--- tags: - model_hub_mixin - pytorch_model_hub_mixin license: mit --- # ImageGenerationTAU: Autoencoder for MNIST Image Generation ## Model Details - **Model Architecture:** Convolutional Autoencoder - **Framework:** PyTorch - **Input Shape:** (1, 28, 28) (Grayscale MNIST Images) - **Latent Dimension:** User-defined (`hidden_dim`) - **Dataset:** [MNIST Handwritten Digits](http://yann.lecun.com/exdb/mnist/) ## Model Description The **ImageGenerationTAU** model is a **convolutional autoencoder** designed for **image generation and feature extraction** from MNIST. It consists of: - An **encoder** that compresses the input image into a **low-dimensional representation**. - A **decoder** that reconstructs the original image from the compressed representation. This model can be used for **image denoising, feature learning, and generative tasks**. ## Training Details - **Loss Function:** Smooth L1 Loss - **Optimizer:** Adam - **Batch Size:** 512 - **Number of Epochs:** TBD - **Regularization:** Batch Normalization ### Model Architecture ```python class ImageGenerationTAU(nn.Module, PyTorchModelHubMixin): def __init__(self, hidden_dim): super(ImageGenerationTAU, self).__init__() self.encoder = nn.Sequential( nn.Conv2d(1, 64, kernel_size=3, stride=1, padding=1), nn.MaxPool2d(kernel_size=2, stride=2), nn.ReLU(), nn.BatchNorm2d(64), nn.Conv2d(64, 32, kernel_size=3, stride=1, padding=1), nn.MaxPool2d(kernel_size=2, stride=2), nn.ReLU(), nn.BatchNorm2d(32), nn.Flatten(), nn.Linear(32 * 7 * 7, hidden_dim), ) self.decoder = nn.Sequential( nn.Linear(hidden_dim, 32 * 7 * 7), nn.ReLU(), nn.Unflatten(1, (32, 7, 7)), nn.ConvTranspose2d(32, 64, kernel_size=2, stride=2), nn.ReLU(), nn.BatchNorm2d(64), nn.ConvTranspose2d(64, 1, kernel_size=2, stride=2), nn.Sigmoid(), ) def forward(self, x): x = self.encoder(x) x = self.decoder(x) return x ``` This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration: - Library: [More Information Needed] - Docs: [More Information Needed]