--- library_name: peft license: mit base_model: unsloth/Phi-3.5-mini-instruct tags: - axolotl - generated_from_trainer model-index: - name: d4f3fd1a-16a9-4073-9bb6-e60c6dccce4c results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Phi-3.5-mini-instruct bf16: false chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 181669e76f988cac_train_data.json ds_type: json format: custom path: /workspace/input_data/181669e76f988cac_train_data.json type: field_input: '' field_instruction: la field_output: en format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null devices: - 0 - 1 - 2 - 3 - 4 - 5 - 6 - 7 early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: true fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: sn56/d4f3fd1a-16a9-4073-9bb6-e60c6dccce4c hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 1 mlflow_experiment_name: /tmp/181669e76f988cac_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 num_gpus: 8 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 4056 strict: false tf32: false tokenizer_type: AutoTokenizer train_batch_size: 32 train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: d4f3fd1a-16a9-4073-9bb6-e60c6dccce4c wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: d4f3fd1a-16a9-4073-9bb6-e60c6dccce4c warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ```

# d4f3fd1a-16a9-4073-9bb6-e60c6dccce4c This model is a fine-tuned version of [unsloth/Phi-3.5-mini-instruct](https://huggingface.co/unsloth/Phi-3.5-mini-instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 7.2201 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - total_eval_batch_size: 4 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 7.6426 | 0.0002 | 1 | 7.2201 | | 7.5127 | 0.0005 | 3 | 7.2201 | | 7.2791 | 0.0010 | 6 | 7.2201 | | 8.097 | 0.0015 | 9 | 7.2201 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1