--- language: - yue license: apache-2.0 tags: - whisper-event - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - cer base_model: openai/whisper-large-v2 model-index: - name: Whisper Large V2 Cantonese results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: mozilla-foundation/common_voice_11_0 type: mozilla-foundation/common_voice_11_0 config: yue split: test metrics: - type: cer value: 6.7274 name: Cer - task: type: automatic-speech-recognition name: Speech Recognition dataset: name: Common Voice zh-HK type: common_voice args: zh-HK metrics: - type: cer value: 6.7274 name: Test CER --- # Whisper Large V2 Cantonese This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the mozilla-foundation/common_voice_11_0 yue dataset. It achieves the following results on the evaluation set: - Loss: 0.2807 - Cer: 6.7274 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.0032 | 13.01 | 1000 | 0.2318 | 6.8569 | | 0.002 | 26.01 | 2000 | 0.2404 | 7.1524 | | 0.0001 | 39.02 | 3000 | 0.2807 | 6.7274 | | 0.0001 | 53.01 | 4000 | 0.2912 | 6.7517 | | 0.0 | 66.01 | 5000 | 0.2957 | 6.7638 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2