--- license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - facebook/multilingual_librispeech metrics: - wer base_model: openai/whisper-large-v2 model-index: - name: Whisper largeV2 German MLS results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: facebook/multilingual_librispeech german type: facebook/multilingual_librispeech config: german split: test args: german metrics: - type: wer value: 6.048320913895545 name: Wer --- # Whisper largeV2 German MLS This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the facebook/multilingual_librispeech german dataset. It achieves the following results on the evaluation set: - Loss: 0.1370 - Wer: 6.0483 ## Model description The model is fine-tuned for 4000 updates/steps on multilingual librispeech German train data. - Zero-shot - 5.5 (MLS German test) - Fine-tune MLS German train - 6.04 (MLS German test) Even after fine-tuning the model is doing slightly worse than the zero-shot. ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.1755 | 0.25 | 1000 | 0.1844 | 7.7118 | | 0.1185 | 0.5 | 2000 | 0.1636 | 7.0659 | | 0.1081 | 0.75 | 3000 | 0.1396 | 6.0844 | | 0.1222 | 1.0 | 4000 | 0.1370 | 6.0483 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2