--- library_name: transformers datasets: - sofya-ai/soap_multilanguage_filtered - sofya-ai/asclepius_multilanguage_filtered language: - pt - es - en base_model: - meta-llama/Llama-3.1-8B-Instruct --- # Model Card for Sofya-LLaMA-3.1-8B ## Model Details ### Model Description This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** Sofya AI - **Funded by [optional]:** Sofya AI - **Shared by [optional]:** Sofya AI - **Model type:** Large Language Model (LLM) for clinical workflows. - **Language(s) (NLP):** Portuguese, English, Spanish. - **License:** [More Information Needed] - **Finetuned from model [optional]:** `meta-llama/llama-3.1-8b` ### Model Sources [optional] - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses This model is designed for processing and generating structured clinical notes, particularly in multilingual formats (Portuguese, English, Spanish). ### Downstream Use [optional] - Fine-tuning for specific clinical tasks. - Use in health-related applications requiring structured input-output for SOAP (Subjective, Objective, Assessment, Plan) workflows. ### Out-of-Scope Use [More Information Needed] ## Bias, Risks, and Limitations [More Information Needed] ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## **Training Details** ### **Training Data** - **Datasets Used:** - **SOAP Multilanguage Filtered** (`sofya-ai/soap_multilanguage_filtered`): Structured clinical notes in SOAP format. - **Asclepius Multilanguage Filtered** (`sofya-ai/asclepius_multilanguage_filtered`): Annotations for clinical workflows. - **Data Characteristics:** - SOAP: Full dataset used. - Asclepius: Randomly selected **1250 samples** for balanced training. - **Languages:** Portuguese, English, Spanish. --- ### **Training Procedure** #### **Preprocessing [optional]** - Tokenized inputs to a maximum sequence length of **4096** tokens. - Interleaved datasets using Hugging Face's `interleave_datasets`. #### **Training Hyperparameters** | **Argument** | **Value** | |-------------------------------|--------------------------| | `output_dir` | `./results` | | `max_seq_length` | `4096` | | `learning_rate` | `3e-5` | | `per_device_train_batch_size` | `2` | | `per_device_eval_batch_size` | `2` | | `num_train_epochs` | `2` | | `weight_decay` | `0.01` | | `optim` | `paged_adamw_32bit` | | `warmup_steps` | `250` | | `lr_scheduler_type` | `cosine` | | `eval_strategy` | `steps` | | `save_strategy` | `steps` | | `save_steps` | `1000` | | `eval_steps` | `500` | | `save_total_limit` | `3` | | `logging_dir` | `./logs` | | `logging_steps` | `10` | | `bf16` | `True` | | `max_grad_norm` | `1.0` | --- #### Speeds, Sizes, Times [optional] [More Information Needed] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data [More Information Needed] #### Factors [More Information Needed] #### Metrics [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] [More Information Needed] ## Environmental Impact Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]