diff --git a/.ipynb_checkpoints/README-checkpoint.md b/.ipynb_checkpoints/README-checkpoint.md
new file mode 100644
index 0000000000000000000000000000000000000000..cb700f3ea029e9d1b882c5490b3421fe0f742605
--- /dev/null
+++ b/.ipynb_checkpoints/README-checkpoint.md
@@ -0,0 +1,12 @@
+---
+title: LoRa ppdiffusers dreambooth
+emoji: 🎨🎞️
+colorFrom: pink
+colorTo: purple
+sdk: gradio
+sdk_version: 3.18.0
+app_file: app.py
+pinned: false
+---
+
+Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
\ No newline at end of file
diff --git a/.ipynb_checkpoints/app-checkpoint.py b/.ipynb_checkpoints/app-checkpoint.py
new file mode 100644
index 0000000000000000000000000000000000000000..859863ec7c6bce1bfd744db99a338a57c2701fab
--- /dev/null
+++ b/.ipynb_checkpoints/app-checkpoint.py
@@ -0,0 +1,1677 @@
+# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
+# Copyright 2022 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+import gradio as gr
+from env import BASE_MODEL_NAME, LORA_WEIGHTS_PATH, PROMPTS
+
+examples = [
+ [
+ PROMPTS,
+ 'low quality',
+ 7.5,
+ 512,
+ 512,
+ 25,
+ "DPMSolver"
+ ],
+]
+import inspect
+import os
+import random
+import re
+import time
+from typing import Callable, List, Optional, Union
+
+import numpy as np
+import paddle
+import PIL
+import PIL.Image
+from packaging import version
+
+from paddlenlp.transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
+
+from ppdiffusers.configuration_utils import FrozenDict
+from ppdiffusers.models import AutoencoderKL, UNet2DConditionModel
+from ppdiffusers.pipeline_utils import DiffusionPipeline
+from ppdiffusers.schedulers import (
+ DDIMScheduler,
+ DPMSolverMultistepScheduler,
+ EulerAncestralDiscreteScheduler,
+ EulerDiscreteScheduler,
+ LMSDiscreteScheduler,
+ PNDMScheduler,
+ HeunDiscreteScheduler,
+ KDPM2AncestralDiscreteScheduler,
+ KDPM2DiscreteScheduler,
+
+)
+from ppdiffusers.utils import PIL_INTERPOLATION, deprecate, logging
+from ppdiffusers.utils.testing_utils import load_image
+from ppdiffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
+from ppdiffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
+
+logger = logging.get_logger(__name__) # pylint: disable=invalid-name
+
+
+def save_all(images, FORMAT="jpg", OUTDIR="./outputs/"):
+ if not isinstance(images, (list, tuple)):
+ images = [images]
+ for image in images:
+ PRECISION = "fp32"
+ argument = image.argument
+ os.makedirs(OUTDIR, exist_ok=True)
+ epoch_time = argument["epoch_time"]
+ PROMPT = argument["prompt"]
+ NEGPROMPT = argument["negative_prompt"]
+ HEIGHT = argument["height"]
+ WIDTH = argument["width"]
+ SEED = argument["seed"]
+ STRENGTH = argument.get("strength", 1)
+ INFERENCE_STEPS = argument["num_inference_steps"]
+ GUIDANCE_SCALE = argument["guidance_scale"]
+
+ filename = f"{str(epoch_time)}_scale_{GUIDANCE_SCALE}_steps_{INFERENCE_STEPS}_seed_{SEED}.{FORMAT}"
+ filedir = f"{OUTDIR}/{filename}"
+ image.save(filedir)
+ with open(f"{OUTDIR}/{epoch_time}_prompt.txt", "w") as file:
+ file.write(
+ f"PROMPT: {PROMPT}\nNEG_PROMPT: {NEGPROMPT}\n\nINFERENCE_STEPS: {INFERENCE_STEPS}\nHeight: {HEIGHT}\nWidth: {WIDTH}\nSeed: {SEED}\n\nPrecision: {PRECISION}\nSTRENGTH: {STRENGTH}\nGUIDANCE_SCALE: {GUIDANCE_SCALE}"
+ )
+
+
+re_attention = re.compile(
+ r"""
+\\\(|
+\\\)|
+\\\[|
+\\]|
+\\\\|
+\\|
+\(|
+\[|
+:([+-]?[.\d]+)\)|
+\)|
+]|
+[^\\()\[\]:]+|
+:
+""",
+ re.X,
+)
+
+
+def parse_prompt_attention(text):
+ """
+ Parses a string with attention tokens and returns a list of pairs: text and its associated weight.
+ Accepted tokens are:
+ (abc) - increases attention to abc by a multiplier of 1.1
+ (abc:3.12) - increases attention to abc by a multiplier of 3.12
+ [abc] - decreases attention to abc by a multiplier of 1.1
+ \( - literal character '('
+ \[ - literal character '['
+ \) - literal character ')'
+ \] - literal character ']'
+ \\ - literal character '\'
+ anything else - just text
+ >>> parse_prompt_attention('normal text')
+ [['normal text', 1.0]]
+ >>> parse_prompt_attention('an (important) word')
+ [['an ', 1.0], ['important', 1.1], [' word', 1.0]]
+ >>> parse_prompt_attention('(unbalanced')
+ [['unbalanced', 1.1]]
+ >>> parse_prompt_attention('\(literal\]')
+ [['(literal]', 1.0]]
+ >>> parse_prompt_attention('(unnecessary)(parens)')
+ [['unnecessaryparens', 1.1]]
+ >>> parse_prompt_attention('a (((house:1.3)) [on] a (hill:0.5), sun, (((sky))).')
+ [['a ', 1.0],
+ ['house', 1.5730000000000004],
+ [' ', 1.1],
+ ['on', 1.0],
+ [' a ', 1.1],
+ ['hill', 0.55],
+ [', sun, ', 1.1],
+ ['sky', 1.4641000000000006],
+ ['.', 1.1]]
+ """
+
+ res = []
+ round_brackets = []
+ square_brackets = []
+
+ round_bracket_multiplier = 1.1
+ square_bracket_multiplier = 1 / 1.1
+
+ def multiply_range(start_position, multiplier):
+ for p in range(start_position, len(res)):
+ res[p][1] *= multiplier
+
+ for m in re_attention.finditer(text):
+ text = m.group(0)
+ weight = m.group(1)
+
+ if text.startswith("\\"):
+ res.append([text[1:], 1.0])
+ elif text == "(":
+ round_brackets.append(len(res))
+ elif text == "[":
+ square_brackets.append(len(res))
+ elif weight is not None and len(round_brackets) > 0:
+ multiply_range(round_brackets.pop(), float(weight))
+ elif text == ")" and len(round_brackets) > 0:
+ multiply_range(round_brackets.pop(), round_bracket_multiplier)
+ elif text == "]" and len(square_brackets) > 0:
+ multiply_range(square_brackets.pop(), square_bracket_multiplier)
+ else:
+ res.append([text, 1.0])
+
+ for pos in round_brackets:
+ multiply_range(pos, round_bracket_multiplier)
+
+ for pos in square_brackets:
+ multiply_range(pos, square_bracket_multiplier)
+
+ if len(res) == 0:
+ res = [["", 1.0]]
+
+ # merge runs of identical weights
+ i = 0
+ while i + 1 < len(res):
+ if res[i][1] == res[i + 1][1]:
+ res[i][0] += res[i + 1][0]
+ res.pop(i + 1)
+ else:
+ i += 1
+
+ return res
+
+
+def get_prompts_with_weights(pipe: DiffusionPipeline, prompt: List[str], max_length: int):
+ r"""
+ Tokenize a list of prompts and return its tokens with weights of each token.
+
+ No padding, starting or ending token is included.
+ """
+ tokens = []
+ weights = []
+ for text in prompt:
+ texts_and_weights = parse_prompt_attention(text)
+ text_token = []
+ text_weight = []
+ for word, weight in texts_and_weights:
+ # tokenize and discard the starting and the ending token
+ token = pipe.tokenizer(word).input_ids[1:-1]
+ text_token += token
+
+ # copy the weight by length of token
+ text_weight += [weight] * len(token)
+
+ # stop if the text is too long (longer than truncation limit)
+ if len(text_token) > max_length:
+ break
+
+ # truncate
+ if len(text_token) > max_length:
+ text_token = text_token[:max_length]
+ text_weight = text_weight[:max_length]
+
+ tokens.append(text_token)
+ weights.append(text_weight)
+ return tokens, weights
+
+
+def pad_tokens_and_weights(tokens, weights, max_length, bos, eos, pad, no_boseos_middle=True, chunk_length=77):
+ r"""
+ Pad the tokens (with starting and ending tokens) and weights (with 1.0) to max_length.
+ """
+ max_embeddings_multiples = (max_length - 2) // (chunk_length - 2)
+ weights_length = max_length if no_boseos_middle else max_embeddings_multiples * chunk_length
+ for i in range(len(tokens)):
+ tokens[i] = [bos] + tokens[i] + [eos] + [pad] * (max_length - 2 - len(tokens[i]))
+ if no_boseos_middle:
+ weights[i] = [1.0] + weights[i] + [1.0] * (max_length - 1 - len(weights[i]))
+ else:
+ w = []
+ if len(weights[i]) == 0:
+ w = [1.0] * weights_length
+ else:
+ for j in range((len(weights[i]) - 1) // chunk_length + 1):
+ w.append(1.0) # weight for starting token in this chunk
+ w += weights[i][j * chunk_length : min(len(weights[i]), (j + 1) * chunk_length)]
+ w.append(1.0) # weight for ending token in this chunk
+ w += [1.0] * (weights_length - len(w))
+ weights[i] = w[:]
+
+ return tokens, weights
+
+
+def get_unweighted_text_embeddings(
+ pipe: DiffusionPipeline, text_input: paddle.Tensor, chunk_length: int, no_boseos_middle: Optional[bool] = True
+):
+ """
+ When the length of tokens is a multiple of the capacity of the text encoder,
+ it should be split into chunks and sent to the text encoder individually.
+ """
+ max_embeddings_multiples = (text_input.shape[1] - 2) // (chunk_length - 2)
+ if max_embeddings_multiples > 1:
+ text_embeddings = []
+ for i in range(max_embeddings_multiples):
+ # extract the i-th chunk
+ text_input_chunk = text_input[:, i * (chunk_length - 2) : (i + 1) * (chunk_length - 2) + 2].clone()
+
+ # cover the head and the tail by the starting and the ending tokens
+ text_input_chunk[:, 0] = text_input[0, 0]
+ text_input_chunk[:, -1] = text_input[0, -1]
+
+ text_embedding = pipe.text_encoder(text_input_chunk)[0]
+
+ if no_boseos_middle:
+ if i == 0:
+ # discard the ending token
+ text_embedding = text_embedding[:, :-1]
+ elif i == max_embeddings_multiples - 1:
+ # discard the starting token
+ text_embedding = text_embedding[:, 1:]
+ else:
+ # discard both starting and ending tokens
+ text_embedding = text_embedding[:, 1:-1]
+
+ text_embeddings.append(text_embedding)
+ text_embeddings = paddle.concat(text_embeddings, axis=1)
+ else:
+ text_embeddings = pipe.text_encoder(text_input)[0]
+ return text_embeddings
+
+
+def get_weighted_text_embeddings(
+ pipe: DiffusionPipeline,
+ prompt: Union[str, List[str]],
+ uncond_prompt: Optional[Union[str, List[str]]] = None,
+ max_embeddings_multiples: Optional[int] = 1,
+ no_boseos_middle: Optional[bool] = False,
+ skip_parsing: Optional[bool] = False,
+ skip_weighting: Optional[bool] = False,
+ **kwargs
+):
+ r"""
+ Prompts can be assigned with local weights using brackets. For example,
+ prompt 'A (very beautiful) masterpiece' highlights the words 'very beautiful',
+ and the embedding tokens corresponding to the words get multiplied by a constant, 1.1.
+
+ Also, to regularize of the embedding, the weighted embedding would be scaled to preserve the original mean.
+
+ Args:
+ pipe (`DiffusionPipeline`):
+ Pipe to provide access to the tokenizer and the text encoder.
+ prompt (`str` or `List[str]`):
+ The prompt or prompts to guide the image generation.
+ uncond_prompt (`str` or `List[str]`):
+ The unconditional prompt or prompts for guide the image generation. If unconditional prompt
+ is provided, the embeddings of prompt and uncond_prompt are concatenated.
+ max_embeddings_multiples (`int`, *optional*, defaults to `1`):
+ The max multiple length of prompt embeddings compared to the max output length of text encoder.
+ no_boseos_middle (`bool`, *optional*, defaults to `False`):
+ If the length of text token is multiples of the capacity of text encoder, whether reserve the starting and
+ ending token in each of the chunk in the middle.
+ skip_parsing (`bool`, *optional*, defaults to `False`):
+ Skip the parsing of brackets.
+ skip_weighting (`bool`, *optional*, defaults to `False`):
+ Skip the weighting. When the parsing is skipped, it is forced True.
+ """
+ max_length = (pipe.tokenizer.model_max_length - 2) * max_embeddings_multiples + 2
+ if isinstance(prompt, str):
+ prompt = [prompt]
+
+ if not skip_parsing:
+ prompt_tokens, prompt_weights = get_prompts_with_weights(pipe, prompt, max_length - 2)
+ if uncond_prompt is not None:
+ if isinstance(uncond_prompt, str):
+ uncond_prompt = [uncond_prompt]
+ uncond_tokens, uncond_weights = get_prompts_with_weights(pipe, uncond_prompt, max_length - 2)
+ else:
+ prompt_tokens = [
+ token[1:-1] for token in pipe.tokenizer(prompt, max_length=max_length, truncation=True).input_ids
+ ]
+ prompt_weights = [[1.0] * len(token) for token in prompt_tokens]
+ if uncond_prompt is not None:
+ if isinstance(uncond_prompt, str):
+ uncond_prompt = [uncond_prompt]
+ uncond_tokens = [
+ token[1:-1]
+ for token in pipe.tokenizer(uncond_prompt, max_length=max_length, truncation=True).input_ids
+ ]
+ uncond_weights = [[1.0] * len(token) for token in uncond_tokens]
+
+ # round up the longest length of tokens to a multiple of (model_max_length - 2)
+ max_length = max([len(token) for token in prompt_tokens])
+ if uncond_prompt is not None:
+ max_length = max(max_length, max([len(token) for token in uncond_tokens]))
+
+ max_embeddings_multiples = min(
+ max_embeddings_multiples, (max_length - 1) // (pipe.tokenizer.model_max_length - 2) + 1
+ )
+ max_embeddings_multiples = max(1, max_embeddings_multiples)
+ max_length = (pipe.tokenizer.model_max_length - 2) * max_embeddings_multiples + 2
+
+ # pad the length of tokens and weights
+ # support bert tokenizer
+ bos = pipe.tokenizer.bos_token_id if pipe.tokenizer.bos_token_id is not None else pipe.tokenizer.cls_token_id
+ eos = pipe.tokenizer.eos_token_id if pipe.tokenizer.eos_token_id is not None else pipe.tokenizer.sep_token_id
+ pad = pipe.tokenizer.pad_token_id
+ prompt_tokens, prompt_weights = pad_tokens_and_weights(
+ prompt_tokens,
+ prompt_weights,
+ max_length,
+ bos,
+ eos,
+ pad,
+ no_boseos_middle=no_boseos_middle,
+ chunk_length=pipe.tokenizer.model_max_length,
+ )
+ prompt_tokens = paddle.to_tensor(prompt_tokens)
+ if uncond_prompt is not None:
+ uncond_tokens, uncond_weights = pad_tokens_and_weights(
+ uncond_tokens,
+ uncond_weights,
+ max_length,
+ bos,
+ eos,
+ pad,
+ no_boseos_middle=no_boseos_middle,
+ chunk_length=pipe.tokenizer.model_max_length,
+ )
+ uncond_tokens = paddle.to_tensor(uncond_tokens)
+
+ # get the embeddings
+ text_embeddings = get_unweighted_text_embeddings(
+ pipe, prompt_tokens, pipe.tokenizer.model_max_length, no_boseos_middle=no_boseos_middle
+ )
+ prompt_weights = paddle.to_tensor(prompt_weights, dtype=text_embeddings.dtype)
+ if uncond_prompt is not None:
+ uncond_embeddings = get_unweighted_text_embeddings(
+ pipe, uncond_tokens, pipe.tokenizer.model_max_length, no_boseos_middle=no_boseos_middle
+ )
+ uncond_weights = paddle.to_tensor(uncond_weights, dtype=uncond_embeddings.dtype)
+
+ # assign weights to the prompts and normalize in the sense of mean
+ # TODO: should we normalize by chunk or in a whole (current implementation)?
+ if (not skip_parsing) and (not skip_weighting):
+ previous_mean = text_embeddings.mean(axis=[-2, -1])
+ text_embeddings *= prompt_weights.unsqueeze(-1)
+ text_embeddings *= previous_mean / text_embeddings.mean(axis=[-2, -1])
+ if uncond_prompt is not None:
+ previous_mean = uncond_embeddings.mean(axis=[-2, -1])
+ uncond_embeddings *= uncond_weights.unsqueeze(-1)
+ uncond_embeddings *= previous_mean / uncond_embeddings.mean(axis=[-2, -1])
+
+ # For classifier free guidance, we need to do two forward passes.
+ # Here we concatenate the unconditional and text embeddings into a single batch
+ # to avoid doing two forward passes
+ if uncond_prompt is not None:
+ text_embeddings = paddle.concat([uncond_embeddings, text_embeddings])
+
+ return text_embeddings
+
+
+def preprocess_image(image):
+ w, h = image.size
+ w, h = map(lambda x: x - x % 32, (w, h)) # resize to integer multiple of 32
+ image = image.resize((w, h), resample=PIL_INTERPOLATION["lanczos"])
+ image = np.array(image).astype(np.float32) / 255.0
+ image = image[None].transpose(0, 3, 1, 2)
+ image = paddle.to_tensor(image)
+ return 2.0 * image - 1.0
+
+
+def preprocess_mask(mask):
+ mask = mask.convert("L")
+ w, h = mask.size
+ w, h = map(lambda x: x - x % 32, (w, h)) # resize to integer multiple of 32
+ mask = mask.resize((w // 8, h // 8), resample=PIL_INTERPOLATION["nearest"])
+ mask = np.array(mask).astype(np.float32) / 255.0
+ mask = np.tile(mask, (4, 1, 1))
+ mask = mask[None].transpose(0, 1, 2, 3) # what does this step do?
+ mask = 1 - mask # repaint white, keep black
+ mask = paddle.to_tensor(mask)
+ return mask
+
+
+class StableDiffusionPipelineAllinOne(DiffusionPipeline):
+ r"""
+ Pipeline for text-to-image image-to-image inpainting generation using Stable Diffusion.
+
+ This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
+ library implements for all the pipelines (such as downloading or saving, running on a particular xxxx, etc.)
+
+ Args:
+ vae ([`AutoencoderKL`]):
+ Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
+ text_encoder ([`CLIPTextModel`]):
+ Frozen text-encoder. Stable Diffusion uses the text portion of
+ [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
+ the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
+ tokenizer (`CLIPTokenizer`):
+ Tokenizer of class
+ [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
+ unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
+ scheduler ([`SchedulerMixin`]):
+ A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
+ [`DDIMScheduler`], [`LMSDiscreteScheduler`], [`PNDMScheduler`], [`EulerDiscreteScheduler`], [`EulerAncestralDiscreteScheduler`]
+ or [`DPMSolverMultistepScheduler`].
+ safety_checker ([`StableDiffusionSafetyChecker`]):
+ Classification module that estimates whether generated images could be considered offensive or harmful.
+ Please, refer to the [model card](https://huggingface.co/junnyu/stable-diffusion-v1-4-paddle) for details.
+ feature_extractor ([`CLIPFeatureExtractor`]):
+ Model that extracts features from generated images to be used as inputs for the `safety_checker`.
+ """
+ _optional_components = ["safety_checker", "feature_extractor"]
+
+ def __init__(
+ self,
+ vae: AutoencoderKL,
+ text_encoder: CLIPTextModel,
+ tokenizer: CLIPTokenizer,
+ unet: UNet2DConditionModel,
+ scheduler: Union[
+ DDIMScheduler,
+ PNDMScheduler,
+ LMSDiscreteScheduler,
+ EulerDiscreteScheduler,
+ EulerAncestralDiscreteScheduler,
+ DPMSolverMultistepScheduler,
+ ],
+ safety_checker: StableDiffusionSafetyChecker,
+ feature_extractor: CLIPFeatureExtractor,
+ requires_safety_checker: bool = False,
+ ):
+ if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
+ deprecation_message = (
+ f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
+ f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
+ "to update the config accordingly as leaving `steps_offset` might led to incorrect results"
+ " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
+ " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
+ " file"
+ )
+ deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False)
+ new_config = dict(scheduler.config)
+ new_config["steps_offset"] = 1
+ scheduler._internal_dict = FrozenDict(new_config)
+
+ if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True:
+ deprecation_message = (
+ f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`."
+ " `clip_sample` should be set to False in the configuration file. Please make sure to update the"
+ " config accordingly as not setting `clip_sample` in the config might lead to incorrect results in"
+ " future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very"
+ " nice if you could open a Pull request for the `scheduler/scheduler_config.json` file"
+ )
+ deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False)
+ new_config = dict(scheduler.config)
+ new_config["clip_sample"] = False
+ scheduler._internal_dict = FrozenDict(new_config)
+
+ if safety_checker is None and requires_safety_checker:
+ logger.warning(
+ f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
+ " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
+ " results in services or applications open to the public. PaddleNLP team, diffusers team and Hugging Face"
+ " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
+ " it only for use-cases that involve analyzing network behavior or auditing its results. For more"
+ " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
+ )
+ if safety_checker is not None and feature_extractor is None:
+ raise ValueError(
+ "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
+ " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
+ )
+ is_unet_version_less_0_9_0 = hasattr(unet.config, "_ppdiffusers_version") and version.parse(
+ version.parse(unet.config._ppdiffusers_version).base_version
+ ) < version.parse("0.9.0.dev0")
+ is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64
+ if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64:
+ deprecation_message = (
+ "The configuration file of the unet has set the default `sample_size` to smaller than"
+ " 64 which seems highly unlikely .If you're checkpoint is a fine-tuned version of any of the"
+ " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
+ " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
+ " \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
+ " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
+ " in the config might lead to incorrect results in future versions. If you have downloaded this"
+ " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
+ " the `unet/config.json` file"
+ )
+ deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False)
+ new_config = dict(unet.config)
+ new_config["sample_size"] = 64
+ unet._internal_dict = FrozenDict(new_config)
+
+ self.register_modules(
+ vae=vae,
+ text_encoder=text_encoder,
+ tokenizer=tokenizer,
+ unet=unet,
+ scheduler=scheduler,
+ safety_checker=safety_checker,
+ feature_extractor=feature_extractor,
+ )
+ self.register_to_config(requires_safety_checker=requires_safety_checker)
+
+ def create_scheduler(self, name="DPMSolver"):
+ config = self.scheduler.config
+ if name == "DPMSolver":
+ return DPMSolverMultistepScheduler.from_config(
+ config,
+ thresholding=False,
+ algorithm_type="dpmsolver++",
+ solver_type="midpoint",
+ lower_order_final=True,
+ )
+ if name == "EulerDiscrete":
+ return EulerDiscreteScheduler.from_config(config)
+ elif name == "EulerAncestralDiscrete":
+ return EulerAncestralDiscreteScheduler.from_config(config)
+ elif name == "PNDM":
+ return PNDMScheduler.from_config(config)
+ elif name == "DDIM":
+ return DDIMScheduler.from_config(config)
+ elif name == "LMSDiscrete":
+ return LMSDiscreteScheduler.from_config(config)
+ elif name == "HeunDiscrete":
+ return HeunDiscreteScheduler.from_config(config)
+ elif name == "KDPM2AncestralDiscrete":
+ return KDPM2AncestralDiscreteScheduler.from_config(config)
+ elif name == "KDPM2Discrete":
+ return KDPM2DiscreteScheduler.from_config(config)
+ else:
+ raise NotImplementedError
+
+ def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"):
+ r"""
+ Enable sliced attention computation.
+
+ When this option is enabled, the attention module will split the input tensor in slices, to compute attention
+ in several steps. This is useful to save some memory in exchange for a small speed decrease.
+
+ Args:
+ slice_size (`str` or `int`, *optional*, defaults to `"auto"`):
+ When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If
+ a number is provided, uses as many slices as `attention_head_dim // slice_size`. In this case,
+ `attention_head_dim` must be a multiple of `slice_size`.
+ """
+ if slice_size == "auto":
+ if isinstance(self.unet.config.attention_head_dim, int):
+ # half the attention head size is usually a good trade-off between
+ # speed and memory
+ slice_size = self.unet.config.attention_head_dim // 2
+ else:
+ # if `attention_head_dim` is a list, take the smallest head size
+ slice_size = min(self.unet.config.attention_head_dim)
+ self.unet.set_attention_slice(slice_size)
+
+ def disable_attention_slicing(self):
+ r"""
+ Disable sliced attention computation. If `enable_attention_slicing` was previously invoked, this method will go
+ back to computing attention in one step.
+ """
+ # set slice_size = `None` to disable `attention slicing`
+ self.enable_attention_slicing(None)
+
+ def __call__(self, *args, **kwargs):
+ return self.text2image(*args, **kwargs)
+
+ def text2img(self, *args, **kwargs):
+ return self.text2image(*args, **kwargs)
+
+ def _encode_prompt(
+ self,
+ prompt,
+ negative_prompt,
+ max_embeddings_multiples,
+ no_boseos_middle,
+ skip_parsing,
+ skip_weighting,
+ do_classifier_free_guidance,
+ num_images_per_prompt,
+ ):
+ if do_classifier_free_guidance and negative_prompt is None:
+ negative_prompt = ""
+ text_embeddings = get_weighted_text_embeddings(
+ self, prompt, negative_prompt, max_embeddings_multiples, no_boseos_middle, skip_parsing, skip_weighting
+ )
+
+ bs_embed, seq_len, _ = text_embeddings.shape
+ text_embeddings = text_embeddings.tile([1, num_images_per_prompt, 1])
+ text_embeddings = text_embeddings.reshape([bs_embed * num_images_per_prompt, seq_len, -1])
+ return text_embeddings
+
+ def run_safety_checker(self, image, dtype):
+ if self.safety_checker is not None:
+ safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pd")
+ image, has_nsfw_concept = self.safety_checker(
+ images=image, clip_input=safety_checker_input.pixel_values.cast(dtype)
+ )
+ else:
+ has_nsfw_concept = None
+ return image, has_nsfw_concept
+
+ def decode_latents(self, latents):
+ latents = 1 / 0.18215 * latents
+ image = self.vae.decode(latents).sample
+ image = (image / 2 + 0.5).clip(0, 1)
+ # we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
+ image = image.transpose([0, 2, 3, 1]).cast("float32").numpy()
+ return image
+
+ def prepare_extra_step_kwargs(self, eta, scheduler):
+ # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
+ # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
+ # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
+ # and should be between [0, 1]
+
+ accepts_eta = "eta" in set(inspect.signature(scheduler.step).parameters.keys())
+ extra_step_kwargs = {}
+ if accepts_eta:
+ extra_step_kwargs["eta"] = eta
+
+ return extra_step_kwargs
+
+ def check_inputs_text2img(self, prompt, height, width, callback_steps):
+ if not isinstance(prompt, str) and not isinstance(prompt, list):
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
+
+ if height % 8 != 0 or width % 8 != 0:
+ raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
+
+ if (callback_steps is None) or (
+ callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
+ ):
+ raise ValueError(
+ f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
+ f" {type(callback_steps)}."
+ )
+
+ def check_inputs_img2img_inpaint(self, prompt, strength, callback_steps):
+ if not isinstance(prompt, str) and not isinstance(prompt, list):
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
+
+ if strength < 0 or strength > 1:
+ raise ValueError(f"The value of strength should in [1.0, 1.0] but is {strength}")
+
+ if (callback_steps is None) or (
+ callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
+ ):
+ raise ValueError(
+ f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
+ f" {type(callback_steps)}."
+ )
+
+ def prepare_latents_text2img(self, batch_size, num_channels_latents, height, width, dtype, latents=None, scheduler=None):
+ shape = [batch_size, num_channels_latents, height // 8, width // 8]
+ if latents is None:
+ latents = paddle.randn(shape, dtype=dtype)
+ else:
+ if latents.shape != shape:
+ raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}")
+
+ # scale the initial noise by the standard deviation required by the scheduler
+ latents = latents * scheduler.init_noise_sigma
+ return latents
+
+ def prepare_latents_img2img(self, image, timestep, num_images_per_prompt, dtype, scheduler):
+ image = image.cast(dtype=dtype)
+ init_latent_dist = self.vae.encode(image).latent_dist
+ init_latents = init_latent_dist.sample()
+ init_latents = 0.18215 * init_latents
+
+ b, c, h, w = init_latents.shape
+ init_latents = init_latents.tile([1, num_images_per_prompt, 1, 1])
+ init_latents = init_latents.reshape([b * num_images_per_prompt, c, h, w])
+
+ # add noise to latents using the timesteps
+ noise = paddle.randn(init_latents.shape, dtype=dtype)
+
+ # get latents
+ init_latents = scheduler.add_noise(init_latents, noise, timestep)
+ latents = init_latents
+
+ return latents
+
+ def get_timesteps(self, num_inference_steps, strength, scheduler):
+ # get the original timestep using init_timestep
+ offset = scheduler.config.get("steps_offset", 0)
+ init_timestep = int(num_inference_steps * strength) + offset
+ init_timestep = min(init_timestep, num_inference_steps)
+
+ t_start = max(num_inference_steps - init_timestep + offset, 0)
+ timesteps = scheduler.timesteps[t_start:]
+
+ return timesteps, num_inference_steps - t_start
+
+ def prepare_latents_inpaint(self, image, timestep, num_images_per_prompt, dtype, scheduler):
+ image = image.cast(dtype)
+ init_latent_dist = self.vae.encode(image).latent_dist
+ init_latents = init_latent_dist.sample()
+ init_latents = 0.18215 * init_latents
+
+ b, c, h, w = init_latents.shape
+ init_latents = init_latents.tile([1, num_images_per_prompt, 1, 1])
+ init_latents = init_latents.reshape([b * num_images_per_prompt, c, h, w])
+
+ init_latents_orig = init_latents
+
+ # add noise to latents using the timesteps
+ noise = paddle.randn(init_latents.shape, dtype=dtype)
+ init_latents = scheduler.add_noise(init_latents, noise, timestep)
+ latents = init_latents
+ return latents, init_latents_orig, noise
+
+ @paddle.no_grad()
+ def text2image(
+ self,
+ prompt: Union[str, List[str]],
+ height: int = 512,
+ width: int = 512,
+ num_inference_steps: int = 50,
+ guidance_scale: float = 7.5,
+ negative_prompt: Optional[Union[str, List[str]]] = None,
+ num_images_per_prompt: Optional[int] = 1,
+ eta: float = 0.0,
+ seed: Optional[int] = None,
+ latents: Optional[paddle.Tensor] = None,
+ output_type: Optional[str] = "pil",
+ return_dict: bool = True,
+ callback: Optional[Callable[[int, int, paddle.Tensor], None]] = None,
+ callback_steps: Optional[int] = 1,
+ # new add
+ max_embeddings_multiples: Optional[int] = 1,
+ no_boseos_middle: Optional[bool] = False,
+ skip_parsing: Optional[bool] = False,
+ skip_weighting: Optional[bool] = False,
+ scheduler=None,
+ **kwargs,
+ ):
+ r"""
+ Function invoked when calling the pipeline for generation.
