--- license: apache-2.0 base_model: bert-large-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: bert-large-uncased-sst-2-32-13-30 results: [] --- # bert-large-uncased-sst-2-32-13-30 This model is a fine-tuned version of [bert-large-uncased](https://huggingface.co/bert-large-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6452 - Accuracy: 0.6719 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 5 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 2 | 0.7180 | 0.4688 | | No log | 2.0 | 4 | 0.7071 | 0.4688 | | No log | 3.0 | 6 | 0.6996 | 0.5469 | | No log | 4.0 | 8 | 0.6827 | 0.5625 | | 0.6456 | 5.0 | 10 | 0.6712 | 0.5469 | | 0.6456 | 6.0 | 12 | 0.6542 | 0.6094 | | 0.6456 | 7.0 | 14 | 0.6525 | 0.6719 | | 0.6456 | 8.0 | 16 | 0.6535 | 0.6875 | | 0.6456 | 9.0 | 18 | 0.6454 | 0.6406 | | 0.4153 | 10.0 | 20 | 0.6414 | 0.625 | | 0.4153 | 11.0 | 22 | 0.6470 | 0.6094 | | 0.4153 | 12.0 | 24 | 0.6509 | 0.6094 | | 0.4153 | 13.0 | 26 | 0.6489 | 0.6094 | | 0.4153 | 14.0 | 28 | 0.6498 | 0.6094 | | 0.238 | 15.0 | 30 | 0.6514 | 0.6094 | | 0.238 | 16.0 | 32 | 0.6440 | 0.6562 | | 0.238 | 17.0 | 34 | 0.6432 | 0.6719 | | 0.238 | 18.0 | 36 | 0.6497 | 0.6719 | | 0.238 | 19.0 | 38 | 0.6569 | 0.6406 | | 0.1523 | 20.0 | 40 | 0.6636 | 0.6094 | | 0.1523 | 21.0 | 42 | 0.6692 | 0.5781 | | 0.1523 | 22.0 | 44 | 0.6740 | 0.5625 | | 0.1523 | 23.0 | 46 | 0.6708 | 0.5625 | | 0.1523 | 24.0 | 48 | 0.6632 | 0.6094 | | 0.1187 | 25.0 | 50 | 0.6596 | 0.6406 | | 0.1187 | 26.0 | 52 | 0.6560 | 0.6562 | | 0.1187 | 27.0 | 54 | 0.6517 | 0.6719 | | 0.1187 | 28.0 | 56 | 0.6482 | 0.6875 | | 0.1187 | 29.0 | 58 | 0.6462 | 0.6875 | | 0.09 | 30.0 | 60 | 0.6452 | 0.6719 | ### Framework versions - Transformers 4.32.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.4.0 - Tokenizers 0.13.3