--- library_name: transformers license: llama3 base_model: meta-llama/Meta-Llama-3-8B-Instruct tags: - alignment-handbook - generated_from_trainer datasets: - simonycl/Meta-Llama-3-8B-Instruct_ultrafeedback-Meta-Llama-3-8B-Instruct-annotate-start-0-end-1.0-judge-5 model-index: - name: llama-3-8b-instruct-agg-judge results: [] --- # llama-3-8b-instruct-agg-judge This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the simonycl/Meta-Llama-3-8B-Instruct_ultrafeedback-Meta-Llama-3-8B-Instruct-annotate-start-0-end-1.0-judge-5 dataset. It achieves the following results on the evaluation set: - Loss: 0.6390 - Rewards/chosen: -1.0532 - Rewards/rejected: -1.3037 - Rewards/accuracies: 0.6057 - Rewards/margins: 0.2506 - Logps/rejected: -280.7787 - Logps/chosen: -256.8969 - Logits/rejected: -1.4905 - Logits/chosen: -1.5260 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 1 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 16 - total_train_batch_size: 64 - total_eval_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 0.6265 | 0.4264 | 400 | 0.6455 | -0.7831 | -0.9487 | 0.6504 | 0.1655 | -245.2767 | -229.8961 | -1.3679 | -1.4091 | | 0.6053 | 0.8529 | 800 | 0.6390 | -1.0532 | -1.3037 | 0.6057 | 0.2506 | -280.7787 | -256.8969 | -1.4905 | -1.5260 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.20.0