+
+ Args:
+ prompt (`str` or `List[str]`):
+ The prompt or prompts to guide the image generation.
+ height (`int`, *optional*, defaults to 512):
+ The height in pixels of the generated image.
+ width (`int`, *optional*, defaults to 512):
+ The width in pixels of the generated image.
+ num_inference_steps (`int`, *optional*, defaults to 50):
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
+ expense of slower inference.
+ guidance_scale (`float`, *optional*, defaults to 7.5):
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
+ usually at the expense of lower image quality.
+ negative_prompt (`str` or `List[str]`, *optional*):
+ The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
+ if `guidance_scale` is less than `1`).
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
+ The number of images to generate per prompt.
+ eta (`float`, *optional*, defaults to 0.0):
+ Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
+ [`schedulers.DDIMScheduler`], will be ignored for others.
+ seed (`int`, *optional*):
+ Random number seed.
+ latents (`paddle.Tensor`, *optional*):
+ Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
+ tensor will ge generated by sampling using the supplied random `seed`.
+ output_type (`str`, *optional*, defaults to `"pil"`):
+ The output format of the generate image. Choose between
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
+ return_dict (`bool`, *optional*, defaults to `True`):
+ Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
+ plain tuple.
+ callback (`Callable`, *optional*):
+ A function that will be called every `callback_steps` steps during inference. The function will be
+ called with the following arguments: `callback(step: int, timestep: int, latents: paddle.Tensor)`.
+ callback_steps (`int`, *optional*, defaults to 1):
+ The frequency at which the `callback` function will be called. If not specified, the callback will be
+ called at every step.
+
+ Returns:
+ [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
+ [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
+ When returning a tuple, the first element is a list with the generated images, and the second element is a
+ list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
+ (nsfw) content, according to the `safety_checker`.
+ """
+ if scheduler is None:
+ scheduler = self.scheduler
+ seed = random.randint(0, 2**32) if seed is None else seed
+ argument = dict(
+ prompt=prompt,
+ negative_prompt=negative_prompt,
+ height=height,
+ width=width,
+ num_inference_steps=num_inference_steps,
+ guidance_scale=guidance_scale,
+ num_images_per_prompt=num_images_per_prompt,
+ eta=eta,
+ seed=seed,
+ latents=latents,
+ max_embeddings_multiples=max_embeddings_multiples,
+ no_boseos_middle=no_boseos_middle,
+ skip_parsing=skip_parsing,
+ skip_weighting=skip_weighting,
+ epoch_time=time.time(),
+ )
+ paddle.seed(seed)
+ # 1. Check inputs. Raise error if not correct
+ self.check_inputs_text2img(prompt, height, width, callback_steps)
+
+ # 2. Define call parameters
+ batch_size = 1 if isinstance(prompt, str) else len(prompt)
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
+ # corresponds to doing no classifier free guidance.
+ do_classifier_free_guidance = guidance_scale > 1.0
+
+ # 3. Encode input prompt
+ text_embeddings = self._encode_prompt(
+ prompt,
+ negative_prompt,
+ max_embeddings_multiples,
+ no_boseos_middle,
+ skip_parsing,
+ skip_weighting,
+ do_classifier_free_guidance,
+ num_images_per_prompt,
+ )
+
+ # 4. Prepare timesteps
+ scheduler.set_timesteps(num_inference_steps)
+ timesteps = scheduler.timesteps
+
+ # 5. Prepare latent variables
+ num_channels_latents = self.unet.in_channels
+ latents = self.prepare_latents_text2img(
+ batch_size * num_images_per_prompt,
+ num_channels_latents,
+ height,
+ width,
+ text_embeddings.dtype,
+ latents,
+ scheduler=scheduler,
+ )
+
+ # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
+ extra_step_kwargs = self.prepare_extra_step_kwargs(eta, scheduler)
+
+ # 7. Denoising loop
+ num_warmup_steps = len(timesteps) - num_inference_steps * scheduler.order
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
+ for i, t in enumerate(timesteps):
+ # expand the latents if we are doing classifier free guidance
+ latent_model_input = paddle.concat([latents] * 2) if do_classifier_free_guidance else latents
+ latent_model_input = scheduler.scale_model_input(latent_model_input, t)
+
+ # predict the noise residual
+ noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample
+
+ # perform guidance
+ if do_classifier_free_guidance:
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
+ noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
+
+ # compute the previous noisy sample x_t -> x_t-1
+ latents = scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
+
+ # call the callback, if provided
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % scheduler.order == 0):
+ progress_bar.update()
+ if callback is not None and i % callback_steps == 0:
+ callback(progress_bar.n, progress_bar.total, progress_bar)
+
+ # 8. Post-processing
+ image = self.decode_latents(latents)
+
+ # 9. Run safety checker
+ image, has_nsfw_concept = self.run_safety_checker(image, text_embeddings.dtype)
+
+ # 10. Convert to PIL
+ if output_type == "pil":
+ image = self.numpy_to_pil(image, argument=argument)
+
+ if not return_dict:
+ return (image, has_nsfw_concept)
+
+ return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
+
+ @paddle.no_grad()
+ def img2img(
+ self,
+ prompt: Union[str, List[str]],
+ image: Union[paddle.Tensor, PIL.Image.Image],
+ strength: float = 0.8,
+ height=None,
+ width=None,
+ num_inference_steps: Optional[int] = 50,
+ guidance_scale: Optional[float] = 7.5,
+ negative_prompt: Optional[Union[str, List[str]]] = None,
+ num_images_per_prompt: Optional[int] = 1,
+ eta: Optional[float] = 0.0,
+ seed: Optional[int] = None,
+ output_type: Optional[str] = "pil",
+ return_dict: bool = True,
+ callback: Optional[Callable[[int, int, paddle.Tensor], None]] = None,
+ callback_steps: Optional[int] = 1,
+ # new add
+ max_embeddings_multiples: Optional[int] = 1,
+ no_boseos_middle: Optional[bool] = False,
+ skip_parsing: Optional[bool] = False,
+ skip_weighting: Optional[bool] = False,
+ scheduler=None,
+ **kwargs,
+ ):
+ r"""
+ Function invoked when calling the pipeline for generation.
+
+ Args:
+ prompt (`str` or `List[str]`):
+ The prompt or prompts to guide the image generation.
+ image (`paddle.Tensor` or `PIL.Image.Image`):
+ `Image`, or tensor representing an image batch, that will be used as the starting point for the
+ process.
+ strength (`float`, *optional*, defaults to 0.8):
+ Conceptually, indicates how much to transform the reference `image`. Must be between 0 and 1.
+ `image` will be used as a starting point, adding more noise to it the larger the `strength`. The
+ number of denoising steps depends on the amount of noise initially added. When `strength` is 1, added
+ noise will be maximum and the denoising process will run for the full number of iterations specified in
+ `num_inference_steps`. A value of 1, therefore, essentially ignores `image`.
+ num_inference_steps (`int`, *optional*, defaults to 50):
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
+ expense of slower inference. This parameter will be modulated by `strength`.
+ guidance_scale (`float`, *optional*, defaults to 7.5):
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
+ usually at the expense of lower image quality.
+ negative_prompt (`str` or `List[str]`, *optional*):
+ The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
+ if `guidance_scale` is less than `1`).
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
+ The number of images to generate per prompt.
+ eta (`float`, *optional*, defaults to 0.0):
+ Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
+ [`schedulers.DDIMScheduler`], will be ignored for others.
+ seed (`int`, *optional*):
+ A random seed.
+ output_type (`str`, *optional*, defaults to `"pil"`):
+ The output format of the generate image. Choose between
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
+ return_dict (`bool`, *optional*, defaults to `True`):
+ Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
+ plain tuple.
+ callback (`Callable`, *optional*):
+ A function that will be called every `callback_steps` steps during inference. The function will be
+ called with the following arguments: `callback(step: int, timestep: int, latents: paddle.Tensor)`.
+ callback_steps (`int`, *optional*, defaults to 1):
+ The frequency at which the `callback` function will be called. If not specified, the callback will be
+ called at every step.
+
+ Returns:
+ [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
+ [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
+ When returning a tuple, the first element is a list with the generated images, and the second element is a
+ list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
+ (nsfw) content, according to the `safety_checker`.
+ """
+ if scheduler is None:
+ scheduler = self.scheduler
+ seed = random.randint(0, 2**32) if seed is None else seed
+ image_str = image
+ if isinstance(image_str, str):
+ image = load_image(image_str)
+
+ if height is None and width is None:
+ width = (image.size[0] // 8) * 8
+ height = (image.size[1] // 8) * 8
+ elif height is None and width is not None:
+ height = (image.size[1] // 8) * 8
+ elif width is None and height is not None:
+ width = (image.size[0] // 8) * 8
+ else:
+ height = height
+ width = width
+
+ argument = dict(
+ prompt=prompt,
+ image=image_str,
+ negative_prompt=negative_prompt,
+ height=height,
+ width=width,
+ strength=strength,
+ num_inference_steps=num_inference_steps,
+ guidance_scale=guidance_scale,
+ num_images_per_prompt=num_images_per_prompt,
+ eta=eta,
+ seed=seed,
+ max_embeddings_multiples=max_embeddings_multiples,
+ no_boseos_middle=no_boseos_middle,
+ skip_parsing=skip_parsing,
+ skip_weighting=skip_weighting,
+ epoch_time=time.time(),
+ )
+ paddle.seed(seed)
+
+ # 1. Check inputs
+ self.check_inputs_img2img_inpaint(prompt, strength, callback_steps)
+
+ # 2. Define call parameters
+ batch_size = 1 if isinstance(prompt, str) else len(prompt)
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
+ # corresponds to doing no classifier free guidance.
+ do_classifier_free_guidance = guidance_scale > 1.0
+
+ # 3. Encode input prompt
+ text_embeddings = self._encode_prompt(
+ prompt,
+ negative_prompt,
+ max_embeddings_multiples,
+ no_boseos_middle,
+ skip_parsing,
+ skip_weighting,
+ do_classifier_free_guidance,
+ num_images_per_prompt,
+ )
+
+ # 4. Preprocess image
+ if isinstance(image, PIL.Image.Image):
+ image = image.resize((width, height))
+ image = preprocess_image(image)
+
+ # 5. set timesteps
+ scheduler.set_timesteps(num_inference_steps)
+ timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, scheduler)
+ latent_timestep = timesteps[:1].tile([batch_size * num_images_per_prompt])
+
+ # 6. Prepare latent variables
+ latents = self.prepare_latents_img2img(image, latent_timestep, num_images_per_prompt, text_embeddings.dtype, scheduler)
+
+ # 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
+ extra_step_kwargs = self.prepare_extra_step_kwargs(eta, scheduler)
+
+ # 8. Denoising loop
+ num_warmup_steps = len(timesteps) - num_inference_steps * scheduler.order
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
+ for i, t in enumerate(timesteps):
+ # expand the latents if we are doing classifier free guidance
+ latent_model_input = paddle.concat([latents] * 2) if do_classifier_free_guidance else latents
+ latent_model_input = scheduler.scale_model_input(latent_model_input, t)
+
+ # predict the noise residual
+ noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample
+
+ # perform guidance
+ if do_classifier_free_guidance:
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
+ noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
+
+ # compute the previous noisy sample x_t -> x_t-1
+ latents = scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
+
+ # call the callback, if provided
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % scheduler.order == 0):
+ progress_bar.update()
+ if callback is not None and i % callback_steps == 0:
+ callback(progress_bar.n, progress_bar.total, progress_bar)
+
+ # 9. Post-processing
+ image = self.decode_latents(latents)
+
+ # 10. Run safety checker
+ image, has_nsfw_concept = self.run_safety_checker(image, text_embeddings.dtype)
+
+ # 11. Convert to PIL
+ if output_type == "pil":
+ image = self.numpy_to_pil(image, argument=argument)
+
+ if not return_dict:
+ return (image, has_nsfw_concept)
+
+ return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
+
+ @paddle.no_grad()
+ def inpaint(
+ self,
+ prompt: Union[str, List[str]],
+ image: Union[paddle.Tensor, PIL.Image.Image],
+ mask_image: Union[paddle.Tensor, PIL.Image.Image],
+ height=None,
+ width=None,
+ strength: float = 0.8,
+ num_inference_steps: Optional[int] = 50,
+ guidance_scale: Optional[float] = 7.5,
+ negative_prompt: Optional[Union[str, List[str]]] = None,
+ num_images_per_prompt: Optional[int] = 1,
+ eta: Optional[float] = 0.0,
+ seed: Optional[int] = None,
+ output_type: Optional[str] = "pil",
+ return_dict: bool = True,
+ callback: Optional[Callable[[int, int, paddle.Tensor], None]] = None,
+ callback_steps: Optional[int] = 1,
+ # new add
+ max_embeddings_multiples: Optional[int] = 1,
+ no_boseos_middle: Optional[bool] = False,
+ skip_parsing: Optional[bool] = False,
+ skip_weighting: Optional[bool] = False,
+ scheduler=None,
+ **kwargs,
+ ):
+ r"""
+ Function invoked when calling the pipeline for generation.
+
+ Args:
+ prompt (`str` or `List[str]`):
+ The prompt or prompts to guide the image generation.
+ image (`paddle.Tensor` or `PIL.Image.Image`):
+ `Image`, or tensor representing an image batch, that will be used as the starting point for the
+ process. This is the image whose masked region will be inpainted.
+ mask_image (`paddle.Tensor` or `PIL.Image.Image`):
+ `Image`, or tensor representing an image batch, to mask `image`. White pixels in the mask will be
+ replaced by noise and therefore repainted, while black pixels will be preserved. If `mask_image` is a
+ PIL image, it will be converted to a single channel (luminance) before use. If it's a tensor, it should
+ contain one color channel (L) instead of 3, so the expected shape would be `(B, H, W, 1)`.
+ strength (`float`, *optional*, defaults to 0.8):
+ Conceptually, indicates how much to inpaint the masked area. Must be between 0 and 1. When `strength`
+ is 1, the denoising process will be run on the masked area for the full number of iterations specified
+ in `num_inference_steps`. `image` will be used as a reference for the masked area, adding more
+ noise to that region the larger the `strength`. If `strength` is 0, no inpainting will occur.
+ num_inference_steps (`int`, *optional*, defaults to 50):
+ The reference number of denoising steps. More denoising steps usually lead to a higher quality image at
+ the expense of slower inference. This parameter will be modulated by `strength`, as explained above.
+ guidance_scale (`float`, *optional*, defaults to 7.5):
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
+ usually at the expense of lower image quality.
+ negative_prompt (`str` or `List[str]`, *optional*):
+ The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
+ if `guidance_scale` is less than `1`).
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
+ The number of images to generate per prompt.
+ eta (`float`, *optional*, defaults to 0.0):
+ Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
+ [`schedulers.DDIMScheduler`], will be ignored for others.
+ seed (`int`, *optional*):
+ A random seed.
+ output_type (`str`, *optional*, defaults to `"pil"`):
+ The output format of the generate image. Choose between
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
+ return_dict (`bool`, *optional*, defaults to `True`):
+ Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
+ plain tuple.
+ callback (`Callable`, *optional*):
+ A function that will be called every `callback_steps` steps during inference. The function will be
+ called with the following arguments: `callback(step: int, timestep: int, latents: paddle.Tensor)`.
+ callback_steps (`int`, *optional*, defaults to 1):
+ The frequency at which the `callback` function will be called. If not specified, the callback will be
+ called at every step.
+
+ Returns:
+ [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
+ [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
+ When returning a tuple, the first element is a list with the generated images, and the second element is a
+ list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
+ (nsfw) content, according to the `safety_checker`.
+ """
+ if scheduler is None:
+ scheduler = self.scheduler
+ seed = random.randint(0, 2**32) if seed is None else seed
+ image_str = image
+ mask_image_str = mask_image
+
+ if isinstance(image_str, str):
+ image = load_image(image_str)
+ if isinstance(mask_image_str, str):
+ mask_image = load_image(mask_image_str)
+
+ if height is None and width is None:
+ width = (image.size[0] // 8) * 8
+ height = (image.size[1] // 8) * 8
+ elif height is None and width is not None:
+ height = (image.size[1] // 8) * 8
+ elif width is None and height is not None:
+ width = (image.size[0] // 8) * 8
+ else:
+ height = height
+ width = width
+
+ argument = dict(
+ prompt=prompt,
+ image=image_str,
+ mask_image=mask_image_str,
+ negative_prompt=negative_prompt,
+ height=height,
+ width=width,
+ strength=strength,
+ num_inference_steps=num_inference_steps,
+ guidance_scale=guidance_scale,
+ num_images_per_prompt=num_images_per_prompt,
+ eta=eta,
+ seed=seed,
+ max_embeddings_multiples=max_embeddings_multiples,
+ no_boseos_middle=no_boseos_middle,
+ skip_parsing=skip_parsing,
+ skip_weighting=skip_weighting,
+ epoch_time=time.time(),
+ )
+ paddle.seed(seed)
+
+ # 1. Check inputs
+ self.check_inputs_img2img_inpaint(prompt, strength, callback_steps)
+
+ # 2. Define call parameters
+ batch_size = 1 if isinstance(prompt, str) else len(prompt)
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
+ # corresponds to doing no classifier free guidance.
+ do_classifier_free_guidance = guidance_scale > 1.0
+
+ # 3. Encode input prompt
+ text_embeddings = self._encode_prompt(
+ prompt,
+ negative_prompt,
+ max_embeddings_multiples,
+ no_boseos_middle,
+ skip_parsing,
+ skip_weighting,
+ do_classifier_free_guidance,
+ num_images_per_prompt,
+ )
+
+ if not isinstance(image, paddle.Tensor):
+ image = image.resize((width, height))
+ image = preprocess_image(image)
+
+ if not isinstance(mask_image, paddle.Tensor):
+ mask_image = mask_image.resize((width, height))
+ mask_image = preprocess_mask(mask_image)
+
+ # 5. set timesteps
+ scheduler.set_timesteps(num_inference_steps)
+ timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, scheduler)
+ latent_timestep = timesteps[:1].tile([batch_size * num_images_per_prompt])
+
+ # 6. Prepare latent variables
+ # encode the init image into latents and scale the latents
+ latents, init_latents_orig, noise = self.prepare_latents_inpaint(
+ image, latent_timestep, num_images_per_prompt, text_embeddings.dtype, scheduler
+ )
+
+ # 7. Prepare mask latent
+ mask = mask_image.cast(latents.dtype)
+ mask = paddle.concat([mask] * batch_size * num_images_per_prompt)
+
+ # 8. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
+ extra_step_kwargs = self.prepare_extra_step_kwargs(eta, scheduler)
+
+ # 9. Denoising loop
+ num_warmup_steps = len(timesteps) - num_inference_steps * scheduler.order
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
+ for i, t in enumerate(timesteps):
+ # expand the latents if we are doing classifier free guidance
+ latent_model_input = paddle.concat([latents] * 2) if do_classifier_free_guidance else latents
+ latent_model_input = scheduler.scale_model_input(latent_model_input, t)
+
+ # predict the noise residual
+ noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample
+
+ # perform guidance
+ if do_classifier_free_guidance:
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
+ noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
+
+ # compute the previous noisy sample x_t -> x_t-1
+ latents = scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
+ # masking
+ init_latents_proper = scheduler.add_noise(init_latents_orig, noise, t)
+
+ latents = (init_latents_proper * mask) + (latents * (1 - mask))
+
+ # call the callback, if provided
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % scheduler.order == 0):
+ progress_bar.update()
+ if callback is not None and i % callback_steps == 0:
+ callback(progress_bar.n, progress_bar.total, progress_bar)
+
+ # 10. Post-processing
+ image = self.decode_latents(latents)
+
+ # 11. Run safety checker
+ image, has_nsfw_concept = self.run_safety_checker(image, text_embeddings.dtype)
+
+ # 12. Convert to PIL
+ if output_type == "pil":
+ image = self.numpy_to_pil(image, argument=argument)
+
+ if not return_dict:
+ return (image, has_nsfw_concept)
+
+ return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
+
+ @staticmethod
+ def numpy_to_pil(images, **kwargs):
+ """
+ Convert a numpy image or a batch of images to a PIL image.
+ """
+ if images.ndim == 3:
+ images = images[None, ...]
+ images = (images * 255).round().astype("uint8")
+ pil_images = []
+ argument = kwargs.pop("argument", None)
+ for image in images:
+ image = PIL.Image.fromarray(image)
+ if argument is not None:
+ image.argument = argument
+ pil_images.append(image)
+
+ return pil_images
+pipeline = StableDiffusionPipelineAllinOne.from_pretrained(BASE_MODEL_NAME, safety_checker=None)
+
+if LORA_WEIGHTS_PATH is not None:
+ pipeline.unet.load_attn_procs(LORA_WEIGHTS_PATH, from_hf_hub=True)
+
+support_scheduler = [
+ "DPMSolver",
+ "EulerDiscrete",
+ "EulerAncestralDiscrete",
+ "PNDM",
+ "DDIM",
+ "LMSDiscrete",
+ "HeunDiscrete",
+ "KDPM2AncestralDiscrete",
+ "KDPM2Discrete"
+]
+
+# generate images
+def infer(prompt, negative, scale, height, width, num_inference_steps, scheduler_name):
+ scheduler = pipeline.create_scheduler(scheduler_name)
+
+ images = pipeline(
+ prompt=prompt, negative_prompt=negative, guidance_scale=scale, height=height, width=width, num_inference_steps=num_inference_steps, scheduler=scheduler,
+ ).images
+ return images
+
+
+css = """
+ .gradio-container {
+ font-family: 'IBM Plex Sans', sans-serif;
+ }
+ .gr-button {
+ color: white;
+ border-color: black;
+ background: black;
+ }
+ input[type='range'] {
+ accent-color: black;
+ }
+ .dark input[type='range'] {
+ accent-color: #dfdfdf;
+ }
+ .container {
+ max-width: 730px;
+ margin: auto;
+ padding-top: 1.5rem;
+ }
+ #gallery {
+ min-height: 22rem;
+ margin-bottom: 15px;
+ margin-left: auto;
+ margin-right: auto;
+ border-bottom-right-radius: .5rem !important;
+ border-bottom-left-radius: .5rem !important;
+ }
+ #gallery>div>.h-full {
+ min-height: 20rem;
+ }
+ .details:hover {
+ text-decoration: underline;
+ }
+ .gr-button {
+ white-space: nowrap;
+ }
+ .gr-button:focus {
+ border-color: rgb(147 197 253 / var(--tw-border-opacity));
+ outline: none;
+ box-shadow: var(--tw-ring-offset-shadow), var(--tw-ring-shadow), var(--tw-shadow, 0 0 #0000);
+ --tw-border-opacity: 1;
+ --tw-ring-offset-shadow: var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color);
+ --tw-ring-shadow: var(--tw-ring-inset) 0 0 0 calc(3px var(--tw-ring-offset-width)) var(--tw-ring-color);
+ --tw-ring-color: rgb(191 219 254 / var(--tw-ring-opacity));
+ --tw-ring-opacity: .5;
+ }
+ #advanced-btn {
+ font-size: .7rem !important;
+ line-height: 19px;
+ margin-top: 12px;
+ margin-bottom: 12px;
+ padding: 2px 8px;
+ border-radius: 14px !important;
+ }
+ #advanced-options {
+ display: none;
+ margin-bottom: 20px;
+ }
+ .footer {
+ margin-bottom: 45px;
+ margin-top: 35px;
+ text-align: center;
+ border-bottom: 1px solid #e5e5e5;
+ }
+ .footer>p {
+ font-size: .8rem;
+ display: inline-block;
+ padding: 0 10px;
+ transform: translateY(10px);
+ background: white;
+ }
+ .dark .footer {
+ border-color: #303030;
+ }
+ .dark .footer>p {
+ background: #0b0f19;
+ }
+ .acknowledgments h4{
+ margin: 1.25em 0 .25em 0;
+ font-weight: bold;
+ font-size: 115%;
+ }
+ .animate-spin {
+ animation: spin 1s linear infinite;
+ }
+ @keyframes spin {
+ from {
+ transform: rotate(0deg);
+ }
+ to {
+ transform: rotate(360deg);
+ }
+ }
+ #share-btn-container {
+ display: flex; padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; width: 13rem;
+ margin-top: 10px;
+ margin-left: auto;
+ }
+ #share-btn {
+ all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.25rem !important; padding-bottom: 0.25rem !important;right:0;
+ }
+ #share-btn * {
+ all: unset;
+ }
+ #share-btn-container div:nth-child(-n+2){
+ width: auto !important;
+ min-height: 0px !important;
+ }
+ #share-btn-container .wrap {
+ display: none !important;
+ }
+
+ .gr-form{
+ flex: 1 1 50%; border-top-right-radius: 0; border-bottom-right-radius: 0;
+ }
+ #prompt-container{
+ gap: 0;
+ }
+ #prompt-text-input, #negative-prompt-text-input{padding: .45rem 0.625rem}
+ #component-16{border-top-width: 1px!important;margin-top: 1em}
+ .image_duplication{position: absolute; width: 100px; left: 50px}
+"""
+
+block = gr.Blocks(css=css)
+
+with block:
+ gr.HTML(
+ """
+
+The model is licensed with a CreativeML OpenRAIL++ license. The authors claim no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in this license. The license forbids you from sharing any content that violates any laws, produce any harm to a person, disseminate any personal information that would be meant for harm, spread misinformation and target vulnerable groups. For the full list of restrictions please read the license
+
Biases and content acknowledgment
+Despite how impressive being able to turn text into image is, beware to the fact that this model may output content that reinforces or exacerbates societal biases, as well as realistic faces, pornography and violence. The model was trained on the LAION-5B dataset, which scraped non-curated image-text-pairs from the internet (the exception being the removal of illegal content) and is meant for research purposes. You can read more in the model card
+
+ """
+ )
+
+block.launch(server_name="0.0.0.0", server_port=8221)
+
diff --git a/.ipynb_checkpoints/env-checkpoint.py b/.ipynb_checkpoints/env-checkpoint.py
new file mode 100644
index 0000000000000000000000000000000000000000..484672e1b12daf5b1c6113fb894c247aac425eff
--- /dev/null
+++ b/.ipynb_checkpoints/env-checkpoint.py
@@ -0,0 +1,13 @@
+############################################################################################################################
+# 修改下面的参数
+# (1)BASE_MODEL_NAME 代表你训练的基础模型
+BASE_MODEL_NAME = "runwayml/stable-diffusion-v1-5"
+
+# 是否开启lora
+# (2)LORA_WEIGHTS_PATH 代码你上传到huggingface后的lora权重。
+# LORA_WEIGHTS_PATH = None 表示不适应lora
+LORA_WEIGHTS_PATH = "junnyu/demo_test"
+
+# (3)PROMPTS 需要展示的prompt文本
+PROMPTS = "A photo of sks dog in a bucket"
+############################################################################################################################
\ No newline at end of file
diff --git a/.ipynb_checkpoints/requirements-checkpoint.txt b/.ipynb_checkpoints/requirements-checkpoint.txt
new file mode 100644
index 0000000000000000000000000000000000000000..59167ed50ceefd1417064fffdec5c80b48995874
--- /dev/null
+++ b/.ipynb_checkpoints/requirements-checkpoint.txt
@@ -0,0 +1,3 @@
+paddlenlp==2.5.1
+ppdiffusers
+paddlepaddle
\ No newline at end of file
diff --git a/README.md b/README.md
index c22e2c621850a948ba1c53252205ccf58de0175b..cb700f3ea029e9d1b882c5490b3421fe0f742605 100644
--- a/README.md
+++ b/README.md
@@ -1,12 +1,12 @@
---
-title: Lora Test
-emoji: 🌖
-colorFrom: green
-colorTo: yellow
+title: LoRa ppdiffusers dreambooth
+emoji: 🎨🎞️
+colorFrom: pink
+colorTo: purple
sdk: gradio
-sdk_version: 3.19.1
+sdk_version: 3.18.0
app_file: app.py
pinned: false
---
-Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
+Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
\ No newline at end of file
diff --git a/app.py b/app.py
new file mode 100644
index 0000000000000000000000000000000000000000..859863ec7c6bce1bfd744db99a338a57c2701fab
--- /dev/null
+++ b/app.py
@@ -0,0 +1,1677 @@
+# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
+# Copyright 2022 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+import gradio as gr
+from env import BASE_MODEL_NAME, LORA_WEIGHTS_PATH, PROMPTS
+
+examples = [
+ [
+ PROMPTS,
+ 'low quality',
+ 7.5,
+ 512,
+ 512,
+ 25,
+ "DPMSolver"
+ ],
+]
+import inspect
+import os
+import random
+import re
+import time
+from typing import Callable, List, Optional, Union
+
+import numpy as np
+import paddle
+import PIL
+import PIL.Image
+from packaging import version
+
+from paddlenlp.transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
+
+from ppdiffusers.configuration_utils import FrozenDict
+from ppdiffusers.models import AutoencoderKL, UNet2DConditionModel
+from ppdiffusers.pipeline_utils import DiffusionPipeline
+from ppdiffusers.schedulers import (
+ DDIMScheduler,
+ DPMSolverMultistepScheduler,
+ EulerAncestralDiscreteScheduler,
+ EulerDiscreteScheduler,
+ LMSDiscreteScheduler,
+ PNDMScheduler,
+ HeunDiscreteScheduler,
+ KDPM2AncestralDiscreteScheduler,
+ KDPM2DiscreteScheduler,
+
+)
+from ppdiffusers.utils import PIL_INTERPOLATION, deprecate, logging
+from ppdiffusers.utils.testing_utils import load_image
+from ppdiffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
+from ppdiffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
+
+logger = logging.get_logger(__name__) # pylint: disable=invalid-name
+
+
+def save_all(images, FORMAT="jpg", OUTDIR="./outputs/"):
+ if not isinstance(images, (list, tuple)):
+ images = [images]
+ for image in images:
+ PRECISION = "fp32"
+ argument = image.argument
+ os.makedirs(OUTDIR, exist_ok=True)
+ epoch_time = argument["epoch_time"]
+ PROMPT = argument["prompt"]
+ NEGPROMPT = argument["negative_prompt"]
+ HEIGHT = argument["height"]
+ WIDTH = argument["width"]
+ SEED = argument["seed"]
+ STRENGTH = argument.get("strength", 1)
+ INFERENCE_STEPS = argument["num_inference_steps"]
+ GUIDANCE_SCALE = argument["guidance_scale"]
+
+ filename = f"{str(epoch_time)}_scale_{GUIDANCE_SCALE}_steps_{INFERENCE_STEPS}_seed_{SEED}.{FORMAT}"
+ filedir = f"{OUTDIR}/{filename}"
+ image.save(filedir)
+ with open(f"{OUTDIR}/{epoch_time}_prompt.txt", "w") as file:
+ file.write(
+ f"PROMPT: {PROMPT}\nNEG_PROMPT: {NEGPROMPT}\n\nINFERENCE_STEPS: {INFERENCE_STEPS}\nHeight: {HEIGHT}\nWidth: {WIDTH}\nSeed: {SEED}\n\nPrecision: {PRECISION}\nSTRENGTH: {STRENGTH}\nGUIDANCE_SCALE: {GUIDANCE_SCALE}"
+ )
+
+
+re_attention = re.compile(
+ r"""
+\\\(|
+\\\)|
+\\\[|
+\\]|
+\\\\|
+\\|
+\(|
+\[|
+:([+-]?[.\d]+)\)|
+\)|
+]|
+[^\\()\[\]:]+|
+:
+""",
+ re.X,
+)
+
+
+def parse_prompt_attention(text):
+ """
+ Parses a string with attention tokens and returns a list of pairs: text and its associated weight.
