--- license: apache-2.0 language: - en base_model: bencyc1129/mitre-bert-base-cased pipeline_tag: text-classification widget: - text: An attacker performs a SQL injection. datasets: - sarahwei/cyber_MITRE_CTI_dataset --- ## MITRE-tactic-bert-case-based It's a fine-tuned model from [mitre-bert-base-cased](https://huggingface.co/bencyc1129/mitre-bert-base-cased) on the MITRE ATT&CK version 15 procedure dataset. It achieves - loss:0.057 - accuracy:0.87 on evaluation dataset. ## Intended uses & limitations You can use the fine-tuned model for text classification. It aims to identify the tactic that the sentence belongs to in MITRE ATT&CK framework. A sentence or an attack may fall into several tactics. Note that this model is primarily fine-tuned on text classification for cybersecurity. It may not perform well if the sentence is not related to attacks. ## How to use You can use the model with Tensorflow. ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch model_id = "sarahwei/MITRE-tactic-bert-case-based" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForSequenceClassification.from_pretrained( model_id, torch_dtype=torch.bfloat16, # device_map="auto", ) question = 'An attacker performs a SQL injection.' input_ids = tokenizer(question,return_tensors="pt") outputs = model(**input_ids) logits = outputs.logits sigmoid = torch.nn.Sigmoid() probs = sigmoid(logits.squeeze().cpu()) predictions = np.zeros(probs.shape) predictions[np.where(probs >= 0.5)] = 1 predicted_labels = [model.config.id2label[idx] for idx, label in enumerate(predictions) if label == 1.0] ``` ## Training procedure ### Training parameter - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - warmup_ratio: 0.01 - weight_decay: 0.001 ### Training results |Step| Training Loss| Validation Loss| F1 | Roc AUC | accuracy | |:--------:| :------------:|:----------:|:------------:|:-----------:|:---------------:| | 100| 0.409400 |0.142982|0.740000|0.803830|0.610000| | 200|0.106500|0.093503|0.818182 |0.868382 |0.720000| | 300|0.070200| 0.065937| 0.893617| 0.930366| 0.810000| | 400|0.045500| 0.061865| 0.892704| 0.926625| 0.830000| | 500|0.033600| 0.057814| 0.902954| 0.938630| 0.860000| | 600|0.026000| 0.062982| 0.894515| 0.934107| 0.840000| | 700|0.021900| 0.056275| 0.904564| 0.946113| 0.870000| | 800|0.017700| 0.061058| 0.887967| 0.937067| 0.860000| | 900|0.016100| 0.058965| 0.890756| 0.933716| 0.870000| | 1000|0.014200| 0.055885| 0.903766| 0.942372| 0.880000| | 1100|0.013200| 0.056888| 0.895397| 0.937849| 0.880000| | 1200|0.012700| 0.057484| 0.895397| 0.937849| 0.870000|