--- license: mit language: - ja --- # Sarashina1-7B This repository provides Japanese language models trained by [SB Intuitions](https://www.sbintuitions.co.jp/). ## How to use ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline, set_seed model = AutoModelForCausalLM.from_pretrained("sbintuitions/sarashina1-7b", torch_dtype=torch.float16, device_map="auto") tokenizer = AutoTokenizer.from_pretrained("sbintuitions/sarashina1-7b") # If you want to use slow tokenizer # tokenizer = AutoTokenizer.from_pretrained("sbintuitions/sarashina1-7b", use_fast=False, revision="slow-tokenizer") generator = pipeline("text-generation", model=model, tokenizer=tokenizer) set_seed(123) text = generator( "おはようございます、今日の天気は", max_length=30, do_sample=True, pad_token_id=tokenizer.pad_token_id, num_return_sequences=3, ) for t in text: print(t) # These examples are generated by sarashina1-7b parameters model # {'generated_text': 'おはようございます、今日の天気は晴れ!!最高気温は15度、最低気温は7度です。今日も1日頑張りましょー♪写真は、去年'} # {'generated_text': 'おはようございます、今日の天気は曇り:cloud:です。 雨予報なので、洗濯物は家の中へ。 :city_sunrise:の見える時間。 今日は'} # {'generated_text': 'おはようございます、今日の天気は、晴れ、気温も10度以上に上がるそうです、お日様が当たっていると15度くらいになると思います、朝の'} ``` ## Configuration | Parameters | Vocab size | Training tokens | Architecture | Position type | Layers | Hidden dim | Attention heads | | :-----: | :-----------: | :-------------: | :----------- | :-----------: | :----: | :--------: | :-------------: | | [7B](https://huggingface.co/sbintuitions/sarashina1-7b) | 51200 | 1.0T | GPTNeoX | RoPE | 32 | 4096 | 32 | | [13B](https://huggingface.co/sbintuitions/sarashina1-13b) | 51200 | 1.0T | GPTNeoX | RoPE | 40 | 5120 | 40 | | [65B](https://huggingface.co/sbintuitions/sarashina1-65b) | 51200 | 800B | GPTNeoX | RoPE | 80 | 8192 | 64 | ## Training Corpus We used a Japanese portion of the [Common Crawl corpus](https://commoncrawl.org/), which is the largest Web corpus, as our training dataset. To clean the training corpus, we used [CCNet](https://github.com/facebookresearch/cc_net) and [HojiChar](https://github.com/HojiChar/HojiChar). After cleaning, our corpus contains about 550B tokens. ## Tokenization We use a [sentencepiece](https://github.com/google/sentencepiece) tokenizer with a unigram language model and byte-fallback. We do not apply pre-tokenization with Japanese tokenizer. Thus, a user may directly feed raw sentences into the tokenizer. ## Ethical Considerations and Limitations Sarashina1 has not been tuned to follow an instruction yet. Therefore, sarashina1 might generate some meaningless sequences, some inaccurate instances or biased/objectionable outputs. Before using sarashina1, we would like developers to tune models based on human preferences and safety considerations. ## License [MIT License](https://huggingface.co/sbintuitions/sarashina1-7b/blob/main/LICENSE)