--- library_name: peft license: llama3 base_model: Orenguteng/Llama-3-8B-Lexi-Uncensored tags: - axolotl - generated_from_trainer model-index: - name: ef0e7220-dcbb-4819-a649-c74b01532a33 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: Orenguteng/Llama-3-8B-Lexi-Uncensored bf16: true chat_template: llama3 datasets: - data_files: - 985be5197101f275_train_data.json ds_type: json format: custom path: /workspace/input_data/985be5197101f275_train_data.json type: field_instruction: anchor field_output: positive format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 2 gradient_checkpointing: true group_by_length: false hub_model_id: sn56b1/ef0e7220-dcbb-4819-a649-c74b01532a33 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 80GiB max_steps: 100 micro_batch_size: 8 mlflow_experiment_name: /tmp/985be5197101f275_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 25 save_strategy: steps sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: sn56-miner wandb_mode: disabled wandb_name: ef0e7220-dcbb-4819-a649-c74b01532a33 wandb_project: god wandb_run: x1bx wandb_runid: ef0e7220-dcbb-4819-a649-c74b01532a33 warmup_steps: 10 weight_decay: 0.01 xformers_attention: false ```

# ef0e7220-dcbb-4819-a649-c74b01532a33 This model is a fine-tuned version of [Orenguteng/Llama-3-8B-Lexi-Uncensored](https://huggingface.co/Orenguteng/Llama-3-8B-Lexi-Uncensored) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9052 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - total_eval_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 3.3641 | 0.0115 | 1 | 3.1728 | | 2.9377 | 0.1034 | 9 | 2.5553 | | 2.0142 | 0.2069 | 18 | 1.9084 | | 1.715 | 0.3103 | 27 | 1.6210 | | 1.5721 | 0.4138 | 36 | 1.4090 | | 1.2625 | 0.5172 | 45 | 1.2462 | | 1.1605 | 0.6207 | 54 | 1.1388 | | 1.0993 | 0.7241 | 63 | 1.0315 | | 0.9858 | 0.8276 | 72 | 0.9664 | | 0.9439 | 0.9310 | 81 | 0.9282 | | 0.8945 | 1.0345 | 90 | 0.9081 | | 0.9178 | 1.1379 | 99 | 0.9052 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1