--- library_name: transformers license: apache-2.0 base_model: google/vit-base-patch16-224 tags: - image-classification - generated_from_trainer metrics: - accuracy model-index: - name: vit-base-oxford-iiit-pets results: [] --- # vit-base-oxford-iiit-pets This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the pcuenq/oxford-pets dataset. It achieves the following results on the evaluation set: - Loss: 0.2022 - Accuracy: 0.9391 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3716 | 1.0 | 370 | 0.3101 | 0.9283 | | 0.2157 | 2.0 | 740 | 0.2396 | 0.9323 | | 0.1558 | 3.0 | 1110 | 0.2290 | 0.9350 | | 0.1375 | 4.0 | 1480 | 0.2166 | 0.9364 | | 0.1301 | 5.0 | 1850 | 0.2135 | 0.9418 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.2.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3