--- library_name: transformers license: cc-by-nc-4.0 base_model: CohereForAI/aya-23-8B tags: - alignment-handbook - generated_from_trainer datasets: - simonycl/aya-23-8B_advprompter_jailbreak model-index: - name: aya-advprompter results: [] --- # aya-advprompter This model is a fine-tuned version of [CohereForAI/aya-23-8B](https://huggingface.co/CohereForAI/aya-23-8B) on the simonycl/aya-23-8B_advprompter_jailbreak dataset. It achieves the following results on the evaluation set: - Loss: 0.0459 - Rewards/chosen: 0.0182 - Rewards/rejected: -6.7884 - Rewards/accuracies: 1.0 - Rewards/margins: 6.8065 - Logps/rejected: -867.2261 - Logps/chosen: -114.6688 - Logits/rejected: 0.0796 - Logits/chosen: -0.2307 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - gradient_accumulation_steps: 16 - total_train_batch_size: 32 - total_eval_batch_size: 2 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Logits/chosen | Logits/rejected | Logps/chosen | Logps/rejected | Validation Loss | Rewards/accuracies | Rewards/chosen | Rewards/margins | Rewards/rejected | |:-------------:|:------:|:----:|:-------------:|:---------------:|:------------:|:--------------:|:---------------:|:------------------:|:--------------:|:---------------:|:----------------:| | 0.5229 | 0.3612 | 30 | -0.4619 | -0.3434 | -98.2886 | -212.0101 | 0.5059 | 1.0 | 0.1820 | 0.4182 | -0.2362 | | 0.2411 | 0.7223 | 60 | -0.4067 | -0.2327 | -88.9001 | -330.7860 | 0.2135 | 1.0 | 0.2758 | 1.6998 | -1.4240 | | 0.0634 | 1.0835 | 90 | -0.2580 | -0.0357 | -99.5121 | -607.3592 | 0.0751 | 1.0 | 0.1697 | 4.3594 | -4.1897 | | 0.0452 | 1.4454 | 120 | 0.0532 | 0.0757 | -5.9396 | 1.0 | 6.0153 | -782.3494 | -108.9159 | 0.0380 | -0.2345 | | 0.0307 | 1.8066 | 150 | 0.0459 | 0.0182 | -6.7884 | 1.0 | 6.8065 | -867.2261 | -114.6688 | 0.0796 | -0.2307 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.3.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1