import sys import os.path import glob import cv2 import numpy as np import torch import architecture as arch model_path = '4x_eula_digimanga_bw_v2_nc1_307k.pth' img_path = sys.argv[1] device = torch.device('cpu') model = arch.RRDB_Net(1, 1, 64, 23, gc=32, upscale=4, norm_type=None, act_type='leakyrelu', mode='CNA', res_scale=1, upsample_mode='upconv') model.load_state_dict(torch.load(model_path), strict=True) model.eval() for k, v in model.named_parameters(): v.requires_grad = False model = model.to(device) base = os.path.splitext(os.path.basename(img_path))[0] # read image img = cv2.imread(img_path, cv2.IMREAD_GRAYSCALE) img = img * 1.0 / 255 img = torch.from_numpy(img[np.newaxis, :, :]).float() img_LR = img.unsqueeze(0) img_LR = img_LR.to(device) output = model(img_LR).squeeze(dim=0).float().cpu().clamp_(0, 1).numpy() output = np.transpose(output, (1, 2, 0)) output = (output * 255.0).round() cv2.imwrite('results/{:s}_rlt.jpg'.format(base), output, [int(cv2.IMWRITE_JPEG_QUALITY), 90])