+ Accepted tokens are:
+ (abc) - increases attention to abc by a multiplier of 1.1
+ (abc:3.12) - increases attention to abc by a multiplier of 3.12
+ [abc] - decreases attention to abc by a multiplier of 1.1
+ \( - literal character '('
+ \[ - literal character '['
+ \) - literal character ')'
+ \] - literal character ']'
+ \\ - literal character '\'
+ anything else - just text
+ >>> parse_prompt_attention('normal text')
+ [['normal text', 1.0]]
+ >>> parse_prompt_attention('an (important) word')
+ [['an ', 1.0], ['important', 1.1], [' word', 1.0]]
+ >>> parse_prompt_attention('(unbalanced')
+ [['unbalanced', 1.1]]
+ >>> parse_prompt_attention('\(literal\]')
+ [['(literal]', 1.0]]
+ >>> parse_prompt_attention('(unnecessary)(parens)')
+ [['unnecessaryparens', 1.1]]
+ >>> parse_prompt_attention('a (((house:1.3)) [on] a (hill:0.5), sun, (((sky))).')
+ [['a ', 1.0],
+ ['house', 1.5730000000000004],
+ [' ', 1.1],
+ ['on', 1.0],
+ [' a ', 1.1],
+ ['hill', 0.55],
+ [', sun, ', 1.1],
+ ['sky', 1.4641000000000006],
+ ['.', 1.1]]
+ """
+
+ res = []
+ round_brackets = []
+ square_brackets = []
+
+ round_bracket_multiplier = 1.1
+ square_bracket_multiplier = 1 / 1.1
+
+ def multiply_range(start_position, multiplier):
+ for p in range(start_position, len(res)):
+ res[p][1] *= multiplier
+
+ for m in re_attention.finditer(text):
+ text = m.group(0)
+ weight = m.group(1)
+
+ if text.startswith("\\"):
+ res.append([text[1:], 1.0])
+ elif text == "(":
+ round_brackets.append(len(res))
+ elif text == "[":
+ square_brackets.append(len(res))
+ elif weight is not None and len(round_brackets) > 0:
+ multiply_range(round_brackets.pop(), float(weight))
+ elif text == ")" and len(round_brackets) > 0:
+ multiply_range(round_brackets.pop(), round_bracket_multiplier)
+ elif text == "]" and len(square_brackets) > 0:
+ multiply_range(square_brackets.pop(), square_bracket_multiplier)
+ else:
+ res.append([text, 1.0])
+
+ for pos in round_brackets:
+ multiply_range(pos, round_bracket_multiplier)
+
+ for pos in square_brackets:
+ multiply_range(pos, square_bracket_multiplier)
+
+ if len(res) == 0:
+ res = [["", 1.0]]
+
+ # merge runs of identical weights
+ i = 0
+ while i + 1 < len(res):
+ if res[i][1] == res[i + 1][1]:
+ res[i][0] += res[i + 1][0]
+ res.pop(i + 1)
+ else:
+ i += 1
+
+ return res
+
+
+def get_prompts_with_weights(pipe: DiffusionPipeline, prompt: List[str], max_length: int):
+ r"""
+ Tokenize a list of prompts and return its tokens with weights of each token.
+
+ No padding, starting or ending token is included.
+ """
+ tokens = []
+ weights = []
+ for text in prompt:
+ texts_and_weights = parse_prompt_attention(text)
+ text_token = []
+ text_weight = []
+ for word, weight in texts_and_weights:
+ # tokenize and discard the starting and the ending token
+ token = pipe.tokenizer(word).input_ids[1:-1]
+ text_token += token
+
+ # copy the weight by length of token
+ text_weight += [weight] * len(token)
+
+ # stop if the text is too long (longer than truncation limit)
+ if len(text_token) > max_length:
+ break
+
+ # truncate
+ if len(text_token) > max_length:
+ text_token = text_token[:max_length]
+ text_weight = text_weight[:max_length]
+
+ tokens.append(text_token)
+ weights.append(text_weight)
+ return tokens, weights
+
+
+def pad_tokens_and_weights(tokens, weights, max_length, bos, eos, pad, no_boseos_middle=True, chunk_length=77):
+ r"""
+ Pad the tokens (with starting and ending tokens) and weights (with 1.0) to max_length.
+ """
+ max_embeddings_multiples = (max_length - 2) // (chunk_length - 2)
+ weights_length = max_length if no_boseos_middle else max_embeddings_multiples * chunk_length
+ for i in range(len(tokens)):
+ tokens[i] = [bos] + tokens[i] + [eos] + [pad] * (max_length - 2 - len(tokens[i]))
+ if no_boseos_middle:
+ weights[i] = [1.0] + weights[i] + [1.0] * (max_length - 1 - len(weights[i]))
+ else:
+ w = []
+ if len(weights[i]) == 0:
+ w = [1.0] * weights_length
+ else:
+ for j in range((len(weights[i]) - 1) // chunk_length + 1):
+ w.append(1.0) # weight for starting token in this chunk
+ w += weights[i][j * chunk_length : min(len(weights[i]), (j + 1) * chunk_length)]
+ w.append(1.0) # weight for ending token in this chunk
+ w += [1.0] * (weights_length - len(w))
+ weights[i] = w[:]
+
+ return tokens, weights
+
+
+def get_unweighted_text_embeddings(
+ pipe: DiffusionPipeline, text_input: paddle.Tensor, chunk_length: int, no_boseos_middle: Optional[bool] = True
+):
+ """
+ When the length of tokens is a multiple of the capacity of the text encoder,
+ it should be split into chunks and sent to the text encoder individually.
+ """
+ max_embeddings_multiples = (text_input.shape[1] - 2) // (chunk_length - 2)
+ if max_embeddings_multiples > 1:
+ text_embeddings = []
+ for i in range(max_embeddings_multiples):
+ # extract the i-th chunk
+ text_input_chunk = text_input[:, i * (chunk_length - 2) : (i + 1) * (chunk_length - 2) + 2].clone()
+
+ # cover the head and the tail by the starting and the ending tokens
+ text_input_chunk[:, 0] = text_input[0, 0]
+ text_input_chunk[:, -1] = text_input[0, -1]
+
+ text_embedding = pipe.text_encoder(text_input_chunk)[0]
+
+ if no_boseos_middle:
+ if i == 0:
+ # discard the ending token
+ text_embedding = text_embedding[:, :-1]
+ elif i == max_embeddings_multiples - 1:
+ # discard the starting token
+ text_embedding = text_embedding[:, 1:]
+ else:
+ # discard both starting and ending tokens
+ text_embedding = text_embedding[:, 1:-1]
+
+ text_embeddings.append(text_embedding)
+ text_embeddings = paddle.concat(text_embeddings, axis=1)
+ else:
+ text_embeddings = pipe.text_encoder(text_input)[0]
+ return text_embeddings
+
+
+def get_weighted_text_embeddings(
+ pipe: DiffusionPipeline,
+ prompt: Union[str, List[str]],
+ uncond_prompt: Optional[Union[str, List[str]]] = None,
+ max_embeddings_multiples: Optional[int] = 1,
+ no_boseos_middle: Optional[bool] = False,
+ skip_parsing: Optional[bool] = False,
+ skip_weighting: Optional[bool] = False,
+ **kwargs
+):
+ r"""
+ Prompts can be assigned with local weights using brackets. For example,
+ prompt 'A (very beautiful) masterpiece' highlights the words 'very beautiful',
+ and the embedding tokens corresponding to the words get multiplied by a constant, 1.1.
+
+ Also, to regularize of the embedding, the weighted embedding would be scaled to preserve the original mean.
+
+ Args:
+ pipe (`DiffusionPipeline`):
+ Pipe to provide access to the tokenizer and the text encoder.
+ prompt (`str` or `List[str]`):
+ The prompt or prompts to guide the image generation.
+ uncond_prompt (`str` or `List[str]`):
+ The unconditional prompt or prompts for guide the image generation. If unconditional prompt
+ is provided, the embeddings of prompt and uncond_prompt are concatenated.
+ max_embeddings_multiples (`int`, *optional*, defaults to `1`):
+ The max multiple length of prompt embeddings compared to the max output length of text encoder.
+ no_boseos_middle (`bool`, *optional*, defaults to `False`):
+ If the length of text token is multiples of the capacity of text encoder, whether reserve the starting and
+ ending token in each of the chunk in the middle.
+ skip_parsing (`bool`, *optional*, defaults to `False`):
+ Skip the parsing of brackets.
+ skip_weighting (`bool`, *optional*, defaults to `False`):
+ Skip the weighting. When the parsing is skipped, it is forced True.
+ """
+ max_length = (pipe.tokenizer.model_max_length - 2) * max_embeddings_multiples + 2
+ if isinstance(prompt, str):
+ prompt = [prompt]
+
+ if not skip_parsing:
+ prompt_tokens, prompt_weights = get_prompts_with_weights(pipe, prompt, max_length - 2)
+ if uncond_prompt is not None:
+ if isinstance(uncond_prompt, str):
+ uncond_prompt = [uncond_prompt]
+ uncond_tokens, uncond_weights = get_prompts_with_weights(pipe, uncond_prompt, max_length - 2)
+ else:
+ prompt_tokens = [
+ token[1:-1] for token in pipe.tokenizer(prompt, max_length=max_length, truncation=True).input_ids
+ ]
+ prompt_weights = [[1.0] * len(token) for token in prompt_tokens]
+ if uncond_prompt is not None:
+ if isinstance(uncond_prompt, str):
+ uncond_prompt = [uncond_prompt]
+ uncond_tokens = [
+ token[1:-1]
+ for token in pipe.tokenizer(uncond_prompt, max_length=max_length, truncation=True).input_ids
+ ]
+ uncond_weights = [[1.0] * len(token) for token in uncond_tokens]
+
+ # round up the longest length of tokens to a multiple of (model_max_length - 2)
+ max_length = max([len(token) for token in prompt_tokens])
+ if uncond_prompt is not None:
+ max_length = max(max_length, max([len(token) for token in uncond_tokens]))
+
+ max_embeddings_multiples = min(
+ max_embeddings_multiples, (max_length - 1) // (pipe.tokenizer.model_max_length - 2) + 1
+ )
+ max_embeddings_multiples = max(1, max_embeddings_multiples)
+ max_length = (pipe.tokenizer.model_max_length - 2) * max_embeddings_multiples + 2
+
+ # pad the length of tokens and weights
+ # support bert tokenizer
+ bos = pipe.tokenizer.bos_token_id if pipe.tokenizer.bos_token_id is not None else pipe.tokenizer.cls_token_id
+ eos = pipe.tokenizer.eos_token_id if pipe.tokenizer.eos_token_id is not None else pipe.tokenizer.sep_token_id
+ pad = pipe.tokenizer.pad_token_id
+ prompt_tokens, prompt_weights = pad_tokens_and_weights(
+ prompt_tokens,
+ prompt_weights,
+ max_length,
+ bos,
+ eos,
+ pad,
+ no_boseos_middle=no_boseos_middle,
+ chunk_length=pipe.tokenizer.model_max_length,
+ )
+ prompt_tokens = paddle.to_tensor(prompt_tokens)
+ if uncond_prompt is not None:
+ uncond_tokens, uncond_weights = pad_tokens_and_weights(
+ uncond_tokens,
+ uncond_weights,
+ max_length,
+ bos,
+ eos,
+ pad,
+ no_boseos_middle=no_boseos_middle,
+ chunk_length=pipe.tokenizer.model_max_length,
+ )
+ uncond_tokens = paddle.to_tensor(uncond_tokens)
+
+ # get the embeddings
+ text_embeddings = get_unweighted_text_embeddings(
+ pipe, prompt_tokens, pipe.tokenizer.model_max_length, no_boseos_middle=no_boseos_middle
+ )
+ prompt_weights = paddle.to_tensor(prompt_weights, dtype=text_embeddings.dtype)
+ if uncond_prompt is not None:
+ uncond_embeddings = get_unweighted_text_embeddings(
+ pipe, uncond_tokens, pipe.tokenizer.model_max_length, no_boseos_middle=no_boseos_middle
+ )
+ uncond_weights = paddle.to_tensor(uncond_weights, dtype=uncond_embeddings.dtype)
+
+ # assign weights to the prompts and normalize in the sense of mean
+ # TODO: should we normalize by chunk or in a whole (current implementation)?
+ if (not skip_parsing) and (not skip_weighting):
+ previous_mean = text_embeddings.mean(axis=[-2, -1])
+ text_embeddings *= prompt_weights.unsqueeze(-1)
+ text_embeddings *= previous_mean / text_embeddings.mean(axis=[-2, -1])
+ if uncond_prompt is not None:
+ previous_mean = uncond_embeddings.mean(axis=[-2, -1])
+ uncond_embeddings *= uncond_weights.unsqueeze(-1)
+ uncond_embeddings *= previous_mean / uncond_embeddings.mean(axis=[-2, -1])
+
+ # For classifier free guidance, we need to do two forward passes.
+ # Here we concatenate the unconditional and text embeddings into a single batch
+ # to avoid doing two forward passes
+ if uncond_prompt is not None:
+ text_embeddings = paddle.concat([uncond_embeddings, text_embeddings])
+
+ return text_embeddings
+
+
+def preprocess_image(image):
+ w, h = image.size
+ w, h = map(lambda x: x - x % 32, (w, h)) # resize to integer multiple of 32
+ image = image.resize((w, h), resample=PIL_INTERPOLATION["lanczos"])
+ image = np.array(image).astype(np.float32) / 255.0
+ image = image[None].transpose(0, 3, 1, 2)
+ image = paddle.to_tensor(image)
+ return 2.0 * image - 1.0
+
+
+def preprocess_mask(mask):
+ mask = mask.convert("L")
+ w, h = mask.size
+ w, h = map(lambda x: x - x % 32, (w, h)) # resize to integer multiple of 32
+ mask = mask.resize((w // 8, h // 8), resample=PIL_INTERPOLATION["nearest"])
+ mask = np.array(mask).astype(np.float32) / 255.0
+ mask = np.tile(mask, (4, 1, 1))
+ mask = mask[None].transpose(0, 1, 2, 3) # what does this step do?
+ mask = 1 - mask # repaint white, keep black
+ mask = paddle.to_tensor(mask)
+ return mask
+
+
+class StableDiffusionPipelineAllinOne(DiffusionPipeline):
+ r"""
+ Pipeline for text-to-image image-to-image inpainting generation using Stable Diffusion.
+
+ This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
+ library implements for all the pipelines (such as downloading or saving, running on a particular xxxx, etc.)
+
+ Args:
+ vae ([`AutoencoderKL`]):
+ Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
+ text_encoder ([`CLIPTextModel`]):
+ Frozen text-encoder. Stable Diffusion uses the text portion of
+ [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
+ the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
+ tokenizer (`CLIPTokenizer`):
+ Tokenizer of class
+ [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
+ unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
+ scheduler ([`SchedulerMixin`]):
+ A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
+ [`DDIMScheduler`], [`LMSDiscreteScheduler`], [`PNDMScheduler`], [`EulerDiscreteScheduler`], [`EulerAncestralDiscreteScheduler`]
+ or [`DPMSolverMultistepScheduler`].
+ safety_checker ([`StableDiffusionSafetyChecker`]):
+ Classification module that estimates whether generated images could be considered offensive or harmful.
+ Please, refer to the [model card](https://huggingface.co/junnyu/stable-diffusion-v1-4-paddle) for details.
+ feature_extractor ([`CLIPFeatureExtractor`]):
+ Model that extracts features from generated images to be used as inputs for the `safety_checker`.
+ """
+ _optional_components = ["safety_checker", "feature_extractor"]
+
+ def __init__(
+ self,
+ vae: AutoencoderKL,
+ text_encoder: CLIPTextModel,
+ tokenizer: CLIPTokenizer,
+ unet: UNet2DConditionModel,
+ scheduler: Union[
+ DDIMScheduler,
+ PNDMScheduler,
+ LMSDiscreteScheduler,
+ EulerDiscreteScheduler,
+ EulerAncestralDiscreteScheduler,
+ DPMSolverMultistepScheduler,
+ ],
+ safety_checker: StableDiffusionSafetyChecker,
+ feature_extractor: CLIPFeatureExtractor,
+ requires_safety_checker: bool = False,
+ ):
+ if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
+ deprecation_message = (
+ f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
+ f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
+ "to update the config accordingly as leaving `steps_offset` might led to incorrect results"
+ " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
+ " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
+ " file"
+ )
+ deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False)
+ new_config = dict(scheduler.config)
+ new_config["steps_offset"] = 1
+ scheduler._internal_dict = FrozenDict(new_config)
+
+ if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True:
+ deprecation_message = (
+ f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`."
+ " `clip_sample` should be set to False in the configuration file. Please make sure to update the"
+ " config accordingly as not setting `clip_sample` in the config might lead to incorrect results in"
+ " future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very"
+ " nice if you could open a Pull request for the `scheduler/scheduler_config.json` file"
+ )
+ deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False)
+ new_config = dict(scheduler.config)
+ new_config["clip_sample"] = False
+ scheduler._internal_dict = FrozenDict(new_config)
+
+ if safety_checker is None and requires_safety_checker:
+ logger.warning(
+ f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
+ " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
+ " results in services or applications open to the public. PaddleNLP team, diffusers team and Hugging Face"
+ " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
+ " it only for use-cases that involve analyzing network behavior or auditing its results. For more"
+ " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
+ )
+ if safety_checker is not None and feature_extractor is None:
+ raise ValueError(
+ "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
+ " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
+ )
+ is_unet_version_less_0_9_0 = hasattr(unet.config, "_ppdiffusers_version") and version.parse(
+ version.parse(unet.config._ppdiffusers_version).base_version
+ ) < version.parse("0.9.0.dev0")
+ is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64
+ if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64:
+ deprecation_message = (
+ "The configuration file of the unet has set the default `sample_size` to smaller than"
+ " 64 which seems highly unlikely .If you're checkpoint is a fine-tuned version of any of the"
+ " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
+ " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
+ " \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
+ " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
+ " in the config might lead to incorrect results in future versions. If you have downloaded this"
+ " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
+ " the `unet/config.json` file"
+ )
+ deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False)
+ new_config = dict(unet.config)
+ new_config["sample_size"] = 64
+ unet._internal_dict = FrozenDict(new_config)
+
+ self.register_modules(
+ vae=vae,
+ text_encoder=text_encoder,
+ tokenizer=tokenizer,
+ unet=unet,
+ scheduler=scheduler,
+ safety_checker=safety_checker,
+ feature_extractor=feature_extractor,
+ )
+ self.register_to_config(requires_safety_checker=requires_safety_checker)
+
+ def create_scheduler(self, name="DPMSolver"):
+ config = self.scheduler.config
+ if name == "DPMSolver":
+ return DPMSolverMultistepScheduler.from_config(
+ config,
+ thresholding=False,
+ algorithm_type="dpmsolver++",
+ solver_type="midpoint",
+ lower_order_final=True,
+ )
+ if name == "EulerDiscrete":
+ return EulerDiscreteScheduler.from_config(config)
+ elif name == "EulerAncestralDiscrete":
+ return EulerAncestralDiscreteScheduler.from_config(config)
+ elif name == "PNDM":
+ return PNDMScheduler.from_config(config)
+ elif name == "DDIM":
+ return DDIMScheduler.from_config(config)
+ elif name == "LMSDiscrete":
+ return LMSDiscreteScheduler.from_config(config)
+ elif name == "HeunDiscrete":
+ return HeunDiscreteScheduler.from_config(config)
+ elif name == "KDPM2AncestralDiscrete":
+ return KDPM2AncestralDiscreteScheduler.from_config(config)
+ elif name == "KDPM2Discrete":
+ return KDPM2DiscreteScheduler.from_config(config)
+ else:
+ raise NotImplementedError
+
+ def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"):
+ r"""
+ Enable sliced attention computation.
+
+ When this option is enabled, the attention module will split the input tensor in slices, to compute attention
+ in several steps. This is useful to save some memory in exchange for a small speed decrease.
+
+ Args:
+ slice_size (`str` or `int`, *optional*, defaults to `"auto"`):
+ When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If
+ a number is provided, uses as many slices as `attention_head_dim // slice_size`. In this case,
+ `attention_head_dim` must be a multiple of `slice_size`.
+ """
+ if slice_size == "auto":
+ if isinstance(self.unet.config.attention_head_dim, int):
+ # half the attention head size is usually a good trade-off between
+ # speed and memory
+ slice_size = self.unet.config.attention_head_dim // 2
+ else:
+ # if `attention_head_dim` is a list, take the smallest head size
+ slice_size = min(self.unet.config.attention_head_dim)
+ self.unet.set_attention_slice(slice_size)
+
+ def disable_attention_slicing(self):
+ r"""
+ Disable sliced attention computation. If `enable_attention_slicing` was previously invoked, this method will go
+ back to computing attention in one step.
+ """
+ # set slice_size = `None` to disable `attention slicing`
+ self.enable_attention_slicing(None)
+
+ def __call__(self, *args, **kwargs):
+ return self.text2image(*args, **kwargs)
+
+ def text2img(self, *args, **kwargs):
+ return self.text2image(*args, **kwargs)
+
+ def _encode_prompt(
+ self,
+ prompt,
+ negative_prompt,
+ max_embeddings_multiples,
+ no_boseos_middle,
+ skip_parsing,
+ skip_weighting,
+ do_classifier_free_guidance,
+ num_images_per_prompt,
+ ):
+ if do_classifier_free_guidance and negative_prompt is None:
+ negative_prompt = ""
+ text_embeddings = get_weighted_text_embeddings(
+ self, prompt, negative_prompt, max_embeddings_multiples, no_boseos_middle, skip_parsing, skip_weighting
+ )
+
+ bs_embed, seq_len, _ = text_embeddings.shape
+ text_embeddings = text_embeddings.tile([1, num_images_per_prompt, 1])
+ text_embeddings = text_embeddings.reshape([bs_embed * num_images_per_prompt, seq_len, -1])
+ return text_embeddings
+
+ def run_safety_checker(self, image, dtype):
+ if self.safety_checker is not None:
+ safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pd")
+ image, has_nsfw_concept = self.safety_checker(
+ images=image, clip_input=safety_checker_input.pixel_values.cast(dtype)
+ )
+ else:
+ has_nsfw_concept = None
+ return image, has_nsfw_concept
+
+ def decode_latents(self, latents):
+ latents = 1 / 0.18215 * latents
+ image = self.vae.decode(latents).sample
+ image = (image / 2 + 0.5).clip(0, 1)
+ # we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
+ image = image.transpose([0, 2, 3, 1]).cast("float32").numpy()
+ return image
+
+ def prepare_extra_step_kwargs(self, eta, scheduler):
+ # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
+ # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
+ # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
+ # and should be between [0, 1]
+
+ accepts_eta = "eta" in set(inspect.signature(scheduler.step).parameters.keys())
+ extra_step_kwargs = {}
+ if accepts_eta:
+ extra_step_kwargs["eta"] = eta
+
+ return extra_step_kwargs
+
+ def check_inputs_text2img(self, prompt, height, width, callback_steps):
+ if not isinstance(prompt, str) and not isinstance(prompt, list):
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
+
+ if height % 8 != 0 or width % 8 != 0:
+ raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
+
+ if (callback_steps is None) or (
+ callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
+ ):
+ raise ValueError(
+ f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
+ f" {type(callback_steps)}."
+ )
+
+ def check_inputs_img2img_inpaint(self, prompt, strength, callback_steps):
+ if not isinstance(prompt, str) and not isinstance(prompt, list):
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
+
+ if strength < 0 or strength > 1:
+ raise ValueError(f"The value of strength should in [1.0, 1.0] but is {strength}")
+
+ if (callback_steps is None) or (
+ callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
+ ):
+ raise ValueError(
+ f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
+ f" {type(callback_steps)}."
+ )
+
+ def prepare_latents_text2img(self, batch_size, num_channels_latents, height, width, dtype, latents=None, scheduler=None):
+ shape = [batch_size, num_channels_latents, height // 8, width // 8]
+ if latents is None:
+ latents = paddle.randn(shape, dtype=dtype)
+ else:
+ if latents.shape != shape:
+ raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}")
+
+ # scale the initial noise by the standard deviation required by the scheduler
+ latents = latents * scheduler.init_noise_sigma
+ return latents
+
+ def prepare_latents_img2img(self, image, timestep, num_images_per_prompt, dtype, scheduler):
+ image = image.cast(dtype=dtype)
+ init_latent_dist = self.vae.encode(image).latent_dist
+ init_latents = init_latent_dist.sample()
+ init_latents = 0.18215 * init_latents
+
+ b, c, h, w = init_latents.shape
+ init_latents = init_latents.tile([1, num_images_per_prompt, 1, 1])
+ init_latents = init_latents.reshape([b * num_images_per_prompt, c, h, w])
+
+ # add noise to latents using the timesteps
+ noise = paddle.randn(init_latents.shape, dtype=dtype)
+
+ # get latents
+ init_latents = scheduler.add_noise(init_latents, noise, timestep)
+ latents = init_latents
+
+ return latents
+
+ def get_timesteps(self, num_inference_steps, strength, scheduler):
+ # get the original timestep using init_timestep
+ offset = scheduler.config.get("steps_offset", 0)
+ init_timestep = int(num_inference_steps * strength) + offset
+ init_timestep = min(init_timestep, num_inference_steps)
+
+ t_start = max(num_inference_steps - init_timestep + offset, 0)
+ timesteps = scheduler.timesteps[t_start:]
+
+ return timesteps, num_inference_steps - t_start
+
+ def prepare_latents_inpaint(self, image, timestep, num_images_per_prompt, dtype, scheduler):
+ image = image.cast(dtype)
+ init_latent_dist = self.vae.encode(image).latent_dist
+ init_latents = init_latent_dist.sample()
+ init_latents = 0.18215 * init_latents
+
+ b, c, h, w = init_latents.shape
+ init_latents = init_latents.tile([1, num_images_per_prompt, 1, 1])
+ init_latents = init_latents.reshape([b * num_images_per_prompt, c, h, w])
+
+ init_latents_orig = init_latents
+
+ # add noise to latents using the timesteps
+ noise = paddle.randn(init_latents.shape, dtype=dtype)
+ init_latents = scheduler.add_noise(init_latents, noise, timestep)
+ latents = init_latents
+ return latents, init_latents_orig, noise
+
+ @paddle.no_grad()
+ def text2image(
+ self,
+ prompt: Union[str, List[str]],
+ height: int = 512,
+ width: int = 512,
+ num_inference_steps: int = 50,
+ guidance_scale: float = 7.5,
+ negative_prompt: Optional[Union[str, List[str]]] = None,
+ num_images_per_prompt: Optional[int] = 1,
+ eta: float = 0.0,
+ seed: Optional[int] = None,
+ latents: Optional[paddle.Tensor] = None,
+ output_type: Optional[str] = "pil",
+ return_dict: bool = True,
+ callback: Optional[Callable[[int, int, paddle.Tensor], None]] = None,
+ callback_steps: Optional[int] = 1,
+ # new add
+ max_embeddings_multiples: Optional[int] = 1,
+ no_boseos_middle: Optional[bool] = False,
+ skip_parsing: Optional[bool] = False,
+ skip_weighting: Optional[bool] = False,
+ scheduler=None,
+ **kwargs,
+ ):
+ r"""
+ Function invoked when calling the pipeline for generation.
+
+ Args:
+ prompt (`str` or `List[str]`):
+ The prompt or prompts to guide the image generation.
+ height (`int`, *optional*, defaults to 512):
+ The height in pixels of the generated image.
+ width (`int`, *optional*, defaults to 512):
+ The width in pixels of the generated image.
+ num_inference_steps (`int`, *optional*, defaults to 50):
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
+ expense of slower inference.
+ guidance_scale (`float`, *optional*, defaults to 7.5):
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
+ usually at the expense of lower image quality.
