--- library_name: transformers language: - tr license: mit base_model: openai/whisper-large-v3-turbo tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_17_0 metrics: - wer model-index: - name: "Whisper Large v3 Turbo TR - Selim \xC7ava\u015F" results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 17.0 type: mozilla-foundation/common_voice_17_0 config: tr split: test args: 'config: tr, split: test' metrics: - name: Wer type: wer value: 18.92291759135967 --- # Whisper Large v3 Turbo TR - Selim Çavaş This model is a fine-tuned version of [openai/whisper-large-v3-turbo](https://huggingface.co/openai/whisper-large-v3-turbo) on the Common Voice 17.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.3123 - Wer: 18.9229 ## Intended uses & limitations This model can be used in various application areas, including - Transcription of Turkish language - Voice commands - Automatic subtitling for Turkish videos ## How To Use ```python import torch from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline device = "cuda:0" if torch.cuda.is_available() else "cpu" torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 model_id = "selimc/whisper-large-v3-turbo-turkish" model = AutoModelForSpeechSeq2Seq.from_pretrained( model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True ) model.to(device) processor = AutoProcessor.from_pretrained(model_id) pipe = pipeline( "automatic-speech-recognition", model=model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, chunk_length_s=30, batch_size=16, return_timestamps=True, torch_dtype=torch_dtype, device=device, ) result = pipe("test.mp3") print(result["text"]) ``` ## Training Due to colab GPU constraints I was able to train using only the 25% of the Turkish data available in the Common Voice 17.0 dataset. 😔 Got a GPU to spare? Let's collaborate and take this model to the next level! 🚀 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.1223 | 1.6 | 1000 | 0.3187 | 24.4415 | | 0.0501 | 3.2 | 2000 | 0.3123 | 20.9720 | | 0.0226 | 4.8 | 3000 | 0.3010 | 19.6183 | | 0.001 | 6.4 | 4000 | 0.3123 | 18.9229 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.1