--- library_name: peft license: other base_model: Qwen/Qwen2.5-3B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: c018fe7f-80ab-42d4-8ef8-72f48c747f5c results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen2.5-3B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 90ae5bb12878ae2c_train_data.json ds_type: json format: custom path: /workspace/input_data/90ae5bb12878ae2c_train_data.json type: field_instruction: role field_output: text format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: sn56t2/3a80dadb-834c-4593-bb4a-e7ce5a35d0e6 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 5 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/90ae5bb12878ae2c_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: sn56-miner wandb_mode: disabled wandb_name: sn56t2/3a80dadb wandb_project: god wandb_run: zj06 wandb_runid: sn56t2/3a80dadb warmup_steps: 10 weight_decay: 0.01 xformers_attention: null ```

# c018fe7f-80ab-42d4-8ef8-72f48c747f5c This model is a fine-tuned version of [Qwen/Qwen2.5-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-3B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.0651 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - total_eval_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0011 | 1 | 2.9756 | | 2.002 | 0.0573 | 50 | 2.1359 | | 1.9281 | 0.1145 | 100 | 2.0835 | | 2.0136 | 0.1718 | 150 | 2.0688 | | 2.0595 | 0.2290 | 200 | 2.0651 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1