--- tags: - finetuned - quantized - 4-bit - AWQ - transformers - pytorch - mistral - text-generation - conversational - license:apache-2.0 - autotrain_compatible - endpoints_compatible - text-generation-inference - region:us base_model: senseable/WestLake-7B-v2 license: apache-2.0 language: - en library_name: transformers model_creator: Common Sense model_name: WestLake 7B v2 model_type: mistral pipeline_tag: text-generation prompt_template: '<|im_start|>system {system_message}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ' quantized_by: Suparious --- # WestLake 7B v2 laser - AWQ - Model creator: [Common Sense](https://huggingface.co/senseable) - Original model: [WestLake 7B v2](https://huggingface.co/senseable/WestLake-7B-v2) - Fine Tuning: [cognitivecomputations](https://huggingface.co/cognitivecomputations/WestLake-7B-v2-laser) It follows the implementation of [laserRMT](https://github.com/cognitivecomputations/laserRMT) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6585ffb10eeafbd678d4b3fe/jnqnl8a_zYYMqJoBpX8yS.png) ## Model description This repo contains AWQ model files for [Common Sense's WestLake 7B v2](https://huggingface.co/senseable/WestLake-7B-v2). These files were quantised using hardware kindly provided by [SolidRusT Networks](https://solidrust.net/). ## How to use ### Install the necessary packages ```bash pip install --upgrade autoawq autoawq-kernels ``` ### Example Python code ```bash from awq import AutoAWQForCausalLM from transformers import AutoTokenizer, TextStreamer model_path = "solidrust/WestLake-7B-v2-laser-AWQ" system_message = "Welcome to WestLake. You are here to help users with any questions they may have." # Load model model = AutoAWQForCausalLM.from_quantized(model_path, fuse_layers=True) tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) # Convert prompt to tokens prompt_template = """\ <|system|> <|user|> {prompt} <|assistant|>""" prompt = "You're standing on the surface of the Earth. "\ "You walk one mile south, one mile west and one mile north. "\ "You end up exactly where you started. Where are you?" tokens = tokenizer(prompt_template.format(prompt=prompt), return_tensors='pt').input_ids.cuda() # Generate output generation_output = model.generate(tokens, streamer=streamer, max_new_tokens=512) ``` ### About AWQ AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings. AWQ models are currently supported on Linux and Windows, with NVidia GPUs only. macOS users: please use GGUF models instead. It is supported by: - [Text Generation Webui](https://github.com/oobabooga/text-generation-webui) - using Loader: AutoAWQ - [vLLM](https://github.com/vllm-project/vllm) - version 0.2.2 or later for support for all model types. - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) - [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later, from any code or client that supports Transformers - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) - for use from Python code ## Prompt template: ChatML ```plaintext <|im_start|>system {system_message}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ``` Also working with Basic Mistral format: ```plaintext <|system|> <|user|> {prompt} <|assistant|> ```