--- library_name: transformers license: gemma base_model: google/gemma-7b tags: - alignment-handbook - trl - orpo - generated_from_trainer datasets: - argilla/dpo-mix-7k model-index: - name: gemma-7b-orpo results: [] --- # gemma-7b-orpo This model is a fine-tuned version of [google/gemma-7b](https://huggingface.co/google/gemma-7b) on the argilla/dpo-mix-7k dataset. It achieves the following results on the evaluation set: - Loss: 1.4556 - Rewards/chosen: -0.0513 - Rewards/rejected: -0.0589 - Rewards/accuracies: 0.5108 - Rewards/margins: 0.0076 - Logps/rejected: -1.1787 - Logps/chosen: -1.0268 - Logits/rejected: 312.9670 - Logits/chosen: 340.5321 - Nll Loss: 1.4096 - Log Odds Ratio: -0.6928 - Log Odds Chosen: 0.2398 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - total_train_batch_size: 4 - total_eval_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | Nll Loss | Log Odds Ratio | Log Odds Chosen | |:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|:--------:|:--------------:|:---------------:| | 1.3423 | 1.0 | 1259 | 1.4556 | -0.0513 | -0.0589 | 0.5108 | 0.0076 | -1.1787 | -1.0268 | 312.9670 | 340.5321 | 1.4096 | -0.6928 | 0.2398 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu121 - Datasets 3.0.0 - Tokenizers 0.19.1