+ negative_prompt (`str` or `List[str]`, *optional*):
+ The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
+ if `guidance_scale` is less than `1`).
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
+ The number of images to generate per prompt.
+ eta (`float`, *optional*, defaults to 0.0):
+ Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
+ [`schedulers.DDIMScheduler`], will be ignored for others.
+ seed (`int`, *optional*):
+ Random number seed.
+ latents (`paddle.Tensor`, *optional*):
+ Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
+ tensor will ge generated by sampling using the supplied random `seed`.
+ output_type (`str`, *optional*, defaults to `"pil"`):
+ The output format of the generate image. Choose between
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
+ return_dict (`bool`, *optional*, defaults to `True`):
+ Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
+ plain tuple.
+ callback (`Callable`, *optional*):
+ A function that will be called every `callback_steps` steps during inference. The function will be
+ called with the following arguments: `callback(step: int, timestep: int, latents: paddle.Tensor)`.
+ callback_steps (`int`, *optional*, defaults to 1):
+ The frequency at which the `callback` function will be called. If not specified, the callback will be
+ called at every step.
+
+ Returns:
+ [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
+ [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
+ When returning a tuple, the first element is a list with the generated images, and the second element is a
+ list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
+ (nsfw) content, according to the `safety_checker`.
+ """
+ if scheduler is None:
+ scheduler = self.scheduler
+ seed = random.randint(0, 2**32) if seed is None else seed
+ argument = dict(
+ prompt=prompt,
+ negative_prompt=negative_prompt,
+ height=height,
+ width=width,
+ num_inference_steps=num_inference_steps,
+ guidance_scale=guidance_scale,
+ num_images_per_prompt=num_images_per_prompt,
+ eta=eta,
+ seed=seed,
+ latents=latents,
+ max_embeddings_multiples=max_embeddings_multiples,
+ no_boseos_middle=no_boseos_middle,
+ skip_parsing=skip_parsing,
+ skip_weighting=skip_weighting,
+ epoch_time=time.time(),
+ )
+ paddle.seed(seed)
+ # 1. Check inputs. Raise error if not correct
+ self.check_inputs_text2img(prompt, height, width, callback_steps)
+
+ # 2. Define call parameters
+ batch_size = 1 if isinstance(prompt, str) else len(prompt)
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
+ # corresponds to doing no classifier free guidance.
+ do_classifier_free_guidance = guidance_scale > 1.0
+
+ # 3. Encode input prompt
+ text_embeddings = self._encode_prompt(
+ prompt,
+ negative_prompt,
+ max_embeddings_multiples,
+ no_boseos_middle,
+ skip_parsing,
+ skip_weighting,
+ do_classifier_free_guidance,
+ num_images_per_prompt,
+ )
+
+ # 4. Prepare timesteps
+ scheduler.set_timesteps(num_inference_steps)
+ timesteps = scheduler.timesteps
+
+ # 5. Prepare latent variables
+ num_channels_latents = self.unet.in_channels
+ latents = self.prepare_latents_text2img(
+ batch_size * num_images_per_prompt,
+ num_channels_latents,
+ height,
+ width,
+ text_embeddings.dtype,
+ latents,
+ scheduler=scheduler,
+ )
+
+ # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
+ extra_step_kwargs = self.prepare_extra_step_kwargs(eta, scheduler)
+
+ # 7. Denoising loop
+ num_warmup_steps = len(timesteps) - num_inference_steps * scheduler.order
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
+ for i, t in enumerate(timesteps):
+ # expand the latents if we are doing classifier free guidance
+ latent_model_input = paddle.concat([latents] * 2) if do_classifier_free_guidance else latents
+ latent_model_input = scheduler.scale_model_input(latent_model_input, t)
+
+ # predict the noise residual
+ noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample
+
+ # perform guidance
+ if do_classifier_free_guidance:
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
+ noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
+
+ # compute the previous noisy sample x_t -> x_t-1
+ latents = scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
+
+ # call the callback, if provided
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % scheduler.order == 0):
+ progress_bar.update()
+ if callback is not None and i % callback_steps == 0:
+ callback(progress_bar.n, progress_bar.total, progress_bar)
+
+ # 8. Post-processing
+ image = self.decode_latents(latents)
+
+ # 9. Run safety checker
+ image, has_nsfw_concept = self.run_safety_checker(image, text_embeddings.dtype)
+
+ # 10. Convert to PIL
+ if output_type == "pil":
+ image = self.numpy_to_pil(image, argument=argument)
+
+ if not return_dict:
+ return (image, has_nsfw_concept)
+
+ return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
+
+ @paddle.no_grad()
+ def img2img(
+ self,
+ prompt: Union[str, List[str]],
+ image: Union[paddle.Tensor, PIL.Image.Image],
+ strength: float = 0.8,
+ height=None,
+ width=None,
+ num_inference_steps: Optional[int] = 50,
+ guidance_scale: Optional[float] = 7.5,
+ negative_prompt: Optional[Union[str, List[str]]] = None,
+ num_images_per_prompt: Optional[int] = 1,
+ eta: Optional[float] = 0.0,
+ seed: Optional[int] = None,
+ output_type: Optional[str] = "pil",
+ return_dict: bool = True,
+ callback: Optional[Callable[[int, int, paddle.Tensor], None]] = None,
+ callback_steps: Optional[int] = 1,
+ # new add
+ max_embeddings_multiples: Optional[int] = 1,
+ no_boseos_middle: Optional[bool] = False,
+ skip_parsing: Optional[bool] = False,
+ skip_weighting: Optional[bool] = False,
+ scheduler=None,
+ **kwargs,
+ ):
+ r"""
+ Function invoked when calling the pipeline for generation.
+
+ Args:
+ prompt (`str` or `List[str]`):
+ The prompt or prompts to guide the image generation.
+ image (`paddle.Tensor` or `PIL.Image.Image`):
+ `Image`, or tensor representing an image batch, that will be used as the starting point for the
+ process.
+ strength (`float`, *optional*, defaults to 0.8):
+ Conceptually, indicates how much to transform the reference `image`. Must be between 0 and 1.
+ `image` will be used as a starting point, adding more noise to it the larger the `strength`. The
+ number of denoising steps depends on the amount of noise initially added. When `strength` is 1, added
+ noise will be maximum and the denoising process will run for the full number of iterations specified in
+ `num_inference_steps`. A value of 1, therefore, essentially ignores `image`.
+ num_inference_steps (`int`, *optional*, defaults to 50):
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
+ expense of slower inference. This parameter will be modulated by `strength`.
+ guidance_scale (`float`, *optional*, defaults to 7.5):
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
+ usually at the expense of lower image quality.
+ negative_prompt (`str` or `List[str]`, *optional*):
+ The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
+ if `guidance_scale` is less than `1`).
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
+ The number of images to generate per prompt.
+ eta (`float`, *optional*, defaults to 0.0):
+ Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
+ [`schedulers.DDIMScheduler`], will be ignored for others.
+ seed (`int`, *optional*):
+ A random seed.
+ output_type (`str`, *optional*, defaults to `"pil"`):
+ The output format of the generate image. Choose between
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
+ return_dict (`bool`, *optional*, defaults to `True`):
+ Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
+ plain tuple.
+ callback (`Callable`, *optional*):
+ A function that will be called every `callback_steps` steps during inference. The function will be
+ called with the following arguments: `callback(step: int, timestep: int, latents: paddle.Tensor)`.
+ callback_steps (`int`, *optional*, defaults to 1):
+ The frequency at which the `callback` function will be called. If not specified, the callback will be
+ called at every step.
+
+ Returns:
+ [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
+ [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
+ When returning a tuple, the first element is a list with the generated images, and the second element is a
+ list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
+ (nsfw) content, according to the `safety_checker`.
+ """
+ if scheduler is None:
+ scheduler = self.scheduler
+ seed = random.randint(0, 2**32) if seed is None else seed
+ image_str = image
+ if isinstance(image_str, str):
+ image = load_image(image_str)
+
+ if height is None and width is None:
+ width = (image.size[0] // 8) * 8
+ height = (image.size[1] // 8) * 8
+ elif height is None and width is not None:
+ height = (image.size[1] // 8) * 8
+ elif width is None and height is not None:
+ width = (image.size[0] // 8) * 8
+ else:
+ height = height
+ width = width
+
+ argument = dict(
+ prompt=prompt,
+ image=image_str,
+ negative_prompt=negative_prompt,
+ height=height,
+ width=width,
+ strength=strength,
+ num_inference_steps=num_inference_steps,
+ guidance_scale=guidance_scale,
+ num_images_per_prompt=num_images_per_prompt,
+ eta=eta,
+ seed=seed,
+ max_embeddings_multiples=max_embeddings_multiples,
+ no_boseos_middle=no_boseos_middle,
+ skip_parsing=skip_parsing,
+ skip_weighting=skip_weighting,
+ epoch_time=time.time(),
+ )
+ paddle.seed(seed)
+
+ # 1. Check inputs
+ self.check_inputs_img2img_inpaint(prompt, strength, callback_steps)
+
+ # 2. Define call parameters
+ batch_size = 1 if isinstance(prompt, str) else len(prompt)
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
+ # corresponds to doing no classifier free guidance.
+ do_classifier_free_guidance = guidance_scale > 1.0
+
+ # 3. Encode input prompt
+ text_embeddings = self._encode_prompt(
+ prompt,
+ negative_prompt,
+ max_embeddings_multiples,
+ no_boseos_middle,
+ skip_parsing,
+ skip_weighting,
+ do_classifier_free_guidance,
+ num_images_per_prompt,
+ )
+
+ # 4. Preprocess image
+ if isinstance(image, PIL.Image.Image):
+ image = image.resize((width, height))
+ image = preprocess_image(image)
+
+ # 5. set timesteps
+ scheduler.set_timesteps(num_inference_steps)
+ timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, scheduler)
+ latent_timestep = timesteps[:1].tile([batch_size * num_images_per_prompt])
+
+ # 6. Prepare latent variables
+ latents = self.prepare_latents_img2img(image, latent_timestep, num_images_per_prompt, text_embeddings.dtype, scheduler)
+
+ # 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
+ extra_step_kwargs = self.prepare_extra_step_kwargs(eta, scheduler)
+
+ # 8. Denoising loop
+ num_warmup_steps = len(timesteps) - num_inference_steps * scheduler.order
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
+ for i, t in enumerate(timesteps):
+ # expand the latents if we are doing classifier free guidance
+ latent_model_input = paddle.concat([latents] * 2) if do_classifier_free_guidance else latents
+ latent_model_input = scheduler.scale_model_input(latent_model_input, t)
+
+ # predict the noise residual
+ noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample
+
+ # perform guidance
+ if do_classifier_free_guidance:
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
+ noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
+
+ # compute the previous noisy sample x_t -> x_t-1
+ latents = scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
+
+ # call the callback, if provided
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % scheduler.order == 0):
+ progress_bar.update()
+ if callback is not None and i % callback_steps == 0:
+ callback(progress_bar.n, progress_bar.total, progress_bar)
+
+ # 9. Post-processing
+ image = self.decode_latents(latents)
+
+ # 10. Run safety checker
+ image, has_nsfw_concept = self.run_safety_checker(image, text_embeddings.dtype)
+
+ # 11. Convert to PIL
+ if output_type == "pil":
+ image = self.numpy_to_pil(image, argument=argument)
+
+ if not return_dict:
+ return (image, has_nsfw_concept)
+
+ return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
+
+ @paddle.no_grad()
+ def inpaint(
+ self,
+ prompt: Union[str, List[str]],
+ image: Union[paddle.Tensor, PIL.Image.Image],
+ mask_image: Union[paddle.Tensor, PIL.Image.Image],
+ height=None,
+ width=None,
+ strength: float = 0.8,
+ num_inference_steps: Optional[int] = 50,
+ guidance_scale: Optional[float] = 7.5,
+ negative_prompt: Optional[Union[str, List[str]]] = None,
+ num_images_per_prompt: Optional[int] = 1,
+ eta: Optional[float] = 0.0,
+ seed: Optional[int] = None,
+ output_type: Optional[str] = "pil",
+ return_dict: bool = True,
+ callback: Optional[Callable[[int, int, paddle.Tensor], None]] = None,
+ callback_steps: Optional[int] = 1,
+ # new add
+ max_embeddings_multiples: Optional[int] = 1,
+ no_boseos_middle: Optional[bool] = False,
+ skip_parsing: Optional[bool] = False,
+ skip_weighting: Optional[bool] = False,
+ scheduler=None,
+ **kwargs,
+ ):
+ r"""
+ Function invoked when calling the pipeline for generation.
+
+ Args:
+ prompt (`str` or `List[str]`):
+ The prompt or prompts to guide the image generation.
+ image (`paddle.Tensor` or `PIL.Image.Image`):
+ `Image`, or tensor representing an image batch, that will be used as the starting point for the
+ process. This is the image whose masked region will be inpainted.
+ mask_image (`paddle.Tensor` or `PIL.Image.Image`):
+ `Image`, or tensor representing an image batch, to mask `image`. White pixels in the mask will be
+ replaced by noise and therefore repainted, while black pixels will be preserved. If `mask_image` is a
+ PIL image, it will be converted to a single channel (luminance) before use. If it's a tensor, it should
+ contain one color channel (L) instead of 3, so the expected shape would be `(B, H, W, 1)`.
+ strength (`float`, *optional*, defaults to 0.8):
+ Conceptually, indicates how much to inpaint the masked area. Must be between 0 and 1. When `strength`
+ is 1, the denoising process will be run on the masked area for the full number of iterations specified
+ in `num_inference_steps`. `image` will be used as a reference for the masked area, adding more
+ noise to that region the larger the `strength`. If `strength` is 0, no inpainting will occur.
+ num_inference_steps (`int`, *optional*, defaults to 50):
+ The reference number of denoising steps. More denoising steps usually lead to a higher quality image at
+ the expense of slower inference. This parameter will be modulated by `strength`, as explained above.
+ guidance_scale (`float`, *optional*, defaults to 7.5):
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
+ usually at the expense of lower image quality.
+ negative_prompt (`str` or `List[str]`, *optional*):
+ The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
+ if `guidance_scale` is less than `1`).
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
+ The number of images to generate per prompt.
+ eta (`float`, *optional*, defaults to 0.0):
+ Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
+ [`schedulers.DDIMScheduler`], will be ignored for others.
+ seed (`int`, *optional*):
+ A random seed.
+ output_type (`str`, *optional*, defaults to `"pil"`):
+ The output format of the generate image. Choose between
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
+ return_dict (`bool`, *optional*, defaults to `True`):
+ Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
+ plain tuple.
+ callback (`Callable`, *optional*):
+ A function that will be called every `callback_steps` steps during inference. The function will be
+ called with the following arguments: `callback(step: int, timestep: int, latents: paddle.Tensor)`.
+ callback_steps (`int`, *optional*, defaults to 1):
+ The frequency at which the `callback` function will be called. If not specified, the callback will be
+ called at every step.
+
+ Returns:
+ [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
+ [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
+ When returning a tuple, the first element is a list with the generated images, and the second element is a
+ list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
+ (nsfw) content, according to the `safety_checker`.
+ """
+ if scheduler is None:
+ scheduler = self.scheduler
+ seed = random.randint(0, 2**32) if seed is None else seed
+ image_str = image
+ mask_image_str = mask_image
+
+ if isinstance(image_str, str):
+ image = load_image(image_str)
+ if isinstance(mask_image_str, str):
+ mask_image = load_image(mask_image_str)
+
+ if height is None and width is None:
+ width = (image.size[0] // 8) * 8
+ height = (image.size[1] // 8) * 8
+ elif height is None and width is not None:
+ height = (image.size[1] // 8) * 8
+ elif width is None and height is not None:
+ width = (image.size[0] // 8) * 8
+ else:
+ height = height
+ width = width
+
+ argument = dict(
+ prompt=prompt,
+ image=image_str,
+ mask_image=mask_image_str,
+ negative_prompt=negative_prompt,
+ height=height,
+ width=width,
+ strength=strength,
+ num_inference_steps=num_inference_steps,
+ guidance_scale=guidance_scale,
+ num_images_per_prompt=num_images_per_prompt,
+ eta=eta,
+ seed=seed,
+ max_embeddings_multiples=max_embeddings_multiples,
+ no_boseos_middle=no_boseos_middle,
+ skip_parsing=skip_parsing,
+ skip_weighting=skip_weighting,
+ epoch_time=time.time(),
+ )
+ paddle.seed(seed)
+
+ # 1. Check inputs
+ self.check_inputs_img2img_inpaint(prompt, strength, callback_steps)
+
+ # 2. Define call parameters
+ batch_size = 1 if isinstance(prompt, str) else len(prompt)
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
+ # corresponds to doing no classifier free guidance.
+ do_classifier_free_guidance = guidance_scale > 1.0
+
+ # 3. Encode input prompt
+ text_embeddings = self._encode_prompt(
+ prompt,
+ negative_prompt,
+ max_embeddings_multiples,
+ no_boseos_middle,
+ skip_parsing,
+ skip_weighting,
+ do_classifier_free_guidance,
+ num_images_per_prompt,
+ )
+
+ if not isinstance(image, paddle.Tensor):
+ image = image.resize((width, height))
+ image = preprocess_image(image)
+
+ if not isinstance(mask_image, paddle.Tensor):
+ mask_image = mask_image.resize((width, height))
+ mask_image = preprocess_mask(mask_image)
+
+ # 5. set timesteps
+ scheduler.set_timesteps(num_inference_steps)
+ timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, scheduler)
+ latent_timestep = timesteps[:1].tile([batch_size * num_images_per_prompt])
+
+ # 6. Prepare latent variables
+ # encode the init image into latents and scale the latents
+ latents, init_latents_orig, noise = self.prepare_latents_inpaint(
+ image, latent_timestep, num_images_per_prompt, text_embeddings.dtype, scheduler
+ )
+
+ # 7. Prepare mask latent
+ mask = mask_image.cast(latents.dtype)
+ mask = paddle.concat([mask] * batch_size * num_images_per_prompt)
+
+ # 8. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
+ extra_step_kwargs = self.prepare_extra_step_kwargs(eta, scheduler)
+
+ # 9. Denoising loop
+ num_warmup_steps = len(timesteps) - num_inference_steps * scheduler.order
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
+ for i, t in enumerate(timesteps):
+ # expand the latents if we are doing classifier free guidance
+ latent_model_input = paddle.concat([latents] * 2) if do_classifier_free_guidance else latents
+ latent_model_input = scheduler.scale_model_input(latent_model_input, t)
+
+ # predict the noise residual
+ noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample
+
+ # perform guidance
+ if do_classifier_free_guidance:
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
+ noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
+
+ # compute the previous noisy sample x_t -> x_t-1
+ latents = scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
+ # masking
+ init_latents_proper = scheduler.add_noise(init_latents_orig, noise, t)
+
+ latents = (init_latents_proper * mask) + (latents * (1 - mask))
+
+ # call the callback, if provided
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % scheduler.order == 0):
+ progress_bar.update()
+ if callback is not None and i % callback_steps == 0:
+ callback(progress_bar.n, progress_bar.total, progress_bar)
+
+ # 10. Post-processing
+ image = self.decode_latents(latents)
+
+ # 11. Run safety checker
+ image, has_nsfw_concept = self.run_safety_checker(image, text_embeddings.dtype)
+
+ # 12. Convert to PIL
+ if output_type == "pil":
+ image = self.numpy_to_pil(image, argument=argument)
+
+ if not return_dict:
+ return (image, has_nsfw_concept)
+
+ return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
+
+ @staticmethod
+ def numpy_to_pil(images, **kwargs):
+ """
+ Convert a numpy image or a batch of images to a PIL image.
+ """
+ if images.ndim == 3:
+ images = images[None, ...]
+ images = (images * 255).round().astype("uint8")
+ pil_images = []
+ argument = kwargs.pop("argument", None)
+ for image in images:
+ image = PIL.Image.fromarray(image)
+ if argument is not None:
+ image.argument = argument
+ pil_images.append(image)
+
+ return pil_images
+pipeline = StableDiffusionPipelineAllinOne.from_pretrained(BASE_MODEL_NAME, safety_checker=None)
+
+if LORA_WEIGHTS_PATH is not None:
+ pipeline.unet.load_attn_procs(LORA_WEIGHTS_PATH, from_hf_hub=True)
+
+support_scheduler = [
+ "DPMSolver",
+ "EulerDiscrete",
+ "EulerAncestralDiscrete",
+ "PNDM",
+ "DDIM",
+ "LMSDiscrete",
+ "HeunDiscrete",
+ "KDPM2AncestralDiscrete",
+ "KDPM2Discrete"
+]
+
+# generate images
+def infer(prompt, negative, scale, height, width, num_inference_steps, scheduler_name):
+ scheduler = pipeline.create_scheduler(scheduler_name)
+
+ images = pipeline(
+ prompt=prompt, negative_prompt=negative, guidance_scale=scale, height=height, width=width, num_inference_steps=num_inference_steps, scheduler=scheduler,
+ ).images
+ return images
+
+
+css = """
+ .gradio-container {
+ font-family: 'IBM Plex Sans', sans-serif;
+ }
+ .gr-button {
+ color: white;
+ border-color: black;
+ background: black;
+ }
+ input[type='range'] {
+ accent-color: black;
+ }
+ .dark input[type='range'] {
+ accent-color: #dfdfdf;
+ }
+ .container {
+ max-width: 730px;
+ margin: auto;
+ padding-top: 1.5rem;
+ }
+ #gallery {
+ min-height: 22rem;
+ margin-bottom: 15px;
+ margin-left: auto;
+ margin-right: auto;
+ border-bottom-right-radius: .5rem !important;
+ border-bottom-left-radius: .5rem !important;
+ }
+ #gallery>div>.h-full {
+ min-height: 20rem;
+ }
+ .details:hover {
+ text-decoration: underline;
+ }
+ .gr-button {
+ white-space: nowrap;
+ }
+ .gr-button:focus {
+ border-color: rgb(147 197 253 / var(--tw-border-opacity));
+ outline: none;
+ box-shadow: var(--tw-ring-offset-shadow), var(--tw-ring-shadow), var(--tw-shadow, 0 0 #0000);
+ --tw-border-opacity: 1;
+ --tw-ring-offset-shadow: var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color);
+ --tw-ring-shadow: var(--tw-ring-inset) 0 0 0 calc(3px var(--tw-ring-offset-width)) var(--tw-ring-color);
+ --tw-ring-color: rgb(191 219 254 / var(--tw-ring-opacity));
+ --tw-ring-opacity: .5;
+ }
+ #advanced-btn {
+ font-size: .7rem !important;
+ line-height: 19px;
+ margin-top: 12px;
+ margin-bottom: 12px;
+ padding: 2px 8px;
+ border-radius: 14px !important;
+ }
+ #advanced-options {
+ display: none;
+ margin-bottom: 20px;
+ }
+ .footer {
+ margin-bottom: 45px;
+ margin-top: 35px;
+ text-align: center;
+ border-bottom: 1px solid #e5e5e5;
+ }
+ .footer>p {
+ font-size: .8rem;
+ display: inline-block;
+ padding: 0 10px;
+ transform: translateY(10px);
+ background: white;
+ }
+ .dark .footer {
+ border-color: #303030;
+ }
+ .dark .footer>p {
+ background: #0b0f19;
+ }
+ .acknowledgments h4{
+ margin: 1.25em 0 .25em 0;
+ font-weight: bold;
+ font-size: 115%;
+ }
+ .animate-spin {
+ animation: spin 1s linear infinite;
+ }
+ @keyframes spin {
+ from {
+ transform: rotate(0deg);
+ }
+ to {
+ transform: rotate(360deg);
+ }
+ }
+ #share-btn-container {
+ display: flex; padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; width: 13rem;
+ margin-top: 10px;
+ margin-left: auto;
+ }
+ #share-btn {
+ all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.25rem !important; padding-bottom: 0.25rem !important;right:0;
+ }
+ #share-btn * {
+ all: unset;
+ }
+ #share-btn-container div:nth-child(-n+2){
+ width: auto !important;
+ min-height: 0px !important;
+ }
+ #share-btn-container .wrap {
+ display: none !important;
+ }
+
+ .gr-form{
+ flex: 1 1 50%; border-top-right-radius: 0; border-bottom-right-radius: 0;
+ }
+ #prompt-container{
+ gap: 0;
+ }
+ #prompt-text-input, #negative-prompt-text-input{padding: .45rem 0.625rem}
+ #component-16{border-top-width: 1px!important;margin-top: 1em}
+ .image_duplication{position: absolute; width: 100px; left: 50px}
+"""
+
+block = gr.Blocks(css=css)
+
+with block:
+ gr.HTML(
+ """
+
+The model is licensed with a CreativeML OpenRAIL++ license. The authors claim no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in this license. The license forbids you from sharing any content that violates any laws, produce any harm to a person, disseminate any personal information that would be meant for harm, spread misinformation and target vulnerable groups. For the full list of restrictions please read the license
+
Biases and content acknowledgment
+Despite how impressive being able to turn text into image is, beware to the fact that this model may output content that reinforces or exacerbates societal biases, as well as realistic faces, pornography and violence. The model was trained on the LAION-5B dataset, which scraped non-curated image-text-pairs from the internet (the exception being the removal of illegal content) and is meant for research purposes. You can read more in the model card
+
+ """
+ )
+
+block.launch(server_name="0.0.0.0", server_port=8221)
+
diff --git a/env.py b/env.py
new file mode 100644
index 0000000000000000000000000000000000000000..484672e1b12daf5b1c6113fb894c247aac425eff
--- /dev/null
+++ b/env.py
@@ -0,0 +1,13 @@
+############################################################################################################################
+# 修改下面的参数
+# (1)BASE_MODEL_NAME 代表你训练的基础模型
+BASE_MODEL_NAME = "runwayml/stable-diffusion-v1-5"
+
+# 是否开启lora
+# (2)LORA_WEIGHTS_PATH 代码你上传到huggingface后的lora权重。
+# LORA_WEIGHTS_PATH = None 表示不适应lora
+LORA_WEIGHTS_PATH = "junnyu/demo_test"
+
+# (3)PROMPTS 需要展示的prompt文本
+PROMPTS = "A photo of sks dog in a bucket"
+############################################################################################################################
\ No newline at end of file
diff --git a/ppdiffusers/__init__.py b/ppdiffusers/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..b4656561df15b4db4d90e2ce012eb1c3bb56071d
--- /dev/null
+++ b/ppdiffusers/__init__.py
@@ -0,0 +1,162 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+# Copyright 2022 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+# flake8: noqa
+
+from .configuration_utils import ConfigMixin
+from .fastdeploy_utils import FastDeployRuntimeModel
+from .ppnlp_patch_utils import *
+from .utils import (
+ OptionalDependencyNotAvailable,
+ is_fastdeploy_available,
+ is_inflect_available,
+ is_k_diffusion_available,
+ is_librosa_available,
+ is_onnx_available,
+ is_paddle_available,
+ is_paddlenlp_available,
+ is_scipy_available,
+ is_unidecode_available,
+ logging,
+)
+from .version import VERSION as __version__
+
+try:
+ if not is_paddle_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ from .utils.dummy_paddle_objects import * # noqa F403
+else:
+ from .initializer import *
+ from .modeling_utils import ModelMixin
+ from .models import (
+ AutoencoderKL,
+ PriorTransformer,
+ Transformer2DModel,
+ UNet1DModel,
+ UNet2DConditionModel,
+ UNet2DModel,
+ VQModel,
+ )
+ from .optimization import (
+ get_constant_schedule,
+ get_constant_schedule_with_warmup,
+ get_cosine_schedule_with_warmup,
+ get_cosine_with_hard_restarts_schedule_with_warmup,
+ get_linear_schedule_with_warmup,
+ get_polynomial_decay_schedule_with_warmup,
+ get_scheduler,
+ )
+ from .pipeline_utils import DiffusionPipeline
+ from .pipelines import (
+ DanceDiffusionPipeline,
+ DDIMPipeline,
+ DDPMPipeline,
+ KarrasVePipeline,
+ LDMPipeline,
+ LDMSuperResolutionPipeline,
+ PNDMPipeline,
+ RePaintPipeline,
+ ScoreSdeVePipeline,
+ )
+ from .schedulers import (
+ DDIMScheduler,
+ DDPMScheduler,
+ DPMSolverMultistepScheduler,
+ DPMSolverSinglestepScheduler,
+ EulerAncestralDiscreteScheduler,
+ EulerDiscreteScheduler,
+ HeunDiscreteScheduler,
+ IPNDMScheduler,
+ KarrasVeScheduler,
+ KDPM2AncestralDiscreteScheduler,
+ KDPM2DiscreteScheduler,
+ PNDMScheduler,
+ RePaintScheduler,
+ SchedulerMixin,
+ ScoreSdeVeScheduler,
+ UnCLIPScheduler,
+ VQDiffusionScheduler,
+ )
+ from .schedulers.preconfig import PreconfigEulerAncestralDiscreteScheduler
+ from .training_utils import EMAModel
+
+try:
+ if not (is_paddle_available() and is_scipy_available()):
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ from .utils.dummy_paddle_and_scipy_objects import * # noqa F403
+else:
+ from .schedulers import LMSDiscreteScheduler
+ from .schedulers.preconfig import PreconfigLMSDiscreteScheduler
+
+try:
+ if not (is_paddle_available() and is_paddlenlp_available()):
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ from .utils.dummy_paddle_and_paddlenlp_objects import * # noqa F403
+else:
+ from .pipelines import (
+ AltDiffusionImg2ImgPipeline,
+ AltDiffusionPipeline,
+ CycleDiffusionPipeline,
+ LDMBertModel,
+ LDMTextToImagePipeline,
+ PaintByExamplePipeline,
+ StableDiffusionDepth2ImgPipeline,
+ StableDiffusionImageVariationPipeline,
+ StableDiffusionImg2ImgPipeline,
+ StableDiffusionInpaintPipeline,
+ StableDiffusionInpaintPipelineLegacy,
+ StableDiffusionMegaPipeline,
+ StableDiffusionPipeline,
+ StableDiffusionPipelineAllinOne,
+ StableDiffusionPipelineSafe,
+ StableDiffusionUpscalePipeline,
+ UnCLIPPipeline,
+ VersatileDiffusionDualGuidedPipeline,
+ VersatileDiffusionImageVariationPipeline,
+ VersatileDiffusionPipeline,
+ VersatileDiffusionTextToImagePipeline,
+ VQDiffusionPipeline,
+ )
+
+try:
+ if not (is_paddle_available() and is_paddlenlp_available() and is_k_diffusion_available()):
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ from .utils.dummy_paddle_and_paddlenlp_and_k_diffusion_objects import * # noqa F403
+else:
+ from .pipelines import StableDiffusionKDiffusionPipeline
+
+try:
+ if not (is_paddle_available() and is_paddlenlp_available() and is_fastdeploy_available()):
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ from .utils.dummy_paddle_and_paddlenlp_and_fastdeploy_objects import * # noqa F403
+else:
+ from .pipelines import (
+ FastDeployStableDiffusionImg2ImgPipeline,
+ FastDeployStableDiffusionInpaintPipeline,
+ FastDeployStableDiffusionInpaintPipelineLegacy,
+ FastDeployStableDiffusionMegaPipeline,
+ FastDeployStableDiffusionPipeline,
+ )
+try:
+ if not (is_paddle_available() and is_librosa_available()):
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ from .utils.dummy_paddle_and_librosa_objects import * # noqa F403
+else:
+ from .pipelines import AudioDiffusionPipeline, Mel
diff --git a/ppdiffusers/__pycache__/__init__.cpython-37.pyc b/ppdiffusers/__pycache__/__init__.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..dc25a073a232d19ae86c8bb4f7f44d09e70e6410
Binary files /dev/null and b/ppdiffusers/__pycache__/__init__.cpython-37.pyc differ
diff --git a/ppdiffusers/__pycache__/configuration_utils.cpython-37.pyc b/ppdiffusers/__pycache__/configuration_utils.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..03fe30ec83d24b1bb1f28719b3f52c98ab143926
Binary files /dev/null and b/ppdiffusers/__pycache__/configuration_utils.cpython-37.pyc differ
diff --git a/ppdiffusers/__pycache__/download_utils.cpython-37.pyc b/ppdiffusers/__pycache__/download_utils.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..e36ab8219aab94d27c7fbe2983aed1d588d622bd
Binary files /dev/null and b/ppdiffusers/__pycache__/download_utils.cpython-37.pyc differ
diff --git a/ppdiffusers/__pycache__/fastdeploy_utils.cpython-37.pyc b/ppdiffusers/__pycache__/fastdeploy_utils.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..af3a605d3911d0e6d7bdbd40928be50e299f0525
Binary files /dev/null and b/ppdiffusers/__pycache__/fastdeploy_utils.cpython-37.pyc differ
diff --git a/ppdiffusers/__pycache__/initializer.cpython-37.pyc b/ppdiffusers/__pycache__/initializer.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..855078151678cae199a3f132c7f769717a59f137
Binary files /dev/null and b/ppdiffusers/__pycache__/initializer.cpython-37.pyc differ
diff --git a/ppdiffusers/__pycache__/loaders.cpython-37.pyc b/ppdiffusers/__pycache__/loaders.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..c69525686ef1f816eaa76d7236c9def8464c2915
Binary files /dev/null and b/ppdiffusers/__pycache__/loaders.cpython-37.pyc differ
diff --git a/ppdiffusers/__pycache__/modeling_utils.cpython-37.pyc b/ppdiffusers/__pycache__/modeling_utils.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..55fb2a97e104e0beba229dc2822e4591048d8230
Binary files /dev/null and b/ppdiffusers/__pycache__/modeling_utils.cpython-37.pyc differ
diff --git a/ppdiffusers/__pycache__/optimization.cpython-37.pyc b/ppdiffusers/__pycache__/optimization.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..4adf0d1aeb7690a79481a7d45ac75143e6935807
Binary files /dev/null and b/ppdiffusers/__pycache__/optimization.cpython-37.pyc differ
diff --git a/ppdiffusers/__pycache__/pipeline_utils.cpython-37.pyc b/ppdiffusers/__pycache__/pipeline_utils.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..dcda48e8dac95d744d6f04bf248ca67055275024
Binary files /dev/null and b/ppdiffusers/__pycache__/pipeline_utils.cpython-37.pyc differ
diff --git a/ppdiffusers/__pycache__/ppnlp_patch_utils.cpython-37.pyc b/ppdiffusers/__pycache__/ppnlp_patch_utils.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..425c6a95a668d22b40dbf0bad29aeaf3875e1360
Binary files /dev/null and b/ppdiffusers/__pycache__/ppnlp_patch_utils.cpython-37.pyc differ
diff --git a/ppdiffusers/__pycache__/training_utils.cpython-37.pyc b/ppdiffusers/__pycache__/training_utils.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..b33dcd84d63c3237d8deda340efef4a894d492b7
Binary files /dev/null and b/ppdiffusers/__pycache__/training_utils.cpython-37.pyc differ
diff --git a/ppdiffusers/__pycache__/version.cpython-37.pyc b/ppdiffusers/__pycache__/version.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..3e532b7811281947a5714173b21fed2fe35b426c
Binary files /dev/null and b/ppdiffusers/__pycache__/version.cpython-37.pyc differ
diff --git a/ppdiffusers/commands/__init__.py b/ppdiffusers/commands/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..6a9e6f456198f63505db022b021fe92c19d5f236
--- /dev/null
+++ b/ppdiffusers/commands/__init__.py
@@ -0,0 +1,28 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+# Copyright 2022 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from abc import ABC, abstractmethod
+from argparse import ArgumentParser
+
+
+class BasePPDiffusersCLICommand(ABC):
+ @staticmethod
+ @abstractmethod
+ def register_subcommand(parser: ArgumentParser):
+ raise NotImplementedError()
+
+ @abstractmethod
+ def run(self):
+ raise NotImplementedError()
diff --git a/ppdiffusers/commands/env.py b/ppdiffusers/commands/env.py
new file mode 100644
index 0000000000000000000000000000000000000000..4cb2bcfe9032bb62692dbbdc17316c962dbc5787
--- /dev/null
+++ b/ppdiffusers/commands/env.py
@@ -0,0 +1,67 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+# Copyright 2022 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import platform
+from argparse import ArgumentParser
+
+from .. import __version__ as version
+from ..utils import is_paddle_available, is_paddlenlp_available
+from . import BasePPDiffusersCLICommand
+
+
+def info_command_factory(_):
+ return EnvironmentCommand()
+
+
+class EnvironmentCommand(BasePPDiffusersCLICommand):
+ @staticmethod
+ def register_subcommand(parser: ArgumentParser):
+ download_parser = parser.add_parser("env")
+ download_parser.set_defaults(func=info_command_factory)
+
+ def run(self):
+
+ pd_version = "not installed"
+ pd_cuda_available = "NA"
+ if is_paddle_available():
+ import paddle
+
+ pd_version = paddle.__version__
+ pd_cuda_available = paddle.device.is_compiled_with_cuda()
+
+ paddlenlp_version = "not installed"
+ if is_paddlenlp_available:
+ import paddlenlp
+
+ paddlenlp_version = paddlenlp.__version__
+
+ info = {
+ "`ppdiffusers` version": version,
+ "Platform": platform.platform(),
+ "Python version": platform.python_version(),
+ "Paddle version (GPU?)": f"{pd_version} ({pd_cuda_available})",
+ "PaddleNLP version": paddlenlp_version,
+ "Using GPU in script?": "",
+ "Using distributed or parallel set-up in script?": "",
+ }
+
+ print("\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n")
+ print(self.format_dict(info))
+
+ return info
+
+ @staticmethod
+ def format_dict(d):
+ return "\n".join([f"- {prop}: {val}" for prop, val in d.items()]) + "\n"
diff --git a/ppdiffusers/commands/ppdiffusers_cli.py b/ppdiffusers/commands/ppdiffusers_cli.py
new file mode 100644
index 0000000000000000000000000000000000000000..63a9b489778b88f1f80157287ef564b1dff7ce79
--- /dev/null
+++ b/ppdiffusers/commands/ppdiffusers_cli.py
@@ -0,0 +1,41 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+# Copyright 2022 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from argparse import ArgumentParser
+
+from .env import EnvironmentCommand
+
+
+def main():
+ parser = ArgumentParser("PPDiffusers CLI tool", usage="ppdiffusers-cli []")
+ commands_parser = parser.add_subparsers(help="ppdiffusers-cli command helpers")
+
+ # Register commands
+ EnvironmentCommand.register_subcommand(commands_parser)
+
+ # Let's go
+ args = parser.parse_args()
+
+ if not hasattr(args, "func"):
+ parser.print_help()
+ exit(1)
+
+ # Run
+ service = args.func(args)
+ service.run()
+
+
+if __name__ == "__main__":
+ main()
diff --git a/ppdiffusers/configuration_utils.py b/ppdiffusers/configuration_utils.py
new file mode 100644
index 0000000000000000000000000000000000000000..a6224303819ecc252051f9460d3fd8d91741bd5c
--- /dev/null
+++ b/ppdiffusers/configuration_utils.py
@@ -0,0 +1,591 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+# Copyright 2022 The HuggingFace Team. All rights reserved.
+# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" ConfigMixin base class and utilities."""
+import functools
+import importlib
+import inspect
+import json
+import os
+import re
+import tempfile
+from collections import OrderedDict
+from typing import Any, Dict, Optional, Tuple, Union
+
+import numpy as np
+from huggingface_hub import (
+ create_repo,
+ get_hf_file_metadata,
+ hf_hub_download,
+ hf_hub_url,
+ repo_type_and_id_from_hf_id,
+ upload_folder,
+)
+from huggingface_hub.utils import EntryNotFoundError
+from requests import HTTPError
+
+from .download_utils import ppdiffusers_bos_download
+from .utils import (
+ DOWNLOAD_SERVER,
+ HF_CACHE,
+ PPDIFFUSERS_CACHE,
+ DummyObject,
+ deprecate,
+ logging,
+)
+from .version import VERSION as __version__
+
+logger = logging.get_logger(__name__)
+
+_re_configuration_file = re.compile(r"config\.(.*)\.json")
+
+
+class FrozenDict(OrderedDict):
+ def __init__(self, *args, **kwargs):
+ super().__init__(*args, **kwargs)
+
+ for key, value in self.items():
+ setattr(self, key, value)
+
+ self.__frozen = True
+
+ def __delitem__(self, *args, **kwargs):
+ raise Exception(f"You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.")
+
+ def setdefault(self, *args, **kwargs):
+ raise Exception(f"You cannot use ``setdefault`` on a {self.__class__.__name__} instance.")
+
+ def pop(self, *args, **kwargs):
+ raise Exception(f"You cannot use ``pop`` on a {self.__class__.__name__} instance.")
+
+ def update(self, *args, **kwargs):
+ raise Exception(f"You cannot use ``update`` on a {self.__class__.__name__} instance.")
+
+ def __setattr__(self, name, value):
+ if hasattr(self, "__frozen") and self.__frozen:
+ raise Exception(f"You cannot use ``__setattr__`` on a {self.__class__.__name__} instance.")
+ super().__setattr__(name, value)
+
+ def __setitem__(self, name, value):
+ if hasattr(self, "__frozen") and self.__frozen:
+ raise Exception(f"You cannot use ``__setattr__`` on a {self.__class__.__name__} instance.")
+ super().__setitem__(name, value)
+
+
+class ConfigMixin:
+ r"""
+ Base class for all configuration classes. Stores all configuration parameters under `self.config` Also handles all
+ methods for loading/downloading/saving classes inheriting from [`ConfigMixin`] with
+ - [`~ConfigMixin.from_config`]
+ - [`~ConfigMixin.save_config`]
+
+ Class attributes:
+ - **config_name** (`str`) -- A filename under which the config should stored when calling
+ [`~ConfigMixin.save_config`] (should be overridden by parent class).
+ - **ignore_for_config** (`List[str]`) -- A list of attributes that should not be saved in the config (should be
+ overridden by subclass).
+ - **has_compatibles** (`bool`) -- Whether the class has compatible classes (should be overridden by subclass).
+ - **_deprecated_kwargs** (`List[str]`) -- Keyword arguments that are deprecated. Note that the init function
+ should only have a `kwargs` argument if at least one argument is deprecated (should be overridden by
+ subclass).
+ """
+ config_name = None
+ ignore_for_config = []
+ has_compatibles = False
+ _deprecated_kwargs = []
+
+ def register_to_config(self, **kwargs):
+ if self.config_name is None:
+ raise NotImplementedError(f"Make sure that {self.__class__} has defined a class name `config_name`")
+
+ # Special case for `kwargs` used in deprecation warning added to schedulers
+ # TODO: remove this when we remove the deprecation warning, and the `kwargs` argument,
+ # or solve in a more general way.
+ kwargs.pop("kwargs", None)
+ for key, value in kwargs.items():
+ try:
+ setattr(self, key, value)
+ except AttributeError as err:
+ logger.error(f"Can't set {key} with value {value} for {self}")
+ raise err
+
+ if not hasattr(self, "_internal_dict"):
+ internal_dict = kwargs
+ else:
+ previous_dict = dict(self._internal_dict)
+ internal_dict = {**self._internal_dict, **kwargs}
+ logger.debug(f"Updating config from {previous_dict} to {internal_dict}")
+
+ self._internal_dict = FrozenDict(internal_dict)
+
+ def save_config(self, save_directory: Union[str, os.PathLike], push_to_hub: bool = False, **kwargs):
+ """
+ Save a configuration object to the directory `save_directory`, so that it can be re-loaded using the
+ [`~ConfigMixin.from_config`] class method.
+
+ Args:
+ save_directory (`str` or `os.PathLike`):
+ Directory where the configuration JSON file will be saved (will be created if it does not exist).
+ """
+ if os.path.isfile(save_directory):
+ raise AssertionError(f"Provided path ({save_directory}) should be a directory, not a file")
+
+ os.makedirs(save_directory, exist_ok=True)
+
+ # If we save using the predefined names, we can load using `from_config`
+ output_config_file = os.path.join(save_directory, self.config_name)
+
+ self.to_json_file(output_config_file)
+ logger.info(f"Configuration saved in {output_config_file}")
+
+ def save_to_hf_hub(
+ self,
+ repo_id: str,
+ private: Optional[bool] = None,
+ subfolder: Optional[str] = None,
+ commit_message: Optional[str] = None,
+ revision: Optional[str] = None,
+ create_pr: bool = False,
+ ):
+ """
+ Uploads all elements of this config to a new HuggingFace Hub repository.
+ Args:
+ repo_id (str): Repository name for your model/tokenizer in the Hub.
+ private (bool, optional): Whether the model/tokenizer is set to private
+ subfolder (str, optional): Push to a subfolder of the repo instead of the root
+ commit_message (str, optional): The summary / title / first line of the generated commit. Defaults to: f"Upload {path_in_repo} with huggingface_hub"
+ revision (str, optional): The git revision to commit from. Defaults to the head of the "main" branch.
+ create_pr (boolean, optional): Whether or not to create a Pull Request with that commit. Defaults to False.
+ If revision is not set, PR is opened against the "main" branch. If revision is set and is a branch, PR is opened against this branch.
+ If revision is set and is not a branch name (example: a commit oid), an RevisionNotFoundError is returned by the server.
+
+ Returns: The url of the commit of your model in the given repository.
+ """
+ repo_url = create_repo(repo_id, private=private, exist_ok=True)
+
+ # Infer complete repo_id from repo_url
+ # Can be different from the input `repo_id` if repo_owner was implicit
+ _, repo_owner, repo_name = repo_type_and_id_from_hf_id(repo_url)
+
+ repo_id = f"{repo_owner}/{repo_name}"
+
+ # Check if README file already exist in repo
+ try:
+ get_hf_file_metadata(hf_hub_url(repo_id=repo_id, filename="README.md", revision=revision))
+ has_readme = True
+ except EntryNotFoundError:
+ has_readme = False
+
+ with tempfile.TemporaryDirectory() as root_dir:
+ if subfolder is not None:
+ save_dir = os.path.join(root_dir, subfolder)
+ else:
+ save_dir = root_dir
+ # save config
+ self.save_config(save_dir)
+ # Add readme if does not exist
+ logger.info("README.md not found, adding the default README.md")
+ if not has_readme:
+ with open(os.path.join(root_dir, "README.md"), "w") as f:
+ f.write(f"---\nlibrary_name: ppdiffusers\n---\n# {repo_id}")
+
+ # Upload model and return
+ logger.info(f"Pushing to the {repo_id}. This might take a while")
+ return upload_folder(
+ repo_id=repo_id,
+ repo_type="model",
+ folder_path=root_dir,
+ commit_message=commit_message,
+ revision=revision,
+ create_pr=create_pr,
+ )
+
+ @classmethod
+ def from_config(cls, config: Union[FrozenDict, Dict[str, Any]] = None, return_unused_kwargs=False, **kwargs):
+ r"""
+ Instantiate a Python class from a config dictionary
+
+ Parameters:
+ config (`Dict[str, Any]`):
+ A config dictionary from which the Python class will be instantiated. Make sure to only load
+ configuration files of compatible classes.
+ return_unused_kwargs (`bool`, *optional*, defaults to `False`):
+ Whether kwargs that are not consumed by the Python class should be returned or not.
+
+ kwargs (remaining dictionary of keyword arguments, *optional*):
+ Can be used to update the configuration object (after it being loaded) and initiate the Python class.
+ `**kwargs` will be directly passed to the underlying scheduler/model's `__init__` method and eventually
+ overwrite same named arguments of `config`.
+
+ Examples:
+
+ ```python
+ >>> from ppdiffusers import DDPMScheduler, DDIMScheduler, PNDMScheduler
+
+ >>> # Download scheduler from BOS and cache.
+ >>> scheduler = DDPMScheduler.from_pretrained("google/ddpm-cifar10-32")
+
+ >>> # Instantiate DDIM scheduler class with same config as DDPM
+ >>> scheduler = DDIMScheduler.from_config(scheduler.config)
+
+ >>> # Instantiate PNDM scheduler class with same config as DDPM
+ >>> scheduler = PNDMScheduler.from_config(scheduler.config)
+ ```
+ """
+ # <===== TO BE REMOVED WITH DEPRECATION
+ # TODO(Patrick) - make sure to remove the following lines when config=="model_path" is deprecated
+ if "pretrained_model_name_or_path" in kwargs:
+ config = kwargs.pop("pretrained_model_name_or_path")
+
+ if config is None:
+ raise ValueError("Please make sure to provide a config as the first positional argument.")
+ # ======>
+
+ if not isinstance(config, dict):
+ deprecation_message = "It is deprecated to pass a pretrained model name or path to `from_config`."
+ if "Scheduler" in cls.__name__:
+ deprecation_message += (
+ f"If you were trying to load a scheduler, please use {cls}.from_pretrained(...) instead."
+ " Otherwise, please make sure to pass a configuration dictionary instead. This functionality will"
+ " be removed in v1.0.0."
+ )
+ elif "Model" in cls.__name__:
+ deprecation_message += (
+ f"If you were trying to load a model, please use {cls}.load_config(...) followed by"
+ f" {cls}.from_config(...) instead. Otherwise, please make sure to pass a configuration dictionary"
+ " instead. This functionality will be removed in v1.0.0."
+ )
+ deprecate("config-passed-as-path", "1.0.0", deprecation_message, standard_warn=False)
+ config, kwargs = cls.load_config(pretrained_model_name_or_path=config, return_unused_kwargs=True, **kwargs)
+
+ init_dict, unused_kwargs, hidden_dict = cls.extract_init_dict(config, **kwargs)
+
+ # Allow dtype to be specified on initialization
+ if "dtype" in unused_kwargs:
+ # (TODO junnyu, donot use dtype)
+ unused_kwargs.pop("dtype")
+ # init_dict["dtype"] = unused_kwargs.pop("dtype")
+
+ # add possible deprecated kwargs
+ for deprecated_kwarg in cls._deprecated_kwargs:
+ if deprecated_kwarg in unused_kwargs:
+ init_dict[deprecated_kwarg] = unused_kwargs.pop(deprecated_kwarg)
+
+ # Return model and optionally state and/or unused_kwargs
+ model = cls(**init_dict)
+
+ # make sure to also save config parameters that might be used for compatible classes
+ model.register_to_config(**hidden_dict)
+
+ # add hidden kwargs of compatible classes to unused_kwargs
+ unused_kwargs = {**unused_kwargs, **hidden_dict}
+
+ if return_unused_kwargs:
+ return (model, unused_kwargs)
+ else:
+ return model
+
+ @classmethod
+ def get_config_dict(cls, *args, **kwargs):
+ deprecation_message = (
+ f" The function get_config_dict is deprecated. Please use {cls}.load_config instead. This function will be"
+ " removed in version v1.0.0"
+ )
+ deprecate("get_config_dict", "1.0.0", deprecation_message, standard_warn=False)
+ return cls.load_config(*args, **kwargs)
+
+ @classmethod
+ def load_config(
+ cls, pretrained_model_name_or_path: Union[str, os.PathLike], return_unused_kwargs=False, **kwargs
+ ) -> Tuple[Dict[str, Any], Dict[str, Any]]:
+ r"""
+ Instantiate a Python class from a config dictionary
+
+ Parameters:
+ pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*):
+ Can be either:
+
+ - A string, the *model id* of a model repo on huggingface.co. Valid model ids should have an
+ organization name, like `google/ddpm-celebahq-256`.
+ - A path to a *directory* containing model weights saved using [`~ConfigMixin.save_config`], e.g.,
+ `./my_model_directory/`.
+
+ cache_dir (`Union[str, os.PathLike]`, *optional*):
+ Path to a directory in which a downloaded pretrained model configuration should be cached if the
+ standard cache should not be used.
+ output_loading_info(`bool`, *optional*, defaults to `False`):
+ Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages.
+ subfolder (`str`, *optional*, defaults to `""`):
+ In case the relevant files are located inside a subfolder of the model repo (either remote in
+ huggingface.co or downloaded locally), you can specify the folder name here.
+ from_hf_hub (bool, *optional*):
+ Whether to load from Hugging Face Hub. Defaults to False
+ """
+ from_hf_hub = kwargs.pop("from_hf_hub", False)
+ if from_hf_hub:
+ cache_dir = kwargs.pop("cache_dir", HF_CACHE)
+ else:
+ cache_dir = kwargs.pop("cache_dir", PPDIFFUSERS_CACHE)
+ subfolder = kwargs.pop("subfolder", None)
+
+ pretrained_model_name_or_path = str(pretrained_model_name_or_path)
+
+ if cls.config_name is None:
+ raise ValueError(
+ "`self.config_name` is not defined. Note that one should not load a config from "
+ "`ConfigMixin`. Please make sure to define `config_name` in a class inheriting from `ConfigMixin`"
+ )
+
+ if os.path.isfile(pretrained_model_name_or_path):
+ config_file = pretrained_model_name_or_path
+ elif os.path.isdir(pretrained_model_name_or_path):
+ if os.path.isfile(os.path.join(pretrained_model_name_or_path, cls.config_name)):
+ # Load from a Paddle checkpoint
+ config_file = os.path.join(pretrained_model_name_or_path, cls.config_name)
+ elif subfolder is not None and os.path.isfile(
+ os.path.join(pretrained_model_name_or_path, subfolder, cls.config_name)
+ ):
+ config_file = os.path.join(pretrained_model_name_or_path, subfolder, cls.config_name)
+ else:
+ raise EnvironmentError(
+ f"Error no file named {cls.config_name} found in directory {pretrained_model_name_or_path}."
+ )
+ elif from_hf_hub:
+ config_file = hf_hub_download(
+ repo_id=pretrained_model_name_or_path,
+ filename=cls.config_name,
+ cache_dir=cache_dir,
+ subfolder=subfolder,
+ library_name="PPDiffusers",
+ library_version=__version__,
+ )
+ else:
+ try:
+ config_file = ppdiffusers_bos_download(
+ pretrained_model_name_or_path,
+ filename=cls.config_name,
+ subfolder=subfolder,
+ cache_dir=cache_dir,
+ )
+ except HTTPError as err:
+ raise EnvironmentError(
+ "There was a specific connection error when trying to load"
+ f" {pretrained_model_name_or_path}:\n{err}"
+ )
+ except ValueError:
+ raise EnvironmentError(
+ f"We couldn't connect to '{DOWNLOAD_SERVER}' to load this model, couldn't find it"
+ f" in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a"
+ f" directory containing a {cls.config_name} file.\nCheckout your internet connection or see how to"
+ " run the library in offline mode at"
+ " 'https://huggingface.co/docs/diffusers/installation#offline-mode'."
+ )
+ except EnvironmentError:
+ raise EnvironmentError(
+ f"Can't load config for '{pretrained_model_name_or_path}'. If you were trying to load it from "
+ "'https://huggingface.co/models', make sure you don't have a local directory with the same name. "
+ f"Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a directory "
+ f"containing a {cls.config_name} file"
+ )
+
+ try:
+ # Load config dict
+ config_dict = cls._dict_from_json_file(config_file)
+ except (json.JSONDecodeError, UnicodeDecodeError):
+ raise EnvironmentError(f"It looks like the config file at '{config_file}' is not a valid JSON file.")
+
+ if return_unused_kwargs:
+ return config_dict, kwargs
+
+ return config_dict
+
+ @staticmethod
+ def _get_init_keys(cls):
+ return set(dict(inspect.signature(cls.__init__).parameters).keys())
+
+ @classmethod
+ def extract_init_dict(cls, config_dict, **kwargs):
+ # 0. Copy origin config dict
+ original_dict = {k: v for k, v in config_dict.items()}
+
+ # 1. Retrieve expected config attributes from __init__ signature
+ expected_keys = cls._get_init_keys(cls)
+ expected_keys.remove("self")
+ # remove general kwargs if present in dict
+ if "kwargs" in expected_keys:
+ expected_keys.remove("kwargs")
+
+ # 2. Remove attributes that cannot be expected from expected config attributes
+ # remove keys to be ignored
+ if len(cls.ignore_for_config) > 0:
+ expected_keys = expected_keys - set(cls.ignore_for_config)
+
+ # load ppdiffusers library to import compatible and original scheduler
+ ppdiffusers_library = importlib.import_module(__name__.split(".")[0])
+
+ if cls.has_compatibles:
+ compatible_classes = [c for c in cls._get_compatibles() if not isinstance(c, DummyObject)]
+ else:
+ compatible_classes = []
+
+ expected_keys_comp_cls = set()
+ for c in compatible_classes:
+ expected_keys_c = cls._get_init_keys(c)
+ expected_keys_comp_cls = expected_keys_comp_cls.union(expected_keys_c)
+ expected_keys_comp_cls = expected_keys_comp_cls - cls._get_init_keys(cls)
+ config_dict = {k: v for k, v in config_dict.items() if k not in expected_keys_comp_cls}
+
+ # remove attributes from orig class that cannot be expected
+ orig_cls_name = config_dict.pop("_class_name", cls.__name__)
+ if orig_cls_name != cls.__name__ and hasattr(ppdiffusers_library, orig_cls_name):
+ orig_cls = getattr(ppdiffusers_library, orig_cls_name)
+ unexpected_keys_from_orig = cls._get_init_keys(orig_cls) - expected_keys
+ config_dict = {k: v for k, v in config_dict.items() if k not in unexpected_keys_from_orig}
+
+ # remove private attributes
+ config_dict = {k: v for k, v in config_dict.items() if not k.startswith("_")}
+
+ # 3. Create keyword arguments that will be passed to __init__ from expected keyword arguments
+ init_dict = {}
+ for key in expected_keys:
+ # if config param is passed to kwarg and is present in config dict
+ # it should overwrite existing config dict key
+ if key in kwargs and key in config_dict:
+ config_dict[key] = kwargs.pop(key)
+
+ if key in kwargs:
+ # overwrite key
+ init_dict[key] = kwargs.pop(key)
+ elif key in config_dict:
+ # use value from config dict
+ init_dict[key] = config_dict.pop(key)
+
+ # 4. Give nice warning if unexpected values have been passed
+ if len(config_dict) > 0:
+ logger.warning(
+ f"The config attributes {config_dict} were passed to {cls.__name__}, "
+ "but are not expected and will be ignored. Please verify your "
+ f"{cls.config_name} configuration file."
+ )
+
+ # 5. Give nice info if config attributes are initiliazed to default because they have not been passed
+ passed_keys = set(init_dict.keys())
+ if len(expected_keys - passed_keys) > 0:
+ logger.info(
+ f"{expected_keys - passed_keys} was not found in config. Values will be initialized to default values."
+ )
+
+ # 6. Define unused keyword arguments
+ unused_kwargs = {**config_dict, **kwargs}
+
+ # 7. Define "hidden" config parameters that were saved for compatible classes
+ hidden_config_dict = {k: v for k, v in original_dict.items() if k not in init_dict}
+
+ return init_dict, unused_kwargs, hidden_config_dict
+
+ @classmethod
+ def _dict_from_json_file(cls, json_file: Union[str, os.PathLike]):
+ with open(json_file, "r", encoding="utf-8") as reader:
+ text = reader.read()
+ return json.loads(text)
+
+ def __repr__(self):
+ return f"{self.__class__.__name__} {self.to_json_string()}"
+
+ @property
+ def config(self) -> Dict[str, Any]:
+ """
+ Returns the config of the class as a frozen dictionary
+
+ Returns:
+ `Dict[str, Any]`: Config of the class.
+ """
+ return self._internal_dict
+
+ def to_json_string(self) -> str:
+ """
+ Serializes this instance to a JSON string.
+
+ Returns:
+ `str`: String containing all the attributes that make up this configuration instance in JSON format.
+ """
+ config_dict = self._internal_dict if hasattr(self, "_internal_dict") else {}
+ config_dict["_class_name"] = self.__class__.__name__
+ config_dict["_ppdiffusers_version"] = __version__
+
+ def to_json_saveable(value):
+ if isinstance(value, np.ndarray):
+ value = value.tolist()
+ return value
+
+ config_dict = {k: to_json_saveable(v) for k, v in config_dict.items()}
+ return json.dumps(config_dict, indent=2, sort_keys=True) + "\n"
+
+ def to_json_file(self, json_file_path: Union[str, os.PathLike]):
+ """
+ Save this instance to a JSON file.
+
+ Args:
+ json_file_path (`str` or `os.PathLike`):
+ Path to the JSON file in which this configuration instance's parameters will be saved.
