--- base_model: google/gemma-7b datasets: - argilla/dpo-mix-7k library_name: transformers model_name: google/gemma-7b tags: - generated_from_trainer - alignment-handbook - trl - orpo licence: license --- # Model Card for google/gemma-7b This model is a fine-tuned version of [google/gemma-7b](https://huggingface.co/google/gemma-7b) on the [['argilla/dpo-mix-7k']](https://huggingface.co/datasets/['argilla/dpo-mix-7k']) dataset. It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="silviasapora/gemma-7b-slic-basic-5e-5-05-v5", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [Visualize in Weights & Biases](https://wandb.ai/silvias/huggingface/runs/qqrikeob) This model was trained with ORPO, a method introduced in [ORPO: Monolithic Preference Optimization without Reference Model](https://huggingface.co/papers/2403.07691). ### Framework versions - TRL: 0.13.0 - Transformers: 4.46.1 - Pytorch: 2.4.0 - Datasets: 3.1.0 - Tokenizers: 0.20.1 ## Citations Cite ORPO as: ```bibtex @article{hong2024orpo, title = {{ORPO: Monolithic Preference Optimization without Reference Model}}, author = {Jiwoo Hong and Noah Lee and James Thorne}, year = 2024, eprint = {arXiv:2403.07691} } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```