--- library_name: stable-baselines3 tags: - FetchPush-v1 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: TQC results: - metrics: - type: mean_reward value: -11.60 +/- 6.20 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FetchPush-v1 type: FetchPush-v1 --- # **TQC** Agent playing **FetchPush-v1** This is a trained model of a **TQC** agent playing **FetchPush-v1** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo
SB3: https://github.com/DLR-RM/stable-baselines3
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo tqc --env FetchPush-v1 -orga sb3 -f logs/ python enjoy.py --algo tqc --env FetchPush-v1 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo tqc --env FetchPush-v1 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo tqc --env FetchPush-v1 -f logs/ -orga sb3 ``` ## Hyperparameters ```python OrderedDict([('batch_size', 512), ('buffer_size', 1000000), ('env_wrapper', 'sb3_contrib.common.wrappers.TimeFeatureWrapper'), ('gamma', 0.98), ('learning_rate', 0.001), ('n_timesteps', 1000000.0), ('policy', 'MultiInputPolicy'), ('policy_kwargs', 'dict(net_arch=[512, 512, 512], n_critics=2)'), ('replay_buffer_class', 'HerReplayBuffer'), ('replay_buffer_kwargs', "dict( online_sampling=True, goal_selection_strategy='future', " 'n_sampled_goal=4, max_episode_length=100 )'), ('tau', 0.005), ('normalize', False)]) ```