--- license: mit datasets: - squad_v2 - squad - mrqa - mbartolo/synQA - adversarial_qa - newsqa - trivia_qa - search_qa - hotpot_qa - natural_questions language: - en library_name: transformers pipeline_tag: question-answering tags: - deberta - deberta-v3 - question-answering - squad - squad_v2 - mrqa - synQA - adversarial_qa base_model: microsoft/deberta-v3-base model-index: - name: sjrhuschlee/deberta-v3-base-squad2-ext-v1 results: - task: type: question-answering name: Question Answering dataset: name: squad_v2 type: squad_v2 config: squad_v2 split: validation metrics: - type: exact_match value: 79.483 name: Exact Match - type: f1 value: 82.343 name: F1 - task: type: question-answering name: Question Answering dataset: name: squad type: squad config: plain_text split: validation metrics: - type: exact_match value: 87.985 name: Exact Match - type: f1 value: 93.651 name: F1 - task: type: question-answering name: Question Answering dataset: name: adversarial_qa type: adversarial_qa config: adversarialQA split: validation metrics: - type: exact_match value: 47.533 name: Exact Match - type: f1 value: 59.838 name: F1 - task: type: question-answering name: Question Answering dataset: name: squad_adversarial type: squad_adversarial config: AddOneSent split: validation metrics: - type: exact_match value: 84.723 name: Exact Match - type: f1 value: 89.780 name: F1 - task: type: question-answering name: Question Answering dataset: name: squadshifts amazon type: squadshifts config: amazon split: test metrics: - type: exact_match value: 74.851 name: Exact Match - type: f1 value: 87.448 name: F1 - task: type: question-answering name: Question Answering dataset: name: squadshifts new_wiki type: squadshifts config: new_wiki split: test metrics: - type: exact_match value: 83.396 name: Exact Match - type: f1 value: 91.996 name: F1 - task: type: question-answering name: Question Answering dataset: name: squadshifts nyt type: squadshifts config: nyt split: test metrics: - type: exact_match value: 83.934 name: Exact Match - type: f1 value: 92.234 name: F1 - task: type: question-answering name: Question Answering dataset: name: squadshifts reddit type: squadshifts config: reddit split: test metrics: - type: exact_match value: 75.008 name: Exact Match - type: f1 value: 86.120 name: F1 --- # deberta-v3-base for Extractive QA This is the [deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) model, fine-tuned using the SQuAD 2.0, MRQA, AdversarialQA, and SynQA datasets. It's been trained on question-answer pairs, including unanswerable questions, for the task of Extractive Question Answering. ## Overview **Language model:** deberta-v3-base **Language:** English **Downstream-task:** Extractive QA **Training data:** SQuAD 2.0, MRQA, AdversarialQA, SynQA **Eval data:** SQuAD 2.0 **Infrastructure**: 1x NVIDIA 3070 ## Model Usage ```python import torch from transformers import( AutoModelForQuestionAnswering, AutoTokenizer, pipeline ) model_name = "sjrhuschlee/deberta-v3-base-squad2-ext-v1" # a) Using pipelines nlp = pipeline('question-answering', model=model_name, tokenizer=model_name) qa_input = { 'question': 'Where do I live?', 'context': 'My name is Sarah and I live in London' } res = nlp(qa_input) # {'score': 0.984, 'start': 30, 'end': 37, 'answer': ' London'} # b) Load model & tokenizer model = AutoModelForQuestionAnswering.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) question = 'Where do I live?' context = 'My name is Sarah and I live in London' encoding = tokenizer(question, context, return_tensors="pt") start_scores, end_scores = model( encoding["input_ids"], attention_mask=encoding["attention_mask"], return_dict=False ) all_tokens = tokenizer.convert_ids_to_tokens(input_ids[0].tolist()) answer_tokens = all_tokens[torch.argmax(start_scores):torch.argmax(end_scores) + 1] answer = tokenizer.decode(tokenizer.convert_tokens_to_ids(answer_tokens)) # 'London' ``` ## Dataset Preparation The MRQA dataset was updated to fix some errors and formatting to work with the `run_qa.py` example script provided in the Hugging Face Transformers library. The changes included - Updating incorrect answer starts locations (usually off by a few characters) - Updating the answer text to exactly match the text found in the context ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 12 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 96 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3.0 ### Framework versions - Transformers 4.31.0.dev0