+ """
+ with open(json_file_path, "w", encoding="utf-8") as writer:
+ writer.write(self.to_json_string())
+
+
+def register_to_config(init):
+ r"""
+ Decorator to apply on the init of classes inheriting from [`ConfigMixin`] so that all the arguments are
+ automatically sent to `self.register_for_config`. To ignore a specific argument accepted by the init but that
+ shouldn't be registered in the config, use the `ignore_for_config` class variable
+
+ Warning: Once decorated, all private arguments (beginning with an underscore) are trashed and not sent to the init!
+ """
+
+ @functools.wraps(init)
+ def inner_init(self, *args, **kwargs):
+ # Ignore private kwargs in the init.
+ init_kwargs = {k: v for k, v in kwargs.items() if not k.startswith("_")}
+ config_init_kwargs = {k: v for k, v in kwargs.items() if k.startswith("_")}
+
+ if not isinstance(self, ConfigMixin):
+ raise RuntimeError(
+ f"`@register_for_config` was applied to {self.__class__.__name__} init method, but this class does "
+ "not inherit from `ConfigMixin`."
+ )
+
+ ignore = getattr(self, "ignore_for_config", [])
+ # Get positional arguments aligned with kwargs
+ new_kwargs = {}
+ signature = inspect.signature(init)
+ parameters = {
+ name: p.default for i, (name, p) in enumerate(signature.parameters.items()) if i > 0 and name not in ignore
+ }
+ for arg, name in zip(args, parameters.keys()):
+ new_kwargs[name] = arg
+
+ # Then add all kwargs
+ new_kwargs.update(
+ {
+ k: init_kwargs.get(k, default)
+ for k, default in parameters.items()
+ if k not in ignore and k not in new_kwargs
+ }
+ )
+ new_kwargs = {**config_init_kwargs, **new_kwargs}
+ getattr(self, "register_to_config")(**new_kwargs)
+ init(self, *args, **init_kwargs)
+
+ return inner_init
diff --git a/ppdiffusers/download_utils.py b/ppdiffusers/download_utils.py
new file mode 100644
index 0000000000000000000000000000000000000000..ff9b23f74dfde5d994dab794a9b3385870546989
--- /dev/null
+++ b/ppdiffusers/download_utils.py
@@ -0,0 +1,44 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+# Copyright 2022 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import os
+
+from paddlenlp.utils.downloader import get_path_from_url_with_filelock
+from paddlenlp.utils.log import logger
+
+from .utils import DOWNLOAD_SERVER, PPDIFFUSERS_CACHE
+
+
+def ppdiffusers_bos_download(pretrained_model_name_or_path, filename=None, subfolder=None, cache_dir=None):
+ if cache_dir is None:
+ cache_dir = PPDIFFUSERS_CACHE
+ cache_dir = (
+ pretrained_model_name_or_path
+ if os.path.isdir(pretrained_model_name_or_path)
+ else os.path.join(cache_dir, pretrained_model_name_or_path)
+ )
+ url = DOWNLOAD_SERVER + "/" + pretrained_model_name_or_path
+ if subfolder is not None:
+ url = url + "/" + subfolder
+ cache_dir = os.path.join(cache_dir, subfolder)
+ if filename is not None:
+ url = url + "/" + filename
+
+ file_path = os.path.join(cache_dir, filename)
+ if os.path.exists(file_path):
+ logger.info("Already cached %s" % file_path)
+ else:
+ file_path = get_path_from_url_with_filelock(url, cache_dir)
+ return file_path
diff --git a/ppdiffusers/experimental/README.md b/ppdiffusers/experimental/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..847e23ba7c7a40649e2751bcf8882cea6e88b62a
--- /dev/null
+++ b/ppdiffusers/experimental/README.md
@@ -0,0 +1,6 @@
+# 🧨 PPDiffusers Experimental
+
+为了使得**PPDiffusers库**能够有更多的应用场景,我们在这里添加了一些**实验性的代码**。
+
+目前我们支持了以下场景:
+* Reinforcement learning via an implementation of the [PPDiffuser](https://arxiv.org/abs/2205.09991) model.
diff --git a/ppdiffusers/experimental/__init__.py b/ppdiffusers/experimental/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..a775a741f2a5383b4ab8269dec842f59da5d69d4
--- /dev/null
+++ b/ppdiffusers/experimental/__init__.py
@@ -0,0 +1,17 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+# Copyright 2022 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+# flake8: noqa
+
+from .rl import ValueGuidedRLPipeline
diff --git a/ppdiffusers/experimental/rl/__init__.py b/ppdiffusers/experimental/rl/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..26e6f1557fca4e89f7fde75655a15055095b9af1
--- /dev/null
+++ b/ppdiffusers/experimental/rl/__init__.py
@@ -0,0 +1,17 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+# Copyright 2022 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+# flake8: noqa
+
+from .value_guided_sampling import ValueGuidedRLPipeline
diff --git a/ppdiffusers/experimental/rl/value_guided_sampling.py b/ppdiffusers/experimental/rl/value_guided_sampling.py
new file mode 100644
index 0000000000000000000000000000000000000000..4184c0ab362dd23eff61c72997291eaa1a95feee
--- /dev/null
+++ b/ppdiffusers/experimental/rl/value_guided_sampling.py
@@ -0,0 +1,146 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+# Copyright 2022 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import numpy as np
+import paddle
+
+from ...models.unet_1d import UNet1DModel
+from ...pipeline_utils import DiffusionPipeline
+from ...utils.dummy_paddle_objects import DDPMScheduler
+
+
+class ValueGuidedRLPipeline(DiffusionPipeline):
+ r"""
+ This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
+ library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
+ Pipeline for sampling actions from a diffusion model trained to predict sequences of states.
+ Original implementation inspired by this repository: https://github.com/jannerm/diffuser.
+
+ Parameters:
+ value_function ([`UNet1DModel`]): A specialized UNet for fine-tuning trajectories base on reward.
+ unet ([`UNet1DModel`]): U-Net architecture to denoise the encoded trajectories.
+ scheduler ([`SchedulerMixin`]):
+ A scheduler to be used in combination with `unet` to denoise the encoded trajectories. Default for this
+ application is [`DDPMScheduler`].
+ env: An environment following the OpenAI gym API to act in. For now only Hopper has pretrained models.
+ """
+
+ def __init__(
+ self,
+ value_function: UNet1DModel,
+ unet: UNet1DModel,
+ scheduler: DDPMScheduler,
+ env,
+ ):
+ super().__init__()
+ self.value_function = value_function
+ self.unet = unet
+ self.scheduler = scheduler
+ self.env = env
+ self.data = env.get_dataset()
+ self.means = dict()
+ for key in self.data.keys():
+ try:
+ self.means[key] = self.data[key].mean()
+ except Exception:
+ pass
+ self.stds = dict()
+ for key in self.data.keys():
+ try:
+ self.stds[key] = self.data[key].std()
+ except Exception:
+ pass
+ self.state_dim = env.observation_space.shape[0]
+ self.action_dim = env.action_space.shape[0]
+
+ def normalize(self, x_in, key):
+ return (x_in - self.means[key]) / self.stds[key]
+
+ def de_normalize(self, x_in, key):
+ return x_in * self.stds[key] + self.means[key]
+
+ def to_paddle(self, x_in):
+ if type(x_in) is dict:
+ return {k: self.to_paddle(v) for k, v in x_in.items()}
+ elif paddle.is_tensor(x_in):
+ return x_in
+ return paddle.to_tensor(x_in)
+
+ def reset_x0(self, x_in, cond, act_dim):
+ for key, val in cond.items():
+ x_in[:, key, act_dim:] = val.clone()
+ return x_in
+
+ def run_diffusion(self, x, conditions, n_guide_steps, scale):
+ batch_size = x.shape[0]
+ y = None
+ for i in self.progress_bar(self.scheduler.timesteps):
+ # create batch of timesteps to pass into model
+ timesteps = paddle.full((batch_size,), i, dtype="int64")
+ for _ in range(n_guide_steps):
+ with paddle.set_grad_enabled(True):
+ x.stop_gradient = False
+ # permute to match dimension for pre-trained models
+ y = self.value_function(x.transpose([0, 2, 1]), timesteps).sample
+ grad = paddle.autograd.grad([y.sum()], [x])[0]
+
+ posterior_variance = self.scheduler._get_variance(i)
+ model_std = paddle.exp(0.5 * posterior_variance)
+ grad = model_std * grad
+
+ grad[timesteps < 2] = 0
+ x = x.detach()
+ x = x + scale * grad
+ x = self.reset_x0(x, conditions, self.action_dim)
+ prev_x = self.unet(x.transpose([0, 2, 1]), timesteps).sample.transpose([0, 2, 1])
+ # TODO: verify deprecation of this kwarg
+ x = self.scheduler.step(prev_x, i, x, predict_epsilon=False)["prev_sample"]
+
+ # apply conditions to the trajectory (set the initial state)
+ x = self.reset_x0(x, conditions, self.action_dim)
+ x = self.to_paddle(x)
+ return x, y
+
+ def __call__(self, obs, batch_size=64, planning_horizon=32, n_guide_steps=2, scale=0.1):
+ # normalize the observations and create batch dimension
+ obs = self.normalize(obs, "observations")
+ obs = obs[None].repeat(batch_size, axis=0)
+
+ conditions = {0: self.to_paddle(obs)}
+ shape = [batch_size, planning_horizon, self.state_dim + self.action_dim]
+
+ # generate initial noise and apply our conditions (to make the trajectories start at current state)
+ x1 = paddle.randn(shape)
+ x = self.reset_x0(x1, conditions, self.action_dim)
+ x = self.to_paddle(x)
+
+ # run the diffusion process
+ x, y = self.run_diffusion(x, conditions, n_guide_steps, scale)
+
+ # sort output trajectories by value
+ sorted_idx = paddle.argsort(y, 0, descending=True).squeeze()
+ sorted_values = x[sorted_idx]
+ actions = sorted_values[:, :, : self.action_dim]
+ actions = actions.detach().numpy()
+ denorm_actions = self.de_normalize(actions, key="actions")
+
+ # select the action with the highest value
+ if y is not None:
+ selected_index = 0
+ else:
+ # if we didn't run value guiding, select a random action
+ selected_index = np.random.randint(0, batch_size)
+ denorm_actions = denorm_actions[selected_index, 0]
+ return denorm_actions
diff --git a/ppdiffusers/fastdeploy_utils.py b/ppdiffusers/fastdeploy_utils.py
new file mode 100644
index 0000000000000000000000000000000000000000..f3c00e2dea687e008170a766208c31d30080e58c
--- /dev/null
+++ b/ppdiffusers/fastdeploy_utils.py
@@ -0,0 +1,260 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+# Copyright 2022 The HuggingFace Inc. team.
+# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import os
+import shutil
+from pathlib import Path
+from typing import Optional, Union
+
+import numpy as np
+
+from .download_utils import ppdiffusers_bos_download
+from .utils import (
+ FASTDEPLOY_MODEL_NAME,
+ FASTDEPLOY_WEIGHTS_NAME,
+ is_fastdeploy_available,
+ is_paddle_available,
+ logging,
+)
+
+if is_paddle_available():
+ import paddle
+
+
+if is_fastdeploy_available():
+ import fastdeploy as fd
+
+ def fdtensor2pdtensor(fdtensor: fd.C.FDTensor):
+ dltensor = fdtensor.to_dlpack()
+ pdtensor = paddle.utils.dlpack.from_dlpack(dltensor)
+ return pdtensor
+
+ def pdtensor2fdtensor(pdtensor: paddle.Tensor, name: str = "", share_with_raw_ptr=False):
+ if not share_with_raw_ptr:
+ dltensor = paddle.utils.dlpack.to_dlpack(pdtensor)
+ return fd.C.FDTensor.from_dlpack(name, dltensor)
+ else:
+ return fd.C.FDTensor.from_external_data(
+ name,
+ pdtensor.data_ptr(),
+ pdtensor.shape,
+ pdtensor.dtype.name,
+ str(pdtensor.place),
+ int(pdtensor.place.gpu_device_id()),
+ )
+
+
+logger = logging.get_logger(__name__)
+
+
+class FastDeployRuntimeModel:
+ def __init__(self, model=None, **kwargs):
+ logger.info("`ppdiffusers.FastDeployRuntimeModel` is experimental and might change in the future.")
+ self.model = model
+ self.model_save_dir = kwargs.get("model_save_dir", None)
+ self.latest_model_name = kwargs.get("latest_model_name", "inference.pdmodel")
+ self.latest_params_name = kwargs.get("latest_params_name", "inference.pdiparams")
+
+ def zero_copy_infer(self, prebinded_inputs: dict, prebinded_outputs: dict, share_with_raw_ptr=True, **kwargs):
+ """
+ Execute inference without copying data from cpu to gpu.
+
+ Arguments:
+ kwargs (`dict(name, paddle.Tensor)`):
+ An input map from name to tensor.
+ Return:
+ List of output tensor.
+ """
+ for inputs_name, inputs_tensor in prebinded_inputs.items():
+ input_fdtensor = pdtensor2fdtensor(inputs_tensor, inputs_name, share_with_raw_ptr=share_with_raw_ptr)
+ self.model.bind_input_tensor(inputs_name, input_fdtensor)
+
+ for outputs_name, outputs_tensor in prebinded_outputs.items():
+ output_fdtensor = pdtensor2fdtensor(outputs_tensor, outputs_name, share_with_raw_ptr=share_with_raw_ptr)
+ self.model.bind_output_tensor(outputs_name, output_fdtensor)
+
+ self.model.zero_copy_infer()
+
+ def __call__(self, **kwargs):
+ inputs = {k: np.array(v) for k, v in kwargs.items()}
+ return self.model.infer(inputs)
+
+ @staticmethod
+ def load_model(
+ model_path: Union[str, Path],
+ params_path: Union[str, Path],
+ runtime_options: Optional["fd.RuntimeOption"] = None,
+ ):
+ """
+ Loads an FastDeploy Inference Model with fastdeploy.RuntimeOption
+
+ Arguments:
+ model_path (`str` or `Path`):
+ Model path from which to load
+ params_path (`str` or `Path`):
+ Params path from which to load
+ runtime_options (fd.RuntimeOption, *optional*):
+ The RuntimeOption of fastdeploy to initialize the fastdeploy runtime. Default setting
+ the device to cpu and the backend to paddle inference
+ """
+ option = runtime_options
+ if option is None or not isinstance(runtime_options, fd.RuntimeOption):
+ logger.info("No fastdeploy.RuntimeOption specified, using CPU device and paddle inference backend.")
+ option = fd.RuntimeOption()
+ option.use_paddle_backend()
+ option.use_cpu()
+ option.set_model_path(model_path, params_path)
+ return fd.Runtime(option)
+
+ def _save_pretrained(
+ self,
+ save_directory: Union[str, Path],
+ model_file_name: Optional[str] = None,
+ params_file_name: Optional[str] = None,
+ **kwargs
+ ):
+ """
+ Save a model and its configuration file to a directory, so that it can be re-loaded using the
+ [`~FastDeployRuntimeModel.from_pretrained`] class method. It will always save the
+ latest_model_name.
+
+ Arguments:
+ save_directory (`str` or `Path`):
+ Directory where to save the model file.
+ model_file_name(`str`, *optional*):
+ Overwrites the default model file name from `"inference.pdmodel"` to `model_file_name`. This allows you to save the
+ model with a different name.
+ params_file_name(`str`, *optional*):
+ Overwrites the default model file name from `"inference.pdiparams"` to `params_file_name`. This allows you to save the
+ model with a different name.
+ """
+
+ model_file_name = model_file_name if model_file_name is not None else FASTDEPLOY_MODEL_NAME
+ params_file_name = params_file_name if params_file_name is not None else FASTDEPLOY_WEIGHTS_NAME
+
+ src_model_path = self.model_save_dir.joinpath(self.latest_model_name)
+ dst_model_path = Path(save_directory).joinpath(model_file_name)
+
+ src_params_path = self.model_save_dir.joinpath(self.latest_params_name)
+ dst_params_path = Path(save_directory).joinpath(params_file_name)
+ try:
+ shutil.copyfile(src_model_path, dst_model_path)
+ shutil.copyfile(src_params_path, dst_params_path)
+ except shutil.SameFileError:
+ pass
+
+ def save_pretrained(
+ self,
+ save_directory: Union[str, os.PathLike],
+ **kwargs,
+ ):
+ """
+ Save a model to a directory, so that it can be re-loaded using the [`~FastDeployRuntimeModel.from_pretrained`] class
+ method.:
+
+ Arguments:
+ save_directory (`str` or `os.PathLike`):
+ Directory to which to save. Will be created if it doesn't exist.
+ """
+ if os.path.isfile(save_directory):
+ logger.error(f"Provided path ({save_directory}) should be a directory, not a file")
+ return
+
+ os.makedirs(save_directory, exist_ok=True)
+
+ # saving model weights/files
+ self._save_pretrained(save_directory, **kwargs)
+
+ @classmethod
+ def _from_pretrained(
+ cls,
+ pretrained_model_name_or_path: Union[str, Path],
+ cache_dir: Optional[str] = None,
+ model_file_name: Optional[str] = None,
+ params_file_name: Optional[str] = None,
+ runtime_options: Optional["fd.RuntimeOption"] = None,
+ **kwargs,
+ ):
+ """
+ Load a model from a directory or the BOS.
+
+ Arguments:
+ pretrained_model_name_or_path (`str` or `Path`):
+ Directory from which to load
+ cache_dir (`Union[str, Path]`, *optional*):
+ Path to a directory in which a downloaded pretrained model configuration should be cached if the
+ standard cache should not be used.
+ model_file_name (`str`):
+ Overwrites the default model file name from `"inference.pdmodel"` to `file_name`. This allows you to load
+ different model files from the same repository or directory.
+ params_file_name (`str`):
+ Overwrites the default params file name from `"inference.pdiparams"` to `file_name`. This allows you to load
+ different model files from the same repository or directory.
+ runtime_options (`fastdeploy.RuntimeOption`, *optional*):
+ The RuntimeOption of fastdeploy.
+ kwargs (`Dict`, *optional*):
+ kwargs will be passed to the model during initialization
+ """
+ model_file_name = model_file_name if model_file_name is not None else FASTDEPLOY_MODEL_NAME
+ params_file_name = params_file_name if params_file_name is not None else FASTDEPLOY_WEIGHTS_NAME
+ # load model from local directory
+ if os.path.isdir(pretrained_model_name_or_path):
+ model = FastDeployRuntimeModel.load_model(
+ os.path.join(pretrained_model_name_or_path, model_file_name),
+ os.path.join(pretrained_model_name_or_path, params_file_name),
+ runtime_options=runtime_options,
+ )
+ kwargs["model_save_dir"] = Path(pretrained_model_name_or_path)
+ # load model from hub
+ else:
+ # download model
+ model_cache_path = ppdiffusers_bos_download(
+ pretrained_model_name_or_path=pretrained_model_name_or_path,
+ filename=model_file_name,
+ cache_dir=cache_dir,
+ )
+ # download params
+ params_cache_path = ppdiffusers_bos_download(
+ pretrained_model_name_or_path=pretrained_model_name_or_path,
+ filename=params_file_name,
+ cache_dir=cache_dir,
+ )
+ kwargs["model_save_dir"] = Path(model_cache_path).parent
+ kwargs["latest_model_name"] = Path(model_cache_path).name
+ kwargs["latest_params_name"] = Path(params_cache_path).name
+ model = FastDeployRuntimeModel.load_model(
+ model_cache_path, params_cache_path, runtime_options=runtime_options
+ )
+ return cls(model=model, **kwargs)
+
+ @classmethod
+ def from_pretrained(
+ cls,
+ pretrained_model_name_or_path: Union[str, Path],
+ cache_dir: Optional[str] = None,
+ model_file_name: Optional[str] = None,
+ params_file_name: Optional[str] = None,
+ runtime_options: Optional["fd.RuntimeOption"] = None,
+ **model_kwargs,
+ ):
+ return cls._from_pretrained(
+ pretrained_model_name_or_path=pretrained_model_name_or_path,
+ cache_dir=cache_dir,
+ model_file_name=model_file_name,
+ params_file_name=params_file_name,
+ runtime_options=runtime_options,
+ **model_kwargs,
+ )
diff --git a/ppdiffusers/initializer.py b/ppdiffusers/initializer.py
new file mode 100644
index 0000000000000000000000000000000000000000..ddf318a95163d324faab6a2a0516f8e2a99d0735
--- /dev/null
+++ b/ppdiffusers/initializer.py
@@ -0,0 +1,303 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+"""
+This code is based on https://github.com/pytorch/pytorch/blob/master/torch/nn/init.py
+Ths copyright of pytorch/pytorch is a BSD-style license, as found in the LICENSE file.
+"""
+
+import math
+
+import numpy as np
+import paddle
+import paddle.nn as nn
+
+__all__ = [
+ "uniform_",
+ "normal_",
+ "constant_",
+ "ones_",
+ "zeros_",
+ "xavier_uniform_",
+ "xavier_normal_",
+ "kaiming_uniform_",
+ "kaiming_normal_",
+ "linear_init_",
+ "conv_init_",
+ "reset_initialized_parameter",
+]
+
+
+def _no_grad_uniform_(tensor, a, b):
+ with paddle.no_grad():
+ tensor.set_value(paddle.uniform(shape=tensor.shape, dtype=tensor.dtype, min=a, max=b))
+ return tensor
+
+
+def _no_grad_normal_(tensor, mean=0.0, std=1.0):
+ with paddle.no_grad():
+ tensor.set_value(paddle.normal(mean=mean, std=std, shape=tensor.shape))
+ return tensor
+
+
+def _no_grad_fill_(tensor, value=0.0):
+ with paddle.no_grad():
+ tensor.set_value(paddle.full_like(tensor, value, dtype=tensor.dtype))
+ return tensor
+
+
+def uniform_(tensor, a, b):
+ """
+ Modified tensor inspace using uniform_
+ Args:
+ tensor (paddle.Tensor): paddle Tensor
+ a (float|int): min value.
+ b (float|int): max value.
+ Return:
+ tensor
+ """
+ return _no_grad_uniform_(tensor, a, b)
+
+
+def normal_(tensor, mean=0.0, std=1.0):
+ """
+ Modified tensor inspace using normal_
+ Args:
+ tensor (paddle.Tensor): paddle Tensor
+ mean (float|int): mean value.
+ std (float|int): std value.
+ Return:
+ tensor
+ """
+ return _no_grad_normal_(tensor, mean, std)
+
+
+def constant_(tensor, value=0.0):
+ """
+ Modified tensor inspace using constant_
+ Args:
+ tensor (paddle.Tensor): paddle Tensor
+ value (float|int): value to fill tensor.
+ Return:
+ tensor
+ """
+ return _no_grad_fill_(tensor, value)
+
+
+def ones_(tensor):
+ """
+ Modified tensor inspace using ones_
+ Args:
+ tensor (paddle.Tensor): paddle Tensor
+ Return:
+ tensor
+ """
+ return _no_grad_fill_(tensor, 1)
+
+
+def zeros_(tensor):
+ """
+ Modified tensor inspace using zeros_
+ Args:
+ tensor (paddle.Tensor): paddle Tensor
+ Return:
+ tensor
+ """
+ return _no_grad_fill_(tensor, 0)
+
+
+def vector_(tensor, vector):
+ with paddle.no_grad():
+ tensor.set_value(paddle.to_tensor(vector, dtype=tensor.dtype))
+ return tensor
+
+
+def _calculate_fan_in_and_fan_out(tensor, reverse=False):
+ """
+ Calculate (fan_in, _fan_out) for tensor
+ Args:
+ tensor (Tensor): paddle.Tensor
+ reverse (bool: False): tensor data format order, False by default as [fout, fin, ...]. e.g. : conv.weight [cout, cin, kh, kw] is False; linear.weight [cin, cout] is True
+ Return:
+ Tuple[fan_in, fan_out]
+ """
+ if tensor.ndim < 2:
+ raise ValueError("Fan in and fan out can not be computed for tensor with fewer than 2 dimensions")
+
+ if reverse:
+ num_input_fmaps, num_output_fmaps = tensor.shape[0], tensor.shape[1]
+ else:
+ num_input_fmaps, num_output_fmaps = tensor.shape[1], tensor.shape[0]
+
+ receptive_field_size = 1
+ if tensor.ndim > 2:
+ receptive_field_size = np.prod(tensor.shape[2:])
+
+ fan_in = num_input_fmaps * receptive_field_size
+ fan_out = num_output_fmaps * receptive_field_size
+
+ return fan_in, fan_out
+
+
+def xavier_uniform_(tensor, gain=1.0, reverse=False):
+ """
+ Modified tensor inspace using xavier_uniform_
+ Args:
+ tensor (paddle.Tensor): paddle Tensor
+ gain (float): super parameter, 1. default.
+ reverse (bool): reverse (bool: False): tensor data format order, False by default as [fout, fin, ...].
+ Return:
+ tensor
+ """
+ fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor, reverse=reverse)
+ std = gain * math.sqrt(2.0 / float(fan_in + fan_out))
+ k = math.sqrt(3.0) * std
+ return _no_grad_uniform_(tensor, -k, k)
+
+
+def xavier_normal_(tensor, gain=1.0, reverse=False):
+ """
+ Modified tensor inspace using xavier_normal_
+ Args:
+ tensor (paddle.Tensor): paddle Tensor
+ gain (float): super parameter, 1. default.
+ reverse (bool): reverse (bool: False): tensor data format order, False by default as [fout, fin, ...].
+ Return:
+ tensor
+ """
+ fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor, reverse=reverse)
+ std = gain * math.sqrt(2.0 / float(fan_in + fan_out))
+ return _no_grad_normal_(tensor, 0, std)
+
+
+# reference: https://pytorch.org/docs/stable/_modules/torch/nn/init.html
+def _calculate_correct_fan(tensor, mode, reverse=False):
+ mode = mode.lower()
+ valid_modes = ["fan_in", "fan_out"]
+ if mode not in valid_modes:
+ raise ValueError("Mode {} not supported, please use one of {}".format(mode, valid_modes))
+
+ fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor, reverse)
+
+ return fan_in if mode == "fan_in" else fan_out
+
+
+def _calculate_gain(nonlinearity, param=None):
+ linear_fns = ["linear", "conv1d", "conv2d", "conv3d", "conv_transpose1d", "conv_transpose2d", "conv_transpose3d"]
+ if nonlinearity in linear_fns or nonlinearity == "sigmoid":
+ return 1
+ elif nonlinearity == "tanh":
+ return 5.0 / 3
+ elif nonlinearity == "relu":
+ return math.sqrt(2.0)
+ elif nonlinearity == "leaky_relu":
+ if param is None:
+ negative_slope = 0.01
+ elif not isinstance(param, bool) and isinstance(param, int) or isinstance(param, float):
+ # True/False are instances of int, hence check above
+ negative_slope = param
+ else:
+ raise ValueError("negative_slope {} not a valid number".format(param))
+ return math.sqrt(2.0 / (1 + negative_slope**2))
+ elif nonlinearity == "selu":
+ return 3.0 / 4
+ else:
+ raise ValueError("Unsupported nonlinearity {}".format(nonlinearity))
+
+
+def kaiming_uniform_(tensor, a=0, mode="fan_in", nonlinearity="leaky_relu", reverse=False):
+ """
+ Modified tensor inspace using kaiming_uniform method
+ Args:
+ tensor (paddle.Tensor): paddle Tensor
+ mode (str): ['fan_in', 'fan_out'], 'fin_in' defalut
+ nonlinearity (str): nonlinearity method name
+ reverse (bool): reverse (bool: False): tensor data format order, False by default as [fout, fin, ...].
+ Return:
+ tensor
+ """
+ fan = _calculate_correct_fan(tensor, mode, reverse)
+ gain = _calculate_gain(nonlinearity, a)
+ std = gain / math.sqrt(fan)
+ k = math.sqrt(3.0) * std
+ return _no_grad_uniform_(tensor, -k, k)
+
+
+def kaiming_normal_(tensor, a=0, mode="fan_in", nonlinearity="leaky_relu", reverse=False):
+ """
+ Modified tensor inspace using kaiming_normal_
+ Args:
+ tensor (paddle.Tensor): paddle Tensor
+ mode (str): ['fan_in', 'fan_out'], 'fin_in' defalut
+ nonlinearity (str): nonlinearity method name
+ reverse (bool): reverse (bool: False): tensor data format order, False by default as [fout, fin, ...].
+ Return:
+ tensor
+ """
+ fan = _calculate_correct_fan(tensor, mode, reverse)
+ gain = _calculate_gain(nonlinearity, a)
+ std = gain / math.sqrt(fan)
+ return _no_grad_normal_(tensor, 0, std)
+
+
+def linear_init_(module):
+ bound = 1 / math.sqrt(module.weight.shape[0])
+ uniform_(module.weight, -bound, bound)
+ uniform_(module.bias, -bound, bound)
+
+
+def conv_init_(module):
+ bound = 1 / np.sqrt(np.prod(module.weight.shape[1:]))
+ uniform_(module.weight, -bound, bound)
+ if module.bias is not None:
+ uniform_(module.bias, -bound, bound)
+
+
+def bias_init_with_prob(prior_prob=0.01):
+ """initialize conv/fc bias value according to a given probability value."""
