--- license: apache-2.0 library_name: peft tags: - generated_from_trainer datasets: - medmnist-v2 metrics: - accuracy - precision - recall - f1 base_model: facebook/deit-base-patch16-224 model-index: - name: derma-deit-base-finetuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # derma-deit-base-finetuned This model is a fine-tuned version of [facebook/deit-base-patch16-224](https://huggingface.co/facebook/deit-base-patch16-224) on the medmnist-v2 dataset. It achieves the following results on the evaluation set: - Loss: 0.5476 - Accuracy: 0.7960 - Precision: 0.6643 - Recall: 0.5891 - F1: 0.6164 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.005 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.9012 | 1.0 | 109 | 0.7630 | 0.7228 | 0.4263 | 0.3269 | 0.3462 | | 0.7636 | 2.0 | 219 | 0.7212 | 0.7288 | 0.5912 | 0.3631 | 0.3789 | | 0.7189 | 3.0 | 328 | 0.7622 | 0.7258 | 0.4465 | 0.4230 | 0.3935 | | 0.6904 | 4.0 | 438 | 0.7281 | 0.7438 | 0.4888 | 0.4484 | 0.4115 | | 0.7658 | 5.0 | 547 | 0.7215 | 0.7398 | 0.4855 | 0.4252 | 0.3753 | | 0.6363 | 6.0 | 657 | 0.6329 | 0.7677 | 0.6350 | 0.4928 | 0.5121 | | 0.6299 | 7.0 | 766 | 0.6117 | 0.7717 | 0.5962 | 0.5781 | 0.5713 | | 0.6011 | 8.0 | 876 | 0.5919 | 0.7797 | 0.6162 | 0.5757 | 0.5902 | | 0.6043 | 9.0 | 985 | 0.5476 | 0.7946 | 0.6295 | 0.5813 | 0.5983 | | 0.5671 | 9.95 | 1090 | 0.5544 | 0.7956 | 0.6273 | 0.5810 | 0.5998 | ### Framework versions - PEFT 0.9.0 - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2