--- library_name: peft license: llama3.1 base_model: unsloth/Meta-Llama-3.1-8B tags: - axolotl - generated_from_trainer model-index: - name: cbb17fa4-1c43-4064-835b-9e61eef7d2f6 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Meta-Llama-3.1-8B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - beba4ce811a00be7_train_data.json ds_type: json format: custom path: /workspace/input_data/beba4ce811a00be7_train_data.json type: field_instruction: question field_output: answer format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 5 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: sn56b1/cbb17fa4-1c43-4064-835b-9e61eef7d2f6 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 5 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/beba4ce811a00be7_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: sn56-miner wandb_mode: disabled wandb_name: cbb17fa4-1c43-4064-835b-9e61eef7d2f6 wandb_project: god wandb_run: sgoc wandb_runid: cbb17fa4-1c43-4064-835b-9e61eef7d2f6 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ```

# cbb17fa4-1c43-4064-835b-9e61eef7d2f6 This model is a fine-tuned version of [unsloth/Meta-Llama-3.1-8B](https://huggingface.co/unsloth/Meta-Llama-3.1-8B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2350 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0002 | 1 | 4.1875 | | 3.414 | 0.0021 | 10 | 1.3908 | | 0.3047 | 0.0042 | 20 | 0.2942 | | 0.2589 | 0.0063 | 30 | 0.2510 | | 0.2069 | 0.0084 | 40 | 0.2385 | | 0.3688 | 0.0106 | 50 | 0.2350 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1