+ bias_init = float(-np.log((1 - prior_prob) / prior_prob))
+ return bias_init
+
+
+@paddle.no_grad()
+def reset_initialized_parameter(model, include_self=True):
+ """
+ Reset initialized parameter using following method for [conv, linear, embedding, bn]
+ Args:
+ model (paddle.Layer): paddle Layer
+ include_self (bool: False): include_self for Layer.named_sublayers method. Indicate whether including itself
+ Return:
+ None
+ """
+ for _, m in model.named_sublayers(include_self=include_self):
+ if isinstance(m, nn.Conv2D):
+ k = float(m._groups) / (m._in_channels * m._kernel_size[0] * m._kernel_size[1])
+ k = math.sqrt(k)
+ _no_grad_uniform_(m.weight, -k, k)
+ if hasattr(m, "bias") and getattr(m, "bias") is not None:
+ _no_grad_uniform_(m.bias, -k, k)
+
+ elif isinstance(m, nn.Linear):
+ k = math.sqrt(1.0 / m.weight.shape[0])
+ _no_grad_uniform_(m.weight, -k, k)
+ if hasattr(m, "bias") and getattr(m, "bias") is not None:
+ _no_grad_uniform_(m.bias, -k, k)
+
+ elif isinstance(m, nn.Embedding):
+ _no_grad_normal_(m.weight, mean=0.0, std=1.0)
+
+ elif isinstance(m, (nn.BatchNorm2D, nn.LayerNorm)):
+ _no_grad_fill_(m.weight, 1.0)
+ if hasattr(m, "bias") and getattr(m, "bias") is not None:
+ _no_grad_fill_(m.bias, 0)
diff --git a/ppdiffusers/loaders.py b/ppdiffusers/loaders.py
new file mode 100644
index 0000000000000000000000000000000000000000..a201c67a19761eed73610946820b8450fe2a07c3
--- /dev/null
+++ b/ppdiffusers/loaders.py
@@ -0,0 +1,190 @@
+# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
+# Copyright 2022 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+import os
+from collections import defaultdict
+from typing import Callable, Dict, Union
+
+import paddle
+import paddle.nn as nn
+
+from .modeling_utils import _get_model_file, load_dict
+from .models.cross_attention import LoRACrossAttnProcessor
+from .utils import HF_CACHE, PPDIFFUSERS_CACHE, logging
+
+logger = logging.get_logger(__name__)
+
+
+LORA_WEIGHT_NAME = "paddle_lora_weights.pdparams"
+
+
+class AttnProcsLayers(nn.Layer):
+ def __init__(self, state_dict: Dict[str, paddle.Tensor]):
+ super().__init__()
+ self.layers = nn.LayerList(state_dict.values())
+ self.mapping = {k: v for k, v in enumerate(state_dict.keys())}
+ self.rev_mapping = {v: k for k, v in enumerate(state_dict.keys())}
+
+ # we add a hook to state_dict() and load_state_dict() so that the
+ # naming fits with `unet.attn_processors`
+ def map_to(state_dict, *args, **kwargs):
+ new_state_dict = {}
+ for key, value in state_dict.items():
+ num = int(key.split(".")[1]) # 0 is always "layers"
+ new_key = key.replace(f"layers.{num}", self.mapping[num])
+ new_state_dict[new_key] = value
+
+ return new_state_dict
+
+ def map_from(module, state_dict, *args, **kwargs):
+ all_keys = list(state_dict.keys())
+ for key in all_keys:
+ replace_key = key.split(".processor")[0] + ".processor"
+ new_key = key.replace(replace_key, f"layers.{module.rev_mapping[replace_key]}")
+ state_dict[new_key] = state_dict[key]
+ del state_dict[key]
+
+ self.register_state_dict_hook(map_to)
+ self.register_load_state_dict_pre_hook(map_from, with_module=True)
+
+
+class UNet2DConditionLoadersMixin:
+ def load_attn_procs(self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, paddle.Tensor]], **kwargs):
+ r"""
+ Load pretrained attention processor layers into `UNet2DConditionModel`. Attention processor layers have to be
+ defined in
+ [cross_attention.py](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py)
+ and be a `paddle.nn.Layer` class.
+
+ This function is experimental and might change in the future
+
+ Parameters:
+ pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
+ Can be either:
+ - A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co.
+ Valid model ids should have an organization name, like `google/ddpm-celebahq-256`.
+ - A path to a *directory* containing model weights saved using [`~ModelMixin.save_config`], e.g.,
+ `./my_model_directory/`.
+ - A [paddle state
+ dict].
+ from_hf_hub (bool, optional): whether to load from Huggingface Hub.
+ cache_dir (`Union[str, os.PathLike]`, *optional*):
+ Path to a directory in which a downloaded pretrained model configuration should be cached if the
+ standard cache should not be used.
+ subfolder (`str`, *optional*, defaults to `None`):
+ In case the relevant files are located inside a subfolder of the model repo (either remote in
+ huggingface.co or downloaded locally), you can specify the folder name here.
+ """
+
+ from_hf_hub = kwargs.pop("from_hf_hub", False)
+ if from_hf_hub:
+ cache_dir = kwargs.pop("cache_dir", HF_CACHE)
+ else:
+ cache_dir = kwargs.pop("cache_dir", PPDIFFUSERS_CACHE)
+ subfolder = kwargs.pop("subfolder", None)
+ weight_name = kwargs.pop("weight_name", LORA_WEIGHT_NAME)
+
+ if not isinstance(pretrained_model_name_or_path_or_dict, dict):
+ model_file = _get_model_file(
+ pretrained_model_name_or_path_or_dict,
+ weights_name=weight_name,
+ cache_dir=cache_dir,
+ subfolder=subfolder,
+ from_hf_hub=from_hf_hub,
+ )
+ state_dict = load_dict(model_file, map_location="cpu")
+ else:
+ state_dict = pretrained_model_name_or_path_or_dict
+
+ # fill attn processors
+ attn_processors = {}
+
+ is_lora = all("lora" in k for k in state_dict.keys())
+
+ if is_lora:
+ lora_grouped_dict = defaultdict(dict)
+ for key, value in state_dict.items():
+ attn_processor_key, sub_key = ".".join(key.split(".")[:-3]), ".".join(key.split(".")[-3:])
+ lora_grouped_dict[attn_processor_key][sub_key] = value
+
+ for key, value_dict in lora_grouped_dict.items():
+ rank = value_dict["to_k_lora.down.weight"].shape[1] # 0 -> 1, torch vs paddle nn.Linear
+ cross_attention_dim = value_dict["to_k_lora.down.weight"].shape[0] # 1 -> 0, torch vs paddle nn.Linear
+ hidden_size = value_dict["to_k_lora.up.weight"].shape[1] # 0 -> 1, torch vs paddle nn.Linear
+
+ attn_processors[key] = LoRACrossAttnProcessor(
+ hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, rank=rank
+ )
+ attn_processors[key].load_dict(value_dict)
+
+ else:
+ raise ValueError(f"{model_file} does not seem to be in the correct format expected by LoRA training.")
+
+ # set correct dtype & device
+ attn_processors = {k: v.to(dtype=self.dtype) for k, v in attn_processors.items()}
+
+ # set layers
+ self.set_attn_processor(attn_processors)
+
+ def save_attn_procs(
+ self,
+ save_directory: Union[str, os.PathLike],
+ is_main_process: bool = True,
+ weights_name: str = LORA_WEIGHT_NAME,
+ save_function: Callable = None,
+ ):
+ r"""
+ Save an attention procesor to a directory, so that it can be re-loaded using the
+ `[`~loaders.UNet2DConditionLoadersMixin.load_attn_procs`]` method.
+ Arguments:
+ save_directory (`str` or `os.PathLike`):
+ Directory to which to save. Will be created if it doesn't exist.
+ is_main_process (`bool`, *optional*, defaults to `True`):
+ Whether the process calling this is the main process or not. Useful when in distributed training like
+ TPUs and need to call this function on all processes. In this case, set `is_main_process=True` only on
+ the main process to avoid race conditions.
+ weights_name (`str`, *optional*, defaults to `LORA_WEIGHT_NAME`):
+ The name of weights.
+ save_function (`Callable`):
+ The function to use to save the state dictionary. Useful on distributed training like TPUs when one
+ need to replace `torch.save` by another method. Can be configured with the environment variable
+ `DIFFUSERS_SAVE_MODE`.
+ """
+ if os.path.isfile(save_directory):
+ logger.error(f"Provided path ({save_directory}) should be a directory, not a file")
+ return
+
+ if save_function is None:
+ save_function = paddle.save
+
+ os.makedirs(save_directory, exist_ok=True)
+
+ model_to_save = AttnProcsLayers(self.attn_processors)
+
+ # Save the model
+ state_dict = model_to_save.state_dict()
+
+ # Clean the folder from a previous save
+ for filename in os.listdir(save_directory):
+ full_filename = os.path.join(save_directory, filename)
+ # If we have a shard file that is not going to be replaced, we delete it, but only from the main process
+ # in distributed settings to avoid race conditions.
+ weights_no_suffix = weights_name.replace(".pdparams", "")
+ if filename.startswith(weights_no_suffix) and os.path.isfile(full_filename) and is_main_process:
+ os.remove(full_filename)
+
+ # Save the model
+ save_function(state_dict, os.path.join(save_directory, weights_name))
+
+ logger.info(f"Model weights saved in {os.path.join(save_directory, weights_name)}")
diff --git a/ppdiffusers/modeling_paddle_pytorch_utils.py b/ppdiffusers/modeling_paddle_pytorch_utils.py
new file mode 100644
index 0000000000000000000000000000000000000000..afbbccf57bc08a31c4f09a03bf6b343eb89577d8
--- /dev/null
+++ b/ppdiffusers/modeling_paddle_pytorch_utils.py
@@ -0,0 +1,106 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+# Copyright 2022 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" PyTorch - Paddle general utilities."""
+import re
+
+from .utils import logging
+
+logger = logging.get_logger(__name__)
+
+
+def rename_key(key):
+ regex = r"\w+[.]\d+"
+ pats = re.findall(regex, key)
+ for pat in pats:
+ key = key.replace(pat, "_".join(pat.split(".")))
+ return key
+
+
+#####################
+# PyTorch => Paddle #
+#####################
+
+
+def rename_key_and_reshape_tensor(pt_tuple_key, pt_tensor, random_paddle_state_dict):
+ """Rename PT weight names to corresponding Paddle weight names and reshape tensor if necessary"""
+
+ # conv norm or layer norm
+ renamed_pt_tuple_key = pt_tuple_key[:-1] + ("bias",)
+ if (
+ any("norm" in str_ for str_ in pt_tuple_key)
+ and (pt_tuple_key[-1] in ["bias", "beta"])
+ and (pt_tuple_key[:-1] + ("bias",) in random_paddle_state_dict)
+ ):
+ renamed_pt_tuple_key = pt_tuple_key[:-1] + ("bias",)
+ return renamed_pt_tuple_key, pt_tensor
+ elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("bias",) in random_paddle_state_dict:
+ renamed_pt_tuple_key = pt_tuple_key[:-1] + ("bias",)
+ return renamed_pt_tuple_key, pt_tensor
+
+ # embedding
+ if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("weight",) in random_paddle_state_dict:
+ pt_tuple_key = pt_tuple_key[:-1] + ("weight",)
+ return renamed_pt_tuple_key, pt_tensor
+
+ # conv layer
+ renamed_pt_tuple_key = pt_tuple_key[:-1] + ("weight",)
+ if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4:
+ return renamed_pt_tuple_key, pt_tensor
+
+ # linear layer
+ renamed_pt_tuple_key = pt_tuple_key[:-1] + ("weight",)
+ if pt_tuple_key[-1] == "weight":
+ pt_tensor = pt_tensor.t()
+ return renamed_pt_tuple_key, pt_tensor
+
+ # old PyTorch layer norm weight
+ renamed_pt_tuple_key = pt_tuple_key[:-1] + ("weight",)
+ if pt_tuple_key[-1] == "gamma":
+ return renamed_pt_tuple_key, pt_tensor
+
+ # old PyTorch layer norm bias
+ renamed_pt_tuple_key = pt_tuple_key[:-1] + ("bias",)
+ if pt_tuple_key[-1] == "beta":
+ return renamed_pt_tuple_key, pt_tensor
+
+ return pt_tuple_key, pt_tensor
+
+
+def convert_pytorch_state_dict_to_paddle(pt_state_dict, paddle_model):
+ # Step 1: Convert pytorch tensor to numpy
+ pt_state_dict = {k: v.numpy() for k, v in pt_state_dict.items()}
+
+ random_paddle_state_dict = paddle_model.state_dict
+ paddle_state_dict = {}
+
+ # Need to change some parameters name to match Paddle names
+ for pt_key, pt_tensor in pt_state_dict.items():
+ renamed_pt_key = rename_key(pt_key)
+ pt_tuple_key = tuple(renamed_pt_key.split("."))
+
+ # Correctly rename weight parameters
+ paddle_key, paddle_tensor = rename_key_and_reshape_tensor(pt_tuple_key, pt_tensor, random_paddle_state_dict)
+
+ if paddle_key in random_paddle_state_dict:
+ if list(paddle_tensor.shape) != list(random_paddle_state_dict[paddle_key].shape):
+ raise ValueError(
+ f"Paddle checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape "
+ f"{random_paddle_state_dict[paddle_key].shape}, but is {paddle_tensor.shape}."
+ )
+
+ # also add unexpected weight so that warning is thrown
+ paddle_state_dict[paddle_key] = paddle_tensor.numpy()
+
+ return paddle_state_dict
diff --git a/ppdiffusers/modeling_utils.py b/ppdiffusers/modeling_utils.py
new file mode 100644
index 0000000000000000000000000000000000000000..3e152397ba45f313ec2356d85501df6a662b6269
--- /dev/null
+++ b/ppdiffusers/modeling_utils.py
@@ -0,0 +1,619 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+# Copyright 2022 The HuggingFace Team. All rights reserved.
+# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import os
+import tempfile
+from functools import partial
+from typing import Callable, Optional, Union
+
+import paddle
+import paddle.nn as nn
+from huggingface_hub import (
+ create_repo,
+ get_hf_file_metadata,
+ hf_hub_download,
+ hf_hub_url,
+ repo_type_and_id_from_hf_id,
+ upload_folder,
+)
+from huggingface_hub.utils import EntryNotFoundError
+from requests import HTTPError
+
+from .download_utils import ppdiffusers_bos_download
+from .utils import (
+ CONFIG_NAME,
+ DOWNLOAD_SERVER,
+ HF_CACHE,
+ PPDIFFUSERS_CACHE,
+ WEIGHTS_NAME,
+ logging,
+)
+from .version import VERSION as __version__
+
+logger = logging.get_logger(__name__)
+
+
+def unfreeze_params(params):
+ for param in params:
+ param.stop_gradient = False
+
+
+def freeze_params(params):
+ for param in params:
+ param.stop_gradient = True
+
+
+# device
+def get_parameter_device(parameter: nn.Layer):
+ try:
+ return next(parameter.named_parameters())[1].place
+ except StopIteration:
+ return paddle.get_device()
+
+
+def get_parameter_dtype(parameter: nn.Layer):
+ try:
+ return next(parameter.named_parameters())[1].dtype
+ except StopIteration:
+ return paddle.get_default_dtype()
+
+
+def load_dict(checkpoint_file: Union[str, os.PathLike], map_location: str = "cpu"):
+ """
+ Reads a Paddle checkpoint file, returning properly formatted errors if they arise.
+ """
+ try:
+ if map_location == "cpu":
+ with paddle.device_scope("cpu"):
+ state_dict = paddle.load(checkpoint_file)
+ else:
+ state_dict = paddle.load(checkpoint_file)
+ return state_dict
+ except Exception as e:
+ try:
+ with open(checkpoint_file) as f:
+ if f.read().startswith("version"):
+ raise OSError(
+ "You seem to have cloned a repository without having git-lfs installed. Please install "
+ "git-lfs and run `git lfs install` followed by `git lfs pull` in the folder "
+ "you cloned."
+ )
+ else:
+ raise ValueError(
+ f"Unable to locate the file {checkpoint_file} which is necessary to load this pretrained "
+ "model. Make sure you have saved the model properly."
+ ) from e
+ except (UnicodeDecodeError, ValueError):
+ raise OSError(
+ f"Unable to load weights from Paddle checkpoint file for '{checkpoint_file}' "
+ f"at '{checkpoint_file}'. "
+ "If you tried to load a Paddle model from a TF 2.0 checkpoint, please set from_tf=True."
+ )
+
+
+class ModelMixin(nn.Layer):
+ r"""
+ Base class for all models.
+
+ [`ModelMixin`] takes care of storing the configuration of the models and handles methods for loading, downloading
+ and saving models.
+
+ - **config_name** ([`str`]) -- A filename under which the model should be stored when calling
+ [`~modeling_utils.ModelMixin.save_pretrained`].
+ """
+ config_name = CONFIG_NAME
+ _automatically_saved_args = ["_ppdiffusers_version", "_class_name", "_name_or_path"]
+ _supports_gradient_checkpointing = False
+
+ def __init__(self):
+ super().__init__()
+
+ @property
+ def is_gradient_checkpointing(self) -> bool:
+ """
+ Whether gradient checkpointing is activated for this model or not.
+
+ Note that in other frameworks this feature can be referred to as "activation checkpointing" or "checkpoint
+ activations".
+ """
+ return any(
+ hasattr(m, "gradient_checkpointing") and m.gradient_checkpointing
+ for m in self.sublayers(include_self=True)
+ )
+
+ def enable_gradient_checkpointing(self):
+ """
+ Activates gradient checkpointing for the current model.
+
+ Note that in other frameworks this feature can be referred to as "activation checkpointing" or "checkpoint
+ activations".
+ """
+ if not self._supports_gradient_checkpointing:
+ raise ValueError(f"{self.__class__.__name__} does not support gradient checkpointing.")
+ self.apply(partial(self._set_gradient_checkpointing, value=True))
+
+ def disable_gradient_checkpointing(self):
+ """
+ Deactivates gradient checkpointing for the current model.
+
+ Note that in other frameworks this feature can be referred to as "activation checkpointing" or "checkpoint
+ activations".
+ """
+ if self._supports_gradient_checkpointing:
+ self.apply(partial(self._set_gradient_checkpointing, value=False))
+
+ def save_pretrained(
+ self,
+ save_directory: Union[str, os.PathLike],
+ is_main_process: bool = True,
+ save_function: Callable = paddle.save,
+ ):
+ """
+ Save a model and its configuration file to a directory, so that it can be re-loaded using the
+ `[`~modeling_utils.ModelMixin.from_pretrained`]` class method.
+
+ Arguments:
+ save_directory (`str` or `os.PathLike`):
+ Directory to which to save. Will be created if it doesn't exist.
+ is_main_process (`bool`, *optional*, defaults to `True`):
+ Whether the process calling this is the main process or not. Useful when in distributed training like
+ TPUs and need to call this function on all processes. In this case, set `is_main_process=True` only on
+ the main process to avoid race conditions.
+ save_function (`Callable`):
+ The function to use to save the state dictionary. Useful on distributed training like TPUs when one
+ need to replace `paddle.save` by another method.
+ """
+ if os.path.isfile(save_directory):
+ logger.error(f"Provided path ({save_directory}) should be a directory, not a file")
+ return
+
+ os.makedirs(save_directory, exist_ok=True)
+
+ model_to_save = self
+
+ # Attach architecture to the config
+ # Save the config
+ if is_main_process:
+ model_to_save.save_config(save_directory)
+
+ # Save the model
+ state_dict = model_to_save.state_dict()
+
+ # Clean the folder from a previous save
+ for filename in os.listdir(save_directory):
+ full_filename = os.path.join(save_directory, filename)
+ # If we have a shard file that is not going to be replaced, we delete it, but only from the main process
+ # in distributed settings to avoid race conditions.
+ if filename.startswith(WEIGHTS_NAME[:-4]) and os.path.isfile(full_filename) and is_main_process:
+ os.remove(full_filename)
+
+ # Save the model
+ save_function(state_dict, os.path.join(save_directory, WEIGHTS_NAME))
+
+ logger.info(f"Model weights saved in {os.path.join(save_directory, WEIGHTS_NAME)}")
+
+ def save_to_hf_hub(
+ self,
+ repo_id: str,
+ private: Optional[bool] = None,
+ subfolder: Optional[str] = None,
+ commit_message: Optional[str] = None,
+ revision: Optional[str] = None,
+ create_pr: bool = False,
+ ):
+ """
+ Uploads all elements of this model to a new HuggingFace Hub repository.
+ Args:
+ repo_id (str): Repository name for your model/tokenizer in the Hub.
+ private (bool, optional): Whether the model/tokenizer is set to private
+ subfolder (str, optional): Push to a subfolder of the repo instead of the root
+ commit_message (str, optional) — The summary / title / first line of the generated commit. Defaults to: f"Upload {path_in_repo} with huggingface_hub"
+ revision (str, optional) — The git revision to commit from. Defaults to the head of the "main" branch.
+ create_pr (boolean, optional) — Whether or not to create a Pull Request with that commit. Defaults to False.
+ If revision is not set, PR is opened against the "main" branch. If revision is set and is a branch, PR is opened against this branch.
+ If revision is set and is not a branch name (example: a commit oid), an RevisionNotFoundError is returned by the server.
+
+ Returns: The url of the commit of your model in the given repository.
+ """
+ repo_url = create_repo(repo_id, private=private, exist_ok=True)
+
+ # Infer complete repo_id from repo_url
+ # Can be different from the input `repo_id` if repo_owner was implicit
+ _, repo_owner, repo_name = repo_type_and_id_from_hf_id(repo_url)
+
+ repo_id = f"{repo_owner}/{repo_name}"
+
+ # Check if README file already exist in repo
+ try:
+ get_hf_file_metadata(hf_hub_url(repo_id=repo_id, filename="README.md", revision=revision))
+ has_readme = True
+ except EntryNotFoundError:
+ has_readme = False
+
+ with tempfile.TemporaryDirectory() as root_dir:
+ if subfolder is not None:
+ save_dir = os.path.join(root_dir, subfolder)
+ else:
+ save_dir = root_dir
+ # save model
+ self.save_pretrained(save_dir)
+ # Add readme if does not exist
+ logger.info("README.md not found, adding the default README.md")
+ if not has_readme:
+ with open(os.path.join(root_dir, "README.md"), "w") as f:
+ f.write(f"---\nlibrary_name: ppdiffusers\n---\n# {repo_id}")
+
+ # Upload model and return
+ logger.info(f"Pushing to the {repo_id}. This might take a while")
+ return upload_folder(
+ repo_id=repo_id,
+ repo_type="model",
+ folder_path=root_dir,
+ commit_message=commit_message,
+ revision=revision,
+ create_pr=create_pr,
+ )
+
+ @classmethod
+ def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], **kwargs):
+ r"""
+ Instantiate a pretrained paddle model from a pre-trained model configuration.
+
+ The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated). To train
+ the model, you should first set it back in training mode with `model.train()`.
+
+ The warning *Weights from XXX not initialized from pretrained model* means that the weights of XXX do not come
+ pretrained with the rest of the model. It is up to you to train those weights with a downstream fine-tuning
+ task.
+
+ The warning *Weights from XXX not used in YYY* means that the layer XXX is not used by YYY, therefore those
+ weights are discarded.
+
+ Parameters:
+ pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*):
+ Can be either:
+
+ - A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co.
+ Valid model ids should have an organization name, like `google/ddpm-celebahq-256`.
+ - A path to a *directory* containing model weights saved using [`~ModelMixin.save_config`], e.g.,
+ `./my_model_directory/`.
+
+ cache_dir (`Union[str, os.PathLike]`, *optional*):
+ Path to a directory in which a downloaded pretrained model configuration should be cached if the
+ standard cache should not be used.
+ paddle_dtype (`str` or `paddle.dtype`, *optional*):
+ Override the default `paddle.dtype` and load the model under this dtype. If `"auto"` is passed the dtype
+ will be automatically derived from the model's weights.
+ output_loading_info(`bool`, *optional*, defaults to `False`):
+ Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages.
+ subfolder (`str`, *optional*, defaults to `""`):
+ In case the relevant files are located inside a subfolder of the model repo (either remote in
+ huggingface.co or downloaded locally), you can specify the folder name here.
+ from_hf_hub (bool, *optional*):
+ Whether to load from Hugging Face Hub. Defaults to False
+ """
+ from_hf_hub = kwargs.pop("from_hf_hub", False)
+ if from_hf_hub:
+ cache_dir = kwargs.pop("cache_dir", HF_CACHE)
+ else:
+ cache_dir = kwargs.pop("cache_dir", PPDIFFUSERS_CACHE)
+ ignore_mismatched_sizes = kwargs.pop("ignore_mismatched_sizes", False)
+ output_loading_info = kwargs.pop("output_loading_info", False)
+ paddle_dtype = kwargs.pop("paddle_dtype", None)
+ subfolder = kwargs.pop("subfolder", None)
+ ignore_keys = kwargs.pop("ignore_keys", [])
+
+ # Load config if we don't provide a configuration
+ config_path = pretrained_model_name_or_path
+
+ model_file = None
+ if model_file is None:
+ model_file = _get_model_file(
+ pretrained_model_name_or_path,
+ weights_name=WEIGHTS_NAME,
+ cache_dir=cache_dir,
+ subfolder=subfolder,
+ from_hf_hub=from_hf_hub,
+ )
+
+ config, unused_kwargs = cls.load_config(
+ config_path,
+ cache_dir=cache_dir,
+ return_unused_kwargs=True,
+ subfolder=subfolder,
+ from_hf_hub=from_hf_hub,
+ **kwargs,
+ )
+ model = cls.from_config(config, **unused_kwargs)
+
+ state_dict = load_dict(model_file, map_location="cpu")
+
+ keys = list(state_dict.keys())
+ for k in keys:
+ for ik in ignore_keys:
+ if k.startswith(ik):
+ logger.warning("Deleting key {} from state_dict.".format(k))
+ del state_dict[k]
+
+ dtype = set(v.dtype for v in state_dict.values())
+
+ if len(dtype) > 1 and paddle.float32 not in dtype:
+ raise ValueError(
+ f"The weights of the model file {model_file} have a mixture of incompatible dtypes {dtype}. Please"
+ f" make sure that {model_file} weights have only one dtype."
+ )
+ elif len(dtype) > 1 and paddle.float32 in dtype:
+ dtype = paddle.float32
+ else:
+ dtype = dtype.pop()
+
+ # move model to correct dtype
+ model = model.to(dtype=dtype)
+
+ model, missing_keys, unexpected_keys, mismatched_keys, error_msgs = cls._load_pretrained_model(
+ model,
+ state_dict,
+ model_file,
+ pretrained_model_name_or_path,
+ ignore_mismatched_sizes=ignore_mismatched_sizes,
+ )
+
+ loading_info = {
+ "missing_keys": missing_keys,
+ "unexpected_keys": unexpected_keys,
+ "mismatched_keys": mismatched_keys,
+ "error_msgs": error_msgs,
+ }
+
+ if paddle_dtype is not None and not isinstance(paddle_dtype, paddle.dtype):
+ raise ValueError(
+ f"{paddle_dtype} needs to be of type `paddle.dtype`, e.g. `paddle.float16`, but is {type(paddle_dtype)}."
+ )
+ elif paddle_dtype is not None:
+ model = model.to(dtype=paddle_dtype)
+
+ model.register_to_config(_name_or_path=pretrained_model_name_or_path)
+
+ # Set model in evaluation mode to deactivate DropOut modules by default
+ model.eval()
+ if output_loading_info:
+ return model, loading_info
+
+ return model
+
+ @classmethod
+ def _load_pretrained_model(
+ cls,
+ model,
+ state_dict,
+ resolved_archive_file,
+ pretrained_model_name_or_path,
+ ignore_mismatched_sizes=False,
+ ):
+ # Retrieve missing & unexpected_keys
+ model_state_dict = model.state_dict()
+ loaded_keys = [k for k in state_dict.keys()]
+
+ expected_keys = list(model_state_dict.keys())
+
+ original_loaded_keys = loaded_keys
+
+ missing_keys = list(set(expected_keys) - set(loaded_keys))
+ unexpected_keys = list(set(loaded_keys) - set(expected_keys))
+
+ # Make sure we are able to load base models as well as derived models (with heads)
+ model_to_load = model
+
+ def _find_mismatched_keys(
+ state_dict,
+ model_state_dict,
+ loaded_keys,
+ ignore_mismatched_sizes,
+ ):
+ mismatched_keys = []
+ if ignore_mismatched_sizes:
+ for checkpoint_key in loaded_keys:
+ model_key = checkpoint_key
+
+ if model_key in model_state_dict and list(state_dict[checkpoint_key].shape) != list(
+ model_state_dict[model_key].shape
+ ):
+ mismatched_keys.append(
+ (checkpoint_key, state_dict[checkpoint_key].shape, model_state_dict[model_key].shape)
+ )
+ del state_dict[checkpoint_key]
+ return mismatched_keys
+
+ if state_dict is not None:
+ # Whole checkpoint
+ mismatched_keys = _find_mismatched_keys(
+ state_dict,
+ model_state_dict,
+ original_loaded_keys,
+ ignore_mismatched_sizes,
+ )
+ error_msgs = ""
+ model_to_load.load_dict(state_dict)
+
+ if len(error_msgs) > 0:
+ error_msg = "\n\t".join(error_msgs)
+ if "size mismatch" in error_msg:
+ error_msg += (
+ "\n\tYou may consider adding `ignore_mismatched_sizes=True` in the model `from_pretrained` method."
+ )
+ raise RuntimeError(f"Error(s) in loading state_dict for {model.__class__.__name__}:\n\t{error_msg}")
+
+ if len(unexpected_keys) > 0:
+ logger.warning(
+ f"Some weights of the model checkpoint at {pretrained_model_name_or_path} were not used when"
+ f" initializing {model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are"
+ f" initializing {model.__class__.__name__} from the checkpoint of a model trained on another task"
+ " or with another architecture (e.g. initializing a BertForSequenceClassification model from a"
+ " BertForPreTraining model).\n- This IS NOT expected if you are initializing"
+ f" {model.__class__.__name__} from the checkpoint of a model that you expect to be exactly"
+ " identical (initializing a BertForSequenceClassification model from a"
+ " BertForSequenceClassification model)."
+ )
+ else:
+ logger.info(f"All model checkpoint weights were used when initializing {model.__class__.__name__}.\n")
+ if len(missing_keys) > 0:
+ logger.warning(
+ f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at"
+ f" {pretrained_model_name_or_path} and are newly initialized: {missing_keys}\nYou should probably"
+ " TRAIN this model on a down-stream task to be able to use it for predictions and inference."
+ )
+ elif len(mismatched_keys) == 0:
+ logger.info(
+ f"All the weights of {model.__class__.__name__} were initialized from the model checkpoint at"
+ f" {pretrained_model_name_or_path}.\nIf your task is similar to the task the model of the"
+ f" checkpoint was trained on, you can already use {model.__class__.__name__} for predictions"
+ " without further training."
+ )
+ if len(mismatched_keys) > 0:
+ mismatched_warning = "\n".join(
+ [
+ f"- {key}: found shape {shape1} in the checkpoint and {shape2} in the model instantiated"
+ for key, shape1, shape2 in mismatched_keys
+ ]
+ )
+ logger.warning(
+ f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at"
+ f" {pretrained_model_name_or_path} and are newly initialized because the shapes did not"
+ f" match:\n{mismatched_warning}\nYou should probably TRAIN this model on a down-stream task to be"
+ " able to use it for predictions and inference."
