--- license: mit datasets: - wikipedia - llm-jp/oasst1-21k-ja - llm-jp/oasst1-21k-en language: - ja - en --- # tiny-lm This repository provides a tiny 16M parameters language model for debugging and testing purposes. This is created by tuning [sbintuitions/tiny-lm](https://huggingface.co/sbintuitions) with oasset1 datasets in Japanese and English. ## How to use ```python from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline model = AutoModelForCausalLM.from_pretrained("sbintuitions/tiny-lm-chat", torch_dtype="auto") tokenizer = AutoTokenizer.from_pretrained("sbintuitions/tiny-lm-chat", use_fast=False) generator = pipeline("text-generation", model=model, tokenizer=tokenizer) prompt = tokenizer.apply_chat_template([{"role": "user", "content": "Hello!"}], add_generation_prompt=True, tokenize=False) print(generator(prompt, max_length=30, do_sample=True, top_k=100)) ``` ## Model architecture A 4-layer, 512-hidden-size transformer-based language model. ## Training The model was first pre-trained on English Wikipedia and Japanese Wikipedia to optimize a traditional language modelling objective for 25B tokens. And then it was fine-tuned on oasst1 datasets in Japanese and English for 15 epochs. ## License [MIT License](https://huggingface.co/sbintuitions/tiny-lm-chat/resolve/main/LICENSE)