--- language: - ko license: apache-2.0 tags: - hf-asr-leaderboard - generated_from_trainer - whisper-event datasets: - kresnik/zeroth_korean metrics: - wer model-index: - name: Whisper Small Korean results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Zeroth Korean type: kresnik/zeroth_korean config: clean split: test args: 'split: test' metrics: - name: Wer type: wer value: 6.761029965366662 --- # Whisper Small Korean This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Zeroth Korean dataset. It achieves the following results on the evaluation set: - Loss: 0.0899 - Wer: 6.7610 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.1277 | 0.72 | 1000 | 0.1489 | 12.2271 | | 0.0379 | 1.44 | 2000 | 0.1053 | 6.7159 | | 0.0138 | 2.16 | 3000 | 0.0918 | 6.0382 | | 0.0141 | 2.87 | 4000 | 0.0899 | 6.7610 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0a0+d0d6b1f - Datasets 2.7.1 - Tokenizers 0.13.2