado con ING, registrado el 16 de julio de 2024, con la URL /www.ingseguridad-app.com/es/login.'
|
| discard | - 'El BBVA también tiene un mal servicio, ya que no aceptan billetes de 2.000 ni de 1.000 de San Martín, obligando a hacer largas filas tanto para cambiar como para depositar.'
- 'Merhaba, yaşadığınız deneyim için üzgünüz; Garanti BBVA ATM konum bilgilerini paylaşırsanız gerekli kontrolleri hızlıca yapacağız.'
- 'En la gasolinera sobre Constituyentes, mi tarjeta de crédito fue denegada y no me hicieron cargo en la aplicación.'
|
## Evaluation
### Metrics
| Label | Accuracy |
|:--------|:---------|
| **all** | 0.7594 |
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("saraestevez/setfit-minilm-bank-tweets-processed-100")
# Run inference
preds = model("Los resultados del Banco Sabadell impulsan al IBEX 35.")
```
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:-------|:----|
| Word count | 4 | 22.0 | 41 |
| Label | Training Sample Count |
|:---------|:----------------------|
| discard | 100 |
| relevant | 100 |
### Training Hyperparameters
- batch_size: (16, 2)
- num_epochs: (1, 16)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:------:|:----:|:-------------:|:---------------:|
| 0.0008 | 1 | 0.3931 | - |
| 0.0396 | 50 | 0.2501 | - |
| 0.0792 | 100 | 0.2471 | - |
| 0.1188 | 150 | 0.1991 | - |
| 0.1584 | 200 | 0.0902 | - |
| 0.1979 | 250 | 0.0218 | - |
| 0.2375 | 300 | 0.0055 | - |
| 0.2771 | 350 | 0.0026 | - |
| 0.3167 | 400 | 0.0013 | - |
| 0.3563 | 450 | 0.0005 | - |
| 0.3959 | 500 | 0.0005 | - |
| 0.4355 | 550 | 0.001 | - |
| 0.4751 | 600 | 0.0003 | - |
| 0.5146 | 650 | 0.0003 | - |
| 0.5542 | 700 | 0.0001 | - |
| 0.5938 | 750 | 0.0003 | - |
| 0.6334 | 800 | 0.0003 | - |
| 0.6730 | 850 | 0.0004 | - |
| 0.7126 | 900 | 0.0002 | - |
| 0.7522 | 950 | 0.0001 | - |
| 0.7918 | 1000 | 0.0001 | - |
| 0.8314 | 1050 | 0.0001 | - |
| 0.8709 | 1100 | 0.0002 | - |
| 0.9105 | 1150 | 0.0002 | - |
| 0.9501 | 1200 | 0.0002 | - |
| 0.9897 | 1250 | 0.0 | - |
### Framework Versions
- Python: 3.11.0rc1
- SetFit: 1.0.3
- Sentence Transformers: 2.7.0
- Transformers: 4.39.0
- PyTorch: 2.3.1+cu121
- Datasets: 2.19.1
- Tokenizers: 0.15.2
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```