{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7a140e94cd80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1711073191079374705, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGaE6jywI7w/cjefPvD7PD5q+Sa8T1cuPAAAAAAAAAAAmmtlvEhfrLp+Ly6zzMJprtpETLotgNMzAACAPwAAgD+a4ea8mA03P3+TrLyiDc6+lCkCvcqkk70AAAAAAAAAAKYBN77Utb4/DUMVvwcQgr4FIUO+q6xzvgAAAAAAAAAAsAmVvk3QHj9tABw+mnC3vlw0Xr5iQWs+AAAAAAAAAACa45A8XNkXvJT3vDsBjJI80E+Ove4Ccz0AAIA/AACAP5p0ybwb5o0/GCRgvdU4A78PyOQ8Ur66vAAAAAAAAAAAM2f2POEekLoxIpqy2qZ6MM7VL7uamhgzAACAPwAAgD8Av/a8n7uOP5YB573+Agq/BQi9vJA4Cb0AAAAAAAAAAG18Dz4en889gsQSvSEjjb4vEFA9Mkx6vQAAAAAAAAAA5n4uPUsEjT8Y89g93uLcvnQeDT6Oa609AAAAAAAAAAAT5m0+L5Y5P3cHmr5vONu+N0PHPblOg74AAAAAAAAAAM3CKLzsgI48rnnZPQGxLL6gGdS8xuATPQAAAAAAAAAAwKagveG0hLoSBca6b42itfPuszq+o+U5AACAPwAAgD9NBg+96olaPlhYXD45toS+NgDxPeukSbwAAAAAAAAAAAb2Bb6vy8w+zTvjPXvOk77BbEo9hvN6PgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVNgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHKKYVh1DByMAWyUTQUBjAF0lEdAkafAhje9BnV9lChoBkdATsWtnwob42gHS61oCEdAkagMaGYa53V9lChoBkdAbtoAc1fmcWgHTRQCaAhHQJGoGpwS8J51fZQoaAZHQHI5Ad0aIepoB00PAWgIR0CRqYoQFs55dX2UKGgGR0BuqsqBmPHUaAdNlwFoCEdAkbwCQHRkVnV9lChoBkdAaED+YtxuK2gHTegDaAhHQJG9PUz9CNV1fZQoaAZHQHD068tf5UNoB00kAWgIR0CRva4SYgJUdX2UKGgGR0Bwb+B3A2ycaAdNrgFoCEdAkb4EWVNYbXV9lChoBkdAcGMSBbwBo2gHTRQBaAhHQJG/4G9pRGd1fZQoaAZHQHFua4c3l0ZoB02LAWgIR0CRwaryDqW1dX2UKGgGR0BxlXZ5AyEdaAdL+2gIR0CRwdQSzw+ddX2UKGgGR0BxELfek56uaAdL9WgIR0CRwgZ2ZApsdX2UKGgGR0BtxC3w1BMSaAdN4QFoCEdAkcIeFg2If3V9lChoBkdAcU5S5y2hI2gHTUICaAhHQJHCbxOLzf91fZQoaAZHQHNHQZ0jkdVoB01XAWgIR0CRwxBSDRMOdX2UKGgGR0BvDEjeKsMiaAdNDAFoCEdAkcZWRaHKwXV9lChoBkdAcKBHpr1ui2gHTckBaAhHQJHJAvboKUp1fZQoaAZHQG0yuk+HJtBoB01yAWgIR0CRyY9LYf4idX2UKGgGR0BwCa6/Zdv9aAdNPAFoCEdAkcphJd0JW3V9lChoBkdAcYKODJ2dNGgHTfICaAhHQJHKoCFK02N1fZQoaAZHQG5aJEYwZfloB03fAWgIR0CRzEj3225QdX2UKGgGR0ByPPu8brC4aAdNdwFoCEdAkc1BllK9PHV9lChoBkdAcYUg7YChe2gHTQUBaAhHQJHNSol2Ned1fZQoaAZHQHMT7cwg1WNoB00YAWgIR0CRzf5sCT2WdX2UKGgGR0BxuYFotcv/aAdNeQFoCEdAkc9HkDIRy3V9lChoBkdAULGw+t8uz2gHS6xoCEdAkc/py6tknXV9lChoBkdAcClZcs189mgHTWIBaAhHQJHQD531SO11fZQoaAZHQFDfEIgNgBtoB0uoaAhHQJHQSGZeAut1fZQoaAZHQG8r66reZXxoB00GAWgIR0CR0KGzKLbYdX2UKGgGR0BzLXIuGsV+aAdL/mgIR0CR0xnLaEi/dX2UKGgGR0ByNvK4hEBsaAdNxAFoCEdAkdOk4aP0ZnV9lChoBkdAc9AA/LTx5WgHTRIBaAhHQJHVJk6Lfk51fZQoaAZHQHFCn974SHxoB00SAWgIR0CR1kClabF1dX2UKGgGR0BwAGP7vXsgaAdNHwFoCEdAkdeosd1dPnV9lChoBkdAcfcn003wTmgHTU4CaAhHQJHYHzreImB1fZQoaAZHQHH/Jb6guh9oB03YAWgIR0CR2kjYZl4DdX2UKGgGR0By7fyUcGTtaAdNPwFoCEdAkdqjKgZjx3V9lChoBkdAcNN8L8aXKWgHTfACaAhHQJHayhGpdbB1fZQoaAZHQHLGOT7l7t1oB00zAWgIR0CR2vwEyLyddX2UKGgGR0BxNILJCBwuaAdNKQFoCEdAkdsOmrKeTXV9lChoBkdAcQ95IH1OCWgHTT0BaAhHQJHbcuoP07N1fZQoaAZHQHEvX0wrUb1oB02eAWgIR0CR27RJmNBGdX2UKGgGR0BytSgFotcwaAdNBwFoCEdAkdy3R5TqB3V9lChoBkdAZ7f7E5yU92gHTegDaAhHQJHcx5X2dup1fZQoaAZHQGfTEAxSHdpoB00KA2gIR0CR4An2IwdsdX2UKGgGR0Bt3LMNc4YKaAdNMwFoCEdAkeFTCcf/3nV9lChoBkdAcPFTuv2XcGgHTSgBaAhHQJH1FoN/e+F1fZQoaAZHQHHW/4AS39doB00pAWgIR0CR9bQg9vCNdX2UKGgGR0BwO9LlFMIvaAdL2GgIR0CR9fGCqZMMdX2UKGgGR0BzHKPQv6CUaAdNAgFoCEdAkfcEvK2a2HV9lChoBkdAcUwRWLgn+mgHTRoBaAhHQJH3h2X9itt1fZQoaAZHQG+UMju8brFoB00VAWgIR0CR97O45Lh8dX2UKGgGR0Bv0648U21laAdN0gFoCEdAkfggkLQXynV9lChoBkdAcL/6lLvkR2gHTUwBaAhHQJH6qTNdJJ51fZQoaAZHQHHh4bsF+uxoB01kAWgIR0CR+/wS8J2MdX2UKGgGR0ByC+DZlFtsaAdNLwFoCEdAkfxTU3GXHHV9lChoBkdAcIrjawljVmgHTY4CaAhHQJH8m/47A+J1fZQoaAZHQHDRPT9bX6JoB01pAWgIR0CR/ioLXtjTdX2UKGgGR0BuzN7dBSk1aAdNCgFoCEdAkf9W38XN1XV9lChoBkdAbu/yAhB7eGgHTbgBaAhHQJH/mfChvit1fZQoaAZHQHCq6IrOJLxoB00PAWgIR0CSANxDst03dX2UKGgGR0BwCwpkPMB7aAdNCQFoCEdAkgFoWk8A73V9lChoBkdAcbkX8O09hmgHTXoBaAhHQJICCBK+SKZ1fZQoaAZHQG9Ic/UvwmVoB00RAWgIR0CSAjw6ySmqdX2UKGgGR0Bwbv81n/T9aAdNFQFoCEdAkgKx8pkPMHV9lChoBkdAcZjg3cYZVGgHTU8BaAhHQJIECUFB6a91fZQoaAZHQHHKi9ugpSdoB00AAWgIR0CSBJLaEi+tdX2UKGgGR0ByjCtW+49YaAdNmwFoCEdAkgT12eQMhHV9lChoBkdAc4sSx7iQ1mgHS+xoCEdAkgYFlGwzL3V9lChoBkdAbqWqslsxf2gHTUoBaAhHQJIGPE87p3Z1fZQoaAZHQHAq9/FzdUNoB02/AWgIR0CSBqU4aP0adX2UKGgGR0BuuxeRgZ0kaAdNCgFoCEdAkgigr6LwWnV9lChoBkdAbsZUipvP1WgHTXIBaAhHQJIJCgpSaVl1fZQoaAZHQHCz20/nnuBoB02QAWgIR0CSCe/QSi/PdX2UKGgGR0By3KfpUxVRaAdL5GgIR0CSCqj2Bas7dX2UKGgGR0BwI5tHhCMQaAdNGQFoCEdAkgqkoF3Y+XV9lChoBkdAcPI/dIoVmGgHTa8DaAhHQJILL3qRlpZ1fZQoaAZHQHDo9c0Ltu1oB00qAWgIR0CSDG+JgsshdX2UKGgGR0Bw54HIIWxhaAdL72gIR0CSDI/LTx5LdX2UKGgGR0BxMAxdpqREaAdNDgFoCEdAkg6eW0JF9nV9lChoBkdAbzzOM2m52GgHTXsBaAhHQJIPjoIOYpl1fZQoaAZHQHDO2dVea8ZoB00bAWgIR0CSEEHuqm0mdX2UKGgGR0Bwtj/95yEMaAdNRwFoCEdAkhBS2hIvrXV9lChoBkdAcNfDu0CzTmgHTfwBaAhHQJIRGuPmxMZ1fZQoaAZHQHJZzFl05lxoB007AWgIR0CSEY4Z/CqIdX2UKGgGR0BwYRRm9QGfaAdNNwFoCEdAkhHSXD3ueHV9lChoBkdAcUOXKKYRd2gHTeUBaAhHQJISbBqKxcF1fZQoaAZHQHKHS/TLGJhoB0v4aAhHQJITTAM2FWZ1fZQoaAZHQHKssYMvysloB00zAWgIR0CSE9Y9xIatdX2UKGgGR0BwL4cJdB0IaAdNBQFoCEdAkhQxYRujynV9lChoBkdAcGWESuhbn2gHTUMBaAhHQJIVFF+d9Ul1fZQoaAZHQG9C7ayrxRVoB02JAWgIR0CSFjCo0hvBdX2UKGgGR0BxuaPzWf9QaAdNIwFoCEdAkhZj15B1LnV9lChoBkdAcHQ2mYSg5GgHS/hoCEdAkhbYsmOU+3V9lChoBkdAccOgJTl1bWgHTXsBaAhHQJIXZ+UhV2l1fZQoaAZHQHEpPG+9Jz1oB01nAWgIR0CSGEfhuO0cdX2UKGgGR0BOhNk4FRpDaAdLk2gIR0CSGFX2ugYhdX2UKGgGR0ByrvRRdhRZaAdNAQFoCEdAkhhh73PAwnV9lChoBkdAcfVU83dbgWgHTRUBaAhHQJIYZf9gndB1fZQoaAZHQHLHjpcHGCJoB0voaAhHQJIY5tWMju91ZS4="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}