--- tags: - merge - mergekit - lazymergekit - GreenNode/GreenNode-mini-7B-multilingual-v1olet - KoboldAI/Mistral-7B-Holodeck-1 base_model: - GreenNode/GreenNode-mini-7B-multilingual-v1olet - KoboldAI/Mistral-7B-Holodeck-1 --- # HoloViolet-7B-test5 A very discriptive model, harnessing the literary benefits of KoboldAI's Mistral Holodeck, but less schizo. Manages to get an understanding of the situation, doesn't ignore context nearly as much, while expanding on it creatively. It's not very subtle about telling you a character's intentions, as it is still a 7B, but it writes well imo. GreenNode V1olet is a great model for supplying smarts since it doesn't gravitate towards GPT'isms nearly as much as the other smart mistral tunes. Use Roleplay prompt preset on sillytavern, I find simple prompts work better with these smaller models. HoloViolet-7B-test5 is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [GreenNode/GreenNode-mini-7B-multilingual-v1olet](https://huggingface.co/GreenNode/GreenNode-mini-7B-multilingual-v1olet) * [KoboldAI/Mistral-7B-Holodeck-1](https://huggingface.co/KoboldAI/Mistral-7B-Holodeck-1) ## 🧩 Configuration ```yaml slices: - sources: - model: GreenNode/GreenNode-mini-7B-multilingual-v1olet layer_range: [0, 32] - model: KoboldAI/Mistral-7B-Holodeck-1 layer_range: [0, 32] merge_method: slerp base_model: GreenNode/GreenNode-mini-7B-multilingual-v1olet parameters: t: - value: 0.32 dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "son-of-man/HoloViolet-7B-test5" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```