--- base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 library_name: setfit metrics: - accuracy pipeline_tag: text-classification tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: Para saber si un negocio va a funcionar, es necesario realizar un estudio de mercado, valorar la economía local durante un año, considerar la afluencia de personas y la ubicación, así como determinar el tamaño de la inversión. - text: Apoyo la opinión de Tyrexito y también reclamo al Banco Sabadell por sus comisiones. - text: Los resultados del Banco Sabadell impulsan al IBEX 35. - text: Aunque no pude retirar el bono de festividad en el cajero, ING y AKBANK rechazaron mis quejas, pero tras anunciar una denuncia, me transfirieron el dinero en una hora; si tienes razón, no te rindas. - text: El Gobierno presentará al nuevo gobernador del Banco de España en una Comisión del Congreso este jueves. inference: true model-index: - name: SetFit with sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: accuracy value: 0.7594202898550725 name: Accuracy --- # SetFit with sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 128 tokens - **Number of Classes:** 2 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:---------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | relevant | | | discard | | ## Evaluation ### Metrics | Label | Accuracy | |:--------|:---------| | **all** | 0.7594 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("saraestevez/setfit-minilm-bank-tweets-processed-100") # Run inference preds = model("Los resultados del Banco Sabadell impulsan al IBEX 35.") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:-------|:----| | Word count | 4 | 22.0 | 41 | | Label | Training Sample Count | |:---------|:----------------------| | discard | 100 | | relevant | 100 | ### Training Hyperparameters - batch_size: (16, 2) - num_epochs: (1, 16) - max_steps: -1 - sampling_strategy: oversampling - body_learning_rate: (2e-05, 1e-05) - head_learning_rate: 0.01 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:------:|:----:|:-------------:|:---------------:| | 0.0008 | 1 | 0.3931 | - | | 0.0396 | 50 | 0.2501 | - | | 0.0792 | 100 | 0.2471 | - | | 0.1188 | 150 | 0.1991 | - | | 0.1584 | 200 | 0.0902 | - | | 0.1979 | 250 | 0.0218 | - | | 0.2375 | 300 | 0.0055 | - | | 0.2771 | 350 | 0.0026 | - | | 0.3167 | 400 | 0.0013 | - | | 0.3563 | 450 | 0.0005 | - | | 0.3959 | 500 | 0.0005 | - | | 0.4355 | 550 | 0.001 | - | | 0.4751 | 600 | 0.0003 | - | | 0.5146 | 650 | 0.0003 | - | | 0.5542 | 700 | 0.0001 | - | | 0.5938 | 750 | 0.0003 | - | | 0.6334 | 800 | 0.0003 | - | | 0.6730 | 850 | 0.0004 | - | | 0.7126 | 900 | 0.0002 | - | | 0.7522 | 950 | 0.0001 | - | | 0.7918 | 1000 | 0.0001 | - | | 0.8314 | 1050 | 0.0001 | - | | 0.8709 | 1100 | 0.0002 | - | | 0.9105 | 1150 | 0.0002 | - | | 0.9501 | 1200 | 0.0002 | - | | 0.9897 | 1250 | 0.0 | - | ### Framework Versions - Python: 3.11.0rc1 - SetFit: 1.0.3 - Sentence Transformers: 2.7.0 - Transformers: 4.39.0 - PyTorch: 2.3.1+cu121 - Datasets: 2.19.1 - Tokenizers: 0.15.2 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```