--- library_name: transformers license: apache-2.0 base_model: openai/whisper-large-v3 tags: - whisper-event - generated_from_trainer datasets: - OUTCOMESAI/medical_speech_corpus metrics: - wer model-index: - name: Whisper Small Medical results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: OUTCOMESAI/medical_speech_corpus zh-en type: OUTCOMESAI/medical_speech_corpus metrics: - name: Wer type: wer value: 44.25531914893617 --- # Whisper Small Medical This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on the OUTCOMESAI/medical_speech_corpus zh-en dataset. It achieves the following results on the evaluation set: - Loss: 0.6201 - Wer: 44.2553 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - distributed_type: multi-GPU - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - training_steps: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 7.4337 | 25.0 | 50 | 0.6201 | 44.2553 | | 5.7447 | 50.0 | 100 | 0.6113 | 51.2340 | ### Framework versions - Transformers 4.48.0.dev0 - Pytorch 2.1.0+cu118 - Datasets 3.1.1.dev0 - Tokenizers 0.21.0