--- library_name: transformers license: mit base_model: google/vivit-b-16x2-kinetics400 tags: - generated_from_trainer metrics: - accuracy model-index: - name: Vivit-d3 results: [] --- # Vivit-d3 This model is a fine-tuned version of [google/vivit-b-16x2-kinetics400](https://huggingface.co/google/vivit-b-16x2-kinetics400) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2800 - Accuracy: 0.9509 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 2240 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 3.113 | 0.1 | 224 | 0.2148 | 0.9464 | | 3.4763 | 1.1 | 448 | 0.3339 | 0.8869 | | 0.5019 | 2.1 | 672 | 0.3398 | 0.9449 | | 0.0116 | 3.1 | 896 | 0.3553 | 0.9360 | | 0.8144 | 4.1 | 1120 | 0.4592 | 0.9405 | | 0.9856 | 5.1 | 1344 | 0.3184 | 0.9286 | | 0.0005 | 6.1 | 1568 | 0.2253 | 0.9435 | | 0.0001 | 7.1 | 1792 | 0.3713 | 0.9479 | | 0.0 | 8.1 | 2016 | 0.3450 | 0.9479 | | 0.2266 | 9.1 | 2240 | 0.2800 | 0.9509 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.20.3