--- base_model: scales-okn/docket-language-model tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: ontology-answer-test results: [] --- # ontology-answer-test This model is a fine-tuned version of [scales-okn/docket-language-model](https://huggingface.co/scales-okn/docket-language-model) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0009 - Accuracy: 1.0 - F1: 1.0 - Precision: 1.0 - Recall: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.06 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.0233 | 1.2903 | 100 | 0.0434 | 0.9862 | 0.9720 | 0.9630 | 0.9811 | | 0.0007 | 2.5806 | 200 | 0.0072 | 0.9954 | 0.9905 | 1.0 | 0.9811 | | 0.0003 | 3.8710 | 300 | 0.0009 | 1.0 | 1.0 | 1.0 | 1.0 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.1.2+cu121 - Datasets 2.19.2 - Tokenizers 0.19.1