--- library_name: transformers license: cc-by-nc-4.0 base_model: MCG-NJU/videomae-large tags: - generated_from_trainer model-index: - name: videomae-large-finetuned-deepfake-subset results: [] metrics: - f1 --- # videomae-large-finetuned-deepfake-subset This model is a fine-tuned version of [MCG-NJU/videomae-large](https://huggingface.co/MCG-NJU/videomae-large) on the [Deepfake Detection Challenge](https://www.kaggle.com/competitions/deepfake-detection-challenge) dataset. It achieves the following results on the evaluation set: - Loss: 0.2588 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 4470 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.6169 | 0.1 | 447 | 0.6023 | | 0.6086 | 1.1 | 894 | 0.5055 | | 0.376 | 2.1 | 1341 | 0.4250 | | 0.3863 | 3.1 | 1788 | 0.6712 | | 0.249 | 4.1 | 2235 | 0.3951 | | 0.3233 | 5.1 | 2682 | 0.4969 | | 0.1995 | 6.1 | 3129 | 0.3744 | | 0.0874 | 7.1 | 3576 | 0.4104 | | 0.2518 | 8.1 | 4023 | 0.2647 | | 0.0118 | 9.1 | 4470 | 0.3337 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.5.0+cu121 - Datasets 3.1.0 - Tokenizers 0.19.1