import sys import cv2 import numpy as np import torch import ESRGAN.architecture as arch from ESRGANer import ESRGANer def is_cuda(): if torch.cuda.is_available(): return True else: return False model_path = 'models/4x_eula_digimanga_bw_v2_nc1_307k.pth' OUTPUT_PATH = sys.argv[1] device = torch.device('cuda' if is_cuda() else 'cpu') model = arch.RRDB_Net(1, 1, 64, 23, gc=32, upscale=4, norm_type=None, act_type='leakyrelu', mode='CNA', res_scale=1, upsample_mode='upconv') if is_cuda(): print("Using GPU 🥶") model.load_state_dict(torch.load(model_path), strict=True) else: print("Using CPU 😒") model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu')), strict=True) model.eval() for k, v in model.named_parameters(): v.requires_grad = False model = model.to(device) # Read image img = cv2.imread(OUTPUT_PATH, cv2.IMREAD_GRAYSCALE) img = img * 1.0 / 255 img = torch.from_numpy(img[np.newaxis, :, :]).float() img_LR = img.unsqueeze(0) img_LR = img_LR.to(device) upsampler = ESRGANer(model=model) output = upsampler.enhance(img_LR) output = output.squeeze(dim=0).float().cpu().clamp_(0, 1).numpy() output = np.transpose(output, (1, 2, 0)) output = (output * 255.0).round() cv2.imwrite(OUTPUT_PATH, output, [int(cv2.IMWRITE_PNG_COMPRESSION), 5])