--- library_name: peft license: apache-2.0 base_model: unsloth/codegemma-2b tags: - axolotl - generated_from_trainer model-index: - name: c7f9b06a-4ae7-40c1-9d50-922555656699 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/codegemma-2b bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 9161c67a4643fd1a_train_data.json ds_type: json format: custom path: /workspace/input_data/9161c67a4643fd1a_train_data.json type: field_input: ext field_instruction: lang field_output: content format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: 1 eval_max_new_tokens: 128 eval_steps: 25 eval_table_size: null flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 16 gradient_checkpointing: true group_by_length: true hub_model_id: sn56a4/c7f9b06a-4ae7-40c1-9d50-922555656699 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 64 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lr_scheduler: cosine max_steps: 100 micro_batch_size: 4 mlflow_experiment_name: /tmp/9161c67a4643fd1a_train_data.json model_type: AutoModelForCausalLM num_epochs: 2 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 25 sequence_len: 2048 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: sn56-miner wandb_mode: disabled wandb_name: c7f9b06a-4ae7-40c1-9d50-922555656699 wandb_project: god wandb_run: 0z4v wandb_runid: c7f9b06a-4ae7-40c1-9d50-922555656699 warmup_ratio: 0.05 weight_decay: 0.01 xformers_attention: true ```

# c7f9b06a-4ae7-40c1-9d50-922555656699 This model is a fine-tuned version of [unsloth/codegemma-2b](https://huggingface.co/unsloth/codegemma-2b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7645 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 16 - total_train_batch_size: 256 - total_eval_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.1526 | 0.0116 | 1 | 1.8265 | | 1.8037 | 0.2888 | 25 | 1.0184 | | 1.3318 | 0.5776 | 50 | 0.8426 | | 1.0099 | 0.8664 | 75 | 0.7775 | | 0.7027 | 1.1603 | 100 | 0.7645 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1