import skops import sklearn import matplotlib.pyplot as plt from sklearn.preprocessing import OneHotEncoder from sklearn.impute import SimpleImputer from sklearn.compose import ColumnTransformer from sklearn.tree import DecisionTreeClassifier from sklearn.pipeline import Pipeline # preprocess the dataset df = pd.read_csv("../input/tabular-playground-series-aug-2022/train.csv") column_transformer_pipeline = ColumnTransformer([ ("loading_missing_value_imputer", SimpleImputer(strategy="mean"), ["loading"]), ("numerical_missing_value_imputer", SimpleImputer(strategy="mean"), list(df.columns[df.dtypes == 'float64'])), ("attribute_0_encoder", OneHotEncoder(categories = "auto"), ["attribute_0"]), ("attribute_1_encoder", OneHotEncoder(categories = "auto"), ["attribute_1"]), ("product_code_encoder", OneHotEncoder(categories = "auto"), ["product_code"])]) df = df.drop(["id"], axis=1) pipeline = Pipeline([ ('transformation', column_transformer_pipeline), ('model', DecisionTreeClassifier(max_depth=4)) ]) X = df.drop(["failure"], axis = 1) y = df.failure # split the data and train the model from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y) pipeline.fit(X_train, y_train) # we will now use skops to initialize a repository # create a model card, and push the model to the # Hugging Face Hub from skops import card, hub_utils import pickle model_path = "model.pkl" local_repo = "decision-tree-playground-kaggle" # save the model with open(model_path, mode="bw") as f: pickle.dump(pipeline, file=f) # initialize the repository hub_utils.init( model=model_path, requirements=[f"scikit-learn={sklearn.__version__}"], dst=local_repo, task="tabular-classification", data=X_test, ) # initialize the model card from pathlib import Path model_card = card.Card(pipeline, metadata=card.metadata_from_config(Path(local_repo))) ## let's fill some information about the model limitations = "This model is not ready to be used in production." model_description = "This is a DecisionTreeClassifier model built for Kaggle Tabular Playground Series August 2022, trained on supersoaker production failures dataset." model_card_authors = "huggingface" get_started_code = f"import pickle \nwith open({local_repo}/{model_path}, 'rb') as file: \n clf = pickle.load(file)" # pass this information to the card model_card.add( get_started_code=get_started_code, model_card_authors=model_card_authors, limitations=limitations, model_description=model_description, ) # we will now evaluate the model and write eval results to the card from sklearn.metrics import accuracy_score, f1_score, ConfusionMatrixDisplay, confusion_matrix model_card.add(eval_method="The model is evaluated using test split, on accuracy and F1 score with micro average.") model_card.add_metrics(accuracy=accuracy_score(y_test, y_pred)) model_card.add_metrics(**{"f1 score": f1_score(y_test, y_pred, average="micro")}) model = pipeline.steps[-1][1] # we will plot the tree and add the plot to our card from sklearn.tree import plot_tree plt.figure() plot_tree(model,filled=True) plt.savefig(f'{local_repo}/tree.png',format='png',bbox_inches = "tight") # let's make a prediction and evaluate the model y_pred = pipeline.predict(X_test) cm = confusion_matrix(y_test, y_pred, labels=model.classes_) disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=model.classes_) disp.plot() # save the plot plt.savefig(Path(local_repo) / "confusion_matrix.png") # add figures to model card with their new sections as keys to the dictionary model_card.add_plot(**{"Tree Plot": f'{local_repo}/tree.png', "Confusion Matrix": f"{local_repo}/confusion_matrix.png"}) #save the card model_card.save(f"{local_repo}/README.md") # we can now push the model! # if the repository doesn't exist remotely on the Hugging Face Hub, it will be created when we set create_remote to True repo_id = "scikit-learn/tabular-playground" hub_utils.push( repo_id=repo_id, source=local_repo, token=token, commit_message="pushing files to the repo from the example!", create_remote=True, )