+ )
+
+ return model, missing_keys, unexpected_keys, mismatched_keys, error_msgs
+
+ @property
+ def device(self):
+ """
+ `paddle.place`: The device on which the module is (assuming that all the module parameters are on the same
+ device).
+ """
+ return get_parameter_device(self)
+
+ @property
+ def dtype(self) -> paddle.dtype:
+ """
+ `paddle.dtype`: The dtype of the module (assuming that all the module parameters have the same dtype).
+ """
+ return get_parameter_dtype(self)
+
+ def num_parameters(self, only_trainable: bool = False, exclude_embeddings: bool = False) -> int:
+ """
+ Get number of (optionally, trainable or non-embeddings) parameters in the module.
+
+ Args:
+ only_trainable (`bool`, *optional*, defaults to `False`):
+ Whether or not to return only the number of trainable parameters
+
+ exclude_embeddings (`bool`, *optional*, defaults to `False`):
+ Whether or not to return only the number of non-embeddings parameters
+
+ Returns:
+ `int`: The number of parameters.
+ """
+
+ if exclude_embeddings:
+ embedding_param_names = [
+ f"{name}.weight"
+ for name, module_type in self.named_sublayers(include_self=True)
+ if isinstance(module_type, nn.Embedding)
+ ]
+ non_embedding_parameters = [
+ parameter for name, parameter in self.named_parameters() if name not in embedding_param_names
+ ]
+ return sum(p.numel() for p in non_embedding_parameters if not p.stop_gradient or not only_trainable)
+ else:
+ return sum(p.numel() for p in self.parameters() if not p.stop_gradient or not only_trainable)
+
+
+def unwrap_model(model: nn.Layer) -> nn.Layer:
+ """
+ Recursively unwraps a model from potential containers (as used in distributed training).
+
+ Args:
+ model (`nn.Layer`): The model to unwrap.
+ """
+ # since there could be multiple levels of wrapping, unwrap recursively
+ if hasattr(model, "_layers"):
+ return unwrap_model(model._layers)
+ else:
+ return model
+
+
+def _get_model_file(
+ pretrained_model_name_or_path,
+ *,
+ weights_name,
+ subfolder,
+ cache_dir,
+ from_hf_hub,
+):
+ pretrained_model_name_or_path = str(pretrained_model_name_or_path)
+ if os.path.isdir(pretrained_model_name_or_path):
+ if os.path.isfile(os.path.join(pretrained_model_name_or_path, weights_name)):
+ # Load from a PyTorch checkpoint
+ model_file = os.path.join(pretrained_model_name_or_path, weights_name)
+ elif subfolder is not None and os.path.isfile(
+ os.path.join(pretrained_model_name_or_path, subfolder, weights_name)
+ ):
+ model_file = os.path.join(pretrained_model_name_or_path, subfolder, weights_name)
+ else:
+ raise EnvironmentError(
+ f"Error no file named {weights_name} found in directory {pretrained_model_name_or_path}."
+ )
+ return model_file
+ elif from_hf_hub:
+ model_file = hf_hub_download(
+ repo_id=pretrained_model_name_or_path,
+ filename=weights_name,
+ cache_dir=cache_dir,
+ subfolder=subfolder,
+ library_name="PPDiffusers",
+ library_version=__version__,
+ )
+ return model_file
+ else:
+ try:
+ # Load from URL or cache if already cached
+ model_file = ppdiffusers_bos_download(
+ pretrained_model_name_or_path,
+ filename=weights_name,
+ subfolder=subfolder,
+ cache_dir=cache_dir,
+ )
+ except HTTPError as err:
+ raise EnvironmentError(
+ "There was a specific connection error when trying to load" f" {pretrained_model_name_or_path}:\n{err}"
+ )
+ except ValueError:
+ raise EnvironmentError(
+ f"We couldn't connect to '{DOWNLOAD_SERVER}' to load this model, couldn't find it"
+ f" in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a"
+ f" directory containing a file named {weights_name} or"
+ " \nCheckout your internet connection or see how to run the library in"
+ " offline mode at 'https://huggingface.co/docs/diffusers/installation#offline-mode'."
+ )
+ except EnvironmentError:
+ raise EnvironmentError(
+ f"Can't load the model for '{pretrained_model_name_or_path}'. If you were trying to load it from "
+ "'https://huggingface.co/models', make sure you don't have a local directory with the same name. "
+ f"Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a directory "
+ f"containing a file named {weights_name}"
+ )
+ return model_file
diff --git a/ppdiffusers/models/__init__.py b/ppdiffusers/models/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..3208e987f694fabf7569ff9e586bb5eacb0d912f
--- /dev/null
+++ b/ppdiffusers/models/__init__.py
@@ -0,0 +1,25 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+# Copyright 2022 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+# flake8: noqa
+
+from ..utils import is_paddle_available
+
+if is_paddle_available():
+ from .attention import Transformer2DModel
+ from .prior_transformer import PriorTransformer
+ from .unet_1d import UNet1DModel
+ from .unet_2d import UNet2DModel
+ from .unet_2d_condition import UNet2DConditionModel
+ from .vae import AutoencoderKL, VQModel
diff --git a/ppdiffusers/models/__pycache__/__init__.cpython-37.pyc b/ppdiffusers/models/__pycache__/__init__.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..82ede6032d60d4107986e1b757f2067147a05d0d
Binary files /dev/null and b/ppdiffusers/models/__pycache__/__init__.cpython-37.pyc differ
diff --git a/ppdiffusers/models/__pycache__/attention.cpython-37.pyc b/ppdiffusers/models/__pycache__/attention.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..1fb33f3ee0ad5f20a14102e8eb41c2e039e682b4
Binary files /dev/null and b/ppdiffusers/models/__pycache__/attention.cpython-37.pyc differ
diff --git a/ppdiffusers/models/__pycache__/cross_attention.cpython-37.pyc b/ppdiffusers/models/__pycache__/cross_attention.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..644c109e060a4d0cf937141b04f42b7d4ca762ba
Binary files /dev/null and b/ppdiffusers/models/__pycache__/cross_attention.cpython-37.pyc differ
diff --git a/ppdiffusers/models/__pycache__/embeddings.cpython-37.pyc b/ppdiffusers/models/__pycache__/embeddings.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..0618229824aa39c40a7e6613c542120af9b3d2b0
Binary files /dev/null and b/ppdiffusers/models/__pycache__/embeddings.cpython-37.pyc differ
diff --git a/ppdiffusers/models/__pycache__/prior_transformer.cpython-37.pyc b/ppdiffusers/models/__pycache__/prior_transformer.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..d109102d379a5df1792cd631a8e868b0519583b7
Binary files /dev/null and b/ppdiffusers/models/__pycache__/prior_transformer.cpython-37.pyc differ
diff --git a/ppdiffusers/models/__pycache__/resnet.cpython-37.pyc b/ppdiffusers/models/__pycache__/resnet.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..a6e6dc58232c00037e6f8bc06879b8b5687d8bbf
Binary files /dev/null and b/ppdiffusers/models/__pycache__/resnet.cpython-37.pyc differ
diff --git a/ppdiffusers/models/__pycache__/unet_1d.cpython-37.pyc b/ppdiffusers/models/__pycache__/unet_1d.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..a14a865ec7eed26c7defee52ef8de8f9beef1adf
Binary files /dev/null and b/ppdiffusers/models/__pycache__/unet_1d.cpython-37.pyc differ
diff --git a/ppdiffusers/models/__pycache__/unet_1d_blocks.cpython-37.pyc b/ppdiffusers/models/__pycache__/unet_1d_blocks.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..7572966054f61ca97827cbf07c42061e8f9a4173
Binary files /dev/null and b/ppdiffusers/models/__pycache__/unet_1d_blocks.cpython-37.pyc differ
diff --git a/ppdiffusers/models/__pycache__/unet_2d.cpython-37.pyc b/ppdiffusers/models/__pycache__/unet_2d.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..ae55847d42e2c0c0f369b5ba945d465d6c8c31c1
Binary files /dev/null and b/ppdiffusers/models/__pycache__/unet_2d.cpython-37.pyc differ
diff --git a/ppdiffusers/models/__pycache__/unet_2d_blocks.cpython-37.pyc b/ppdiffusers/models/__pycache__/unet_2d_blocks.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..abc14642086473ed61ed48e004eb24cf32460a22
Binary files /dev/null and b/ppdiffusers/models/__pycache__/unet_2d_blocks.cpython-37.pyc differ
diff --git a/ppdiffusers/models/__pycache__/unet_2d_condition.cpython-37.pyc b/ppdiffusers/models/__pycache__/unet_2d_condition.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..cc656239bf24d67add05e31ee9dc21487b4ba1b9
Binary files /dev/null and b/ppdiffusers/models/__pycache__/unet_2d_condition.cpython-37.pyc differ
diff --git a/ppdiffusers/models/__pycache__/vae.cpython-37.pyc b/ppdiffusers/models/__pycache__/vae.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..c83bc88185cbf4ced77b2dc59e50548f0c5b13d8
Binary files /dev/null and b/ppdiffusers/models/__pycache__/vae.cpython-37.pyc differ
diff --git a/ppdiffusers/models/attention.py b/ppdiffusers/models/attention.py
new file mode 100644
index 0000000000000000000000000000000000000000..da1fa843de3f3ed1f1977583e9fb9ce216930e5e
--- /dev/null
+++ b/ppdiffusers/models/attention.py
@@ -0,0 +1,683 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+# Copyright 2022 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+import math
+from dataclasses import dataclass
+from typing import Optional
+
+import paddle
+import paddle.nn.functional as F
+from paddle import nn
+
+from ..configuration_utils import ConfigMixin, register_to_config
+from ..modeling_utils import ModelMixin
+from ..models.embeddings import ImagePositionalEmbeddings
+from ..utils import BaseOutput
+from .cross_attention import CrossAttention
+
+
+@dataclass
+class Transformer2DModelOutput(BaseOutput):
+ """
+ Args:
+ sample (`paddle.Tensor` of shape `(batch_size, num_channels, height, width)` or `(batch size, num_vector_embeds - 1, num_latent_pixels)` if [`Transformer2DModel`] is discrete):
+ Hidden states conditioned on `encoder_hidden_states` input. If discrete, returns probability distributions
+ for the unnoised latent pixels.
+ """
+
+ sample: paddle.Tensor
+
+
+class Transformer2DModel(ModelMixin, ConfigMixin):
+ """
+ Transformer model for image-like data. Takes either discrete (classes of vector embeddings) or continuous (actual
+ embeddings) inputs.
+
+ When input is continuous: First, project the input (aka embedding) and reshape to b, t, d. Then apply standard
+ transformer action. Finally, reshape to image.
+
+ When input is discrete: First, input (classes of latent pixels) is converted to embeddings and has positional
+ embeddings applied, see `ImagePositionalEmbeddings`. Then apply standard transformer action. Finally, predict
+ classes of unnoised image.
+
+ Note that it is assumed one of the input classes is the masked latent pixel. The predicted classes of the unnoised
+ image do not contain a prediction for the masked pixel as the unnoised image cannot be masked.
+
+ Parameters:
+ num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention.
+ attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head.
+ in_channels (`int`, *optional*):
+ Pass if the input is continuous. The number of channels in the input and output.
+ num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use.
+ dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
+ cross_attention_dim (`int`, *optional*): The number of encoder_hidden_states dimensions to use.
+ sample_size (`int`, *optional*): Pass if the input is discrete. The width of the latent images.
+ Note that this is fixed at training time as it is used for learning a number of position embeddings. See
+ `ImagePositionalEmbeddings`.
+ num_vector_embeds (`int`, *optional*):
+ Pass if the input is discrete. The number of classes of the vector embeddings of the latent pixels.
+ Includes the class for the masked latent pixel.
+ activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
+ num_embeds_ada_norm ( `int`, *optional*): Pass if at least one of the norm_layers is `AdaLayerNorm`.
+ The number of diffusion steps used during training. Note that this is fixed at training time as it is used
+ to learn a number of embeddings that are added to the hidden states. During inference, you can denoise for
+ up to but not more than steps than `num_embeds_ada_norm`.
+ attention_bias (`bool`, *optional*):
+ Configure if the TransformerBlocks' attention should contain a bias parameter.
+ """
+
+ @register_to_config
+ def __init__(
+ self,
+ num_attention_heads: int = 16,
+ attention_head_dim: int = 88,
+ in_channels: Optional[int] = None,
+ num_layers: int = 1,
+ dropout: float = 0.0,
+ norm_num_groups: int = 32,
+ cross_attention_dim: Optional[int] = None,
+ attention_bias: bool = False,
+ sample_size: Optional[int] = None,
+ num_vector_embeds: Optional[int] = None,
+ activation_fn: str = "geglu",
+ num_embeds_ada_norm: Optional[int] = None,
+ use_linear_projection: bool = False,
+ only_cross_attention: bool = False,
+ upcast_attention: bool = False,
+ ):
+ super().__init__()
+ self.use_linear_projection = use_linear_projection
+ self.num_attention_heads = num_attention_heads
+ self.attention_head_dim = attention_head_dim
+ self.inner_dim = inner_dim = num_attention_heads * attention_head_dim
+
+ # 1. Transformer2DModel can process both standard continous images of shape `(batch_size, num_channels, width, height)` as well as quantized image embeddings of shape `(batch_size, num_image_vectors)`
+ # Define whether input is continuous or discrete depending on configuration
+ self.is_input_continuous = in_channels is not None
+ self.is_input_vectorized = num_vector_embeds is not None
+
+ if self.is_input_continuous and self.is_input_vectorized:
+ raise ValueError(
+ f"Cannot define both `in_channels`: {in_channels} and `num_vector_embeds`: {num_vector_embeds}. Make"
+ " sure that either `in_channels` or `num_vector_embeds` is None."
+ )
+ elif not self.is_input_continuous and not self.is_input_vectorized:
+ raise ValueError(
+ f"Has to define either `in_channels`: {in_channels} or `num_vector_embeds`: {num_vector_embeds}. Make"
+ " sure that either `in_channels` or `num_vector_embeds` is not None."
+ )
+
+ # 2. Define input layers
+ if self.is_input_continuous:
+ self.in_channels = in_channels
+
+ self.norm = nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, epsilon=1e-6)
+ if use_linear_projection:
+ self.proj_in = nn.Linear(in_channels, inner_dim)
+ else:
+ self.proj_in = nn.Conv2D(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
+ elif self.is_input_vectorized:
+ assert sample_size is not None, "Transformer2DModel over discrete input must provide sample_size"
+ assert num_vector_embeds is not None, "Transformer2DModel over discrete input must provide num_embed"
+
+ self.height = sample_size
+ self.width = sample_size
+ self.num_vector_embeds = num_vector_embeds
+ self.num_latent_pixels = self.height * self.width
+
+ self.latent_image_embedding = ImagePositionalEmbeddings(
+ num_embed=num_vector_embeds, embed_dim=inner_dim, height=self.height, width=self.width
+ )
+
+ # 3. Define transformers blocks
+ self.transformer_blocks = nn.LayerList(
+ [
+ BasicTransformerBlock(
+ inner_dim,
+ num_attention_heads,
+ attention_head_dim,
+ dropout=dropout,
+ cross_attention_dim=cross_attention_dim,
+ activation_fn=activation_fn,
+ num_embeds_ada_norm=num_embeds_ada_norm,
+ attention_bias=attention_bias,
+ only_cross_attention=only_cross_attention,
+ upcast_attention=upcast_attention,
+ )
+ for d in range(num_layers)
+ ]
+ )
+
+ # 4. Define output layers
+ if self.is_input_continuous:
+ if use_linear_projection:
+ self.proj_out = nn.Linear(in_channels, inner_dim)
+ else:
+ self.proj_out = nn.Conv2D(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
+ elif self.is_input_vectorized:
+ self.norm_out = nn.LayerNorm(inner_dim)
+ self.out = nn.Linear(inner_dim, self.num_vector_embeds - 1)
+
+ def forward(
+ self,
+ hidden_states,
+ encoder_hidden_states=None,
+ timestep=None,
+ cross_attention_kwargs=None,
+ return_dict: bool = True,
+ ):
+ """
+ Args:
+ hidden_states ( When discrete, `paddle.Tensor` of shape `(batch size, num latent pixels)`.
+ When continous, `paddle.Tensor` of shape `(batch size, channel, height, width)`): Input
+ hidden_states
+ encoder_hidden_states ( `paddle.Tensor` of shape `(batch size, encoder_hidden_states)`, *optional*):
+ Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
+ self-attention.
+ timestep ( `paddle.Tensor`, *optional*):
+ Optional timestep to be applied as an embedding in AdaLayerNorm's. Used to indicate denoising step.
+ return_dict (`bool`, *optional*, defaults to `True`):
+ Whether or not to return a [`models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple.
+
+ Returns:
+ [`~models.attention.Transformer2DModelOutput`] or `tuple`: [`~models.attention.Transformer2DModelOutput`]
+ if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is the sample
+ tensor.
+ """
+ # 1. Input
+ if self.is_input_continuous:
+ _, _, height, width = hidden_states.shape
+ residual = hidden_states
+ hidden_states = self.norm(hidden_states)
+ if not self.use_linear_projection:
+ hidden_states = self.proj_in(hidden_states)
+ hidden_states = hidden_states.transpose([0, 2, 3, 1]).flatten(1, 2)
+ if self.use_linear_projection:
+ hidden_states = self.proj_in(hidden_states)
+ elif self.is_input_vectorized:
+ hidden_states = self.latent_image_embedding(hidden_states.cast("int64"))
+
+ # 2. Blocks
+ for block in self.transformer_blocks:
+ hidden_states = block(
+ hidden_states,
+ encoder_hidden_states=encoder_hidden_states,
+ timestep=timestep,
+ cross_attention_kwargs=cross_attention_kwargs,
+ )
+
+ # 3. Output
+ if self.is_input_continuous:
+ if self.use_linear_projection:
+ hidden_states = self.proj_out(hidden_states)
+ hidden_states = hidden_states.reshape([-1, height, width, self.inner_dim]).transpose([0, 3, 1, 2])
+ if not self.use_linear_projection:
+ hidden_states = self.proj_out(hidden_states)
+ output = hidden_states + residual
+ elif self.is_input_vectorized:
+ hidden_states = self.norm_out(hidden_states)
+ logits = self.out(hidden_states)
+ # (batch, self.num_vector_embeds - 1, self.num_latent_pixels)
+ logits = logits.transpose([0, 2, 1])
+
+ # log(p(x_0))
+ output = F.log_softmax(logits.cast("float64"), axis=1).cast("float32")
+
+ if not return_dict:
+ return (output,)
+
+ return Transformer2DModelOutput(sample=output)
+
+
+class AttentionBlock(nn.Layer):
+ """
+ An attention block that allows spatial positions to attend to each other. Originally ported from here, but adapted
+ to the N-d case.
+ https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66.
+ Uses three q, k, v linear layers to compute attention.
+
+ Parameters:
+ channels (`int`): The number of channels in the input and output.
+ num_head_channels (`int`, *optional*):
+ The number of channels in each head. If None, then `num_heads` = 1.
+ norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for group norm.
+ rescale_output_factor (`float`, *optional*, defaults to 1.0): The factor to rescale the output by.
+ eps (`float`, *optional*, defaults to 1e-5): The epsilon value to use for group norm.
+ """
+
+ def __init__(
+ self,
+ channels: int,
+ num_head_channels: Optional[int] = None,
+ norm_num_groups: int = 32,
+ rescale_output_factor: float = 1.0,
+ eps: float = 1e-5,
+ ):
+ super().__init__()
+ self.channels = channels
+ self.num_heads = channels // num_head_channels if num_head_channels is not None else 1
+ self.head_dim = self.channels // self.num_heads
+ self.scale = 1 / math.sqrt(self.channels / self.num_heads)
+
+ self.group_norm = nn.GroupNorm(num_channels=channels, num_groups=norm_num_groups, epsilon=eps)
+
+ # define q,k,v as linear layers
+ self.query = nn.Linear(channels, channels)
+ self.key = nn.Linear(channels, channels)
+ self.value = nn.Linear(channels, channels)
+
+ self.rescale_output_factor = rescale_output_factor
+ self.proj_attn = nn.Linear(channels, channels)
+
+ def reshape_heads_to_batch_dim(self, tensor):
+ tensor = tensor.reshape([0, 0, self.num_heads, self.head_dim])
+ tensor = tensor.transpose([0, 2, 1, 3])
+ return tensor
+
+ def reshape_batch_dim_to_heads(self, tensor):
+ tensor = tensor.transpose([0, 2, 1, 3])
+ tensor = tensor.reshape([0, 0, tensor.shape[2] * tensor.shape[3]])
+ return tensor
+
+ def forward(self, hidden_states):
+ residual = hidden_states
+ batch, channel, height, width = hidden_states.shape
+
+ # norm
+ hidden_states = self.group_norm(hidden_states)
+
+ hidden_states = hidden_states.reshape([batch, channel, height * width]).transpose([0, 2, 1])
+
+ # proj to q, k, v
+ query_proj = self.query(hidden_states)
+ key_proj = self.key(hidden_states)
+ value_proj = self.value(hidden_states)
+
+ query_proj = self.reshape_heads_to_batch_dim(query_proj)
+ key_proj = self.reshape_heads_to_batch_dim(key_proj)
+ value_proj = self.reshape_heads_to_batch_dim(value_proj)
+
+ # get scores
+ attention_scores = paddle.matmul(query_proj, key_proj, transpose_y=True) * self.scale
+ attention_probs = F.softmax(attention_scores.cast("float32"), axis=-1).cast(attention_scores.dtype)
+
+ # compute attention output
+ hidden_states = paddle.matmul(attention_probs, value_proj)
+
+ hidden_states = self.reshape_batch_dim_to_heads(hidden_states)
+
+ # compute next hidden_states
+ hidden_states = self.proj_attn(hidden_states)
+ hidden_states = hidden_states.transpose([0, 2, 1]).reshape([batch, channel, height, width])
+
+ # res connect and rescale
+ hidden_states = (hidden_states + residual) / self.rescale_output_factor
+ return hidden_states
+
+
+class BasicTransformerBlock(nn.Layer):
+ r"""
+ A basic Transformer block.
+
+ Parameters:
+ dim (`int`): The number of channels in the input and output.
+ num_attention_heads (`int`): The number of heads to use for multi-head attention.
+ attention_head_dim (`int`): The number of channels in each head.
+ dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
+ cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
+ activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
+ num_embeds_ada_norm (:
+ obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`.
+ attention_bias (:
+ obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter.
+ """
+
+ def __init__(
+ self,
+ dim: int,
+ num_attention_heads: int,
+ attention_head_dim: int,
+ dropout=0.0,
+ cross_attention_dim: Optional[int] = None,
+ activation_fn: str = "geglu",
+ num_embeds_ada_norm: Optional[int] = None,
+ attention_bias: bool = False,
+ only_cross_attention: bool = False,
+ upcast_attention: bool = False,
+ ):
+ super().__init__()
+ self.only_cross_attention = only_cross_attention
+ self.use_ada_layer_norm = num_embeds_ada_norm is not None
+
+ # 1. Self-Attn
+ self.attn1 = CrossAttention(
+ query_dim=dim,
+ heads=num_attention_heads,
+ dim_head=attention_head_dim,
+ dropout=dropout,
+ bias=attention_bias,
+ cross_attention_dim=cross_attention_dim if only_cross_attention else None,
+ upcast_attention=upcast_attention,
+ )
+
+ self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn)
+
+ # 2. Cross-Attn
+ if cross_attention_dim is not None:
+ self.attn2 = CrossAttention(
+ query_dim=dim,
+ cross_attention_dim=cross_attention_dim,
+ heads=num_attention_heads,
+ dim_head=attention_head_dim,
+ dropout=dropout,
+ bias=attention_bias,
+ upcast_attention=upcast_attention,
+ ) # is self-attn if encoder_hidden_states is none
+ else:
+ self.attn2 = None
+
+ self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim)
+
+ if cross_attention_dim is not None:
+ self.norm2 = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim)
+ else:
+ self.norm2 = None
+
+ # 3. Feed-forward
+ self.norm3 = nn.LayerNorm(dim)
+
+ def forward(
+ self,
+ hidden_states,
+ encoder_hidden_states=None,
+ timestep=None,
+ attention_mask=None,
+ cross_attention_kwargs=None,
+ ):
+ # 1. Self-Attention
+ norm_hidden_states = (
+ self.norm1(hidden_states, timestep) if self.use_ada_layer_norm else self.norm1(hidden_states)
+ )
+ cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
+ attn_output = self.attn1(
+ norm_hidden_states,
+ encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
+ attention_mask=attention_mask,
+ **cross_attention_kwargs,
+ )
+ hidden_states = attn_output + hidden_states
+
+ if self.attn2 is not None:
+ # 2. Cross-Attention
+ norm_hidden_states = (
+ self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states)
+ )
+ attn_output = self.attn2(
+ norm_hidden_states,
+ encoder_hidden_states=encoder_hidden_states,
+ attention_mask=attention_mask,
+ **cross_attention_kwargs,
+ )
+ hidden_states = attn_output + hidden_states
+
+ # 3. Feed-forward
+ hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states
+
+ return hidden_states
+
+
+class FeedForward(nn.Layer):
+ r"""
+ A feed-forward layer.
+
+ Parameters:
+ dim (`int`): The number of channels in the input.
+ dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`.
+ mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension.
+ dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
+ activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
+ """
+
+ def __init__(
+ self,
+ dim: int,
+ dim_out: Optional[int] = None,
+ mult: int = 4,
+ dropout: float = 0.0,
+ activation_fn: str = "geglu",
+ ):
+ super().__init__()
+ inner_dim = int(dim * mult)
+ dim_out = dim_out if dim_out is not None else dim
+
+ if activation_fn == "gelu":
+ act_fn = GELU(dim, inner_dim)
+ elif activation_fn == "geglu":
+ act_fn = GEGLU(dim, inner_dim)
+ elif activation_fn == "geglu-approximate":
+ act_fn = ApproximateGELU(dim, inner_dim)
+
+ self.net = nn.LayerList([])
+ # project in
+ self.net.append(act_fn)
+ # project dropout
+ self.net.append(nn.Dropout(dropout))
+ # project out
+ self.net.append(nn.Linear(inner_dim, dim_out))
+
+ def forward(self, hidden_states):
+ for module in self.net:
+ hidden_states = module(hidden_states)
+ return hidden_states
+
+
+class GELU(nn.Layer):
+ r"""
+ GELU activation function
+ """
+
+ def __init__(self, dim_in: int, dim_out: int):
+ super().__init__()
+ self.proj = nn.Linear(dim_in, dim_out)
+
+ def forward(self, hidden_states):
+ hidden_states = self.proj(hidden_states)
+ hidden_states = F.gelu(hidden_states)
+ return hidden_states
+
+
+# feedforward
+class GEGLU(nn.Layer):
+ r"""
+ A variant of the gated linear unit activation function from https://arxiv.org/abs/2002.05202.
+
+ Parameters:
+ dim_in (`int`): The number of channels in the input.
+ dim_out (`int`): The number of channels in the output.
+ """
+
+ def __init__(self, dim_in: int, dim_out: int):
+ super().__init__()
+ self.proj = nn.Linear(dim_in, dim_out * 2)
+
+ def forward(self, hidden_states):
+ hidden_states, gate = self.proj(hidden_states).chunk(2, axis=-1)
+ return hidden_states * F.gelu(gate)
+
+
+class ApproximateGELU(nn.Layer):
+ """
+ The approximate form of Gaussian Error Linear Unit (GELU)
+
+ For more details, see section 2: https://arxiv.org/abs/1606.08415
+ """
+
+ def __init__(self, dim_in: int, dim_out: int):
+ super().__init__()
+ self.proj = nn.Linear(dim_in, dim_out)
+
+ def forward(self, x):
+ x = self.proj(x)
+ return x * F.sigmoid(1.702 * x)
+
+
+class AdaLayerNorm(nn.Layer):
+ """
+ Norm layer modified to incorporate timestep embeddings.
+ """
+
+ def __init__(self, embedding_dim, num_embeddings):
+ super().__init__()
+ self.emb = nn.Embedding(num_embeddings, embedding_dim)
+ self.silu = nn.Silu()
+ self.linear = nn.Linear(embedding_dim, embedding_dim * 2)
+ self.norm = nn.LayerNorm(embedding_dim) # elementwise_affine=False
+
+ def forward(self, x, timestep):
+ emb = self.linear(self.silu(self.emb(timestep)))
+ scale, shift = paddle.chunk(emb, 2, axis=-1)
+ x = self.norm(x) * (1 + scale) + shift
+ return x
+
+
+class DualTransformer2DModel(nn.Layer):
+ """
+ Dual transformer wrapper that combines two `Transformer2DModel`s for mixed inference.
+ Parameters:
+ num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention.
+ attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head.
+ in_channels (`int`, *optional*):
+ Pass if the input is continuous. The number of channels in the input and output.
+ num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use.
+ dropout (`float`, *optional*, defaults to 0.1): The dropout probability to use.
+ cross_attention_dim (`int`, *optional*): The number of encoder_hidden_states dimensions to use.
+ sample_size (`int`, *optional*): Pass if the input is discrete. The width of the latent images.
+ Note that this is fixed at training time as it is used for learning a number of position embeddings. See
+ `ImagePositionalEmbeddings`.
+ num_vector_embeds (`int`, *optional*):
+ Pass if the input is discrete. The number of classes of the vector embeddings of the latent pixels.
+ Includes the class for the masked latent pixel.
+ activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
+ num_embeds_ada_norm ( `int`, *optional*): Pass if at least one of the norm_layers is `AdaLayerNorm`.
+ The number of diffusion steps used during training. Note that this is fixed at training time as it is used
+ to learn a number of embeddings that are added to the hidden states. During inference, you can denoise for
+ up to but not more than steps than `num_embeds_ada_norm`.
+ attention_bias (`bool`, *optional*):
+ Configure if the TransformerBlocks' attention should contain a bias parameter.
+ """
+
+ def __init__(
+ self,
+ num_attention_heads: int = 16,
+ attention_head_dim: int = 88,
+ in_channels: Optional[int] = None,
+ num_layers: int = 1,
+ dropout: float = 0.0,
+ norm_num_groups: int = 32,
+ cross_attention_dim: Optional[int] = None,
+ attention_bias: bool = False,
+ sample_size: Optional[int] = None,
+ num_vector_embeds: Optional[int] = None,
+ activation_fn: str = "geglu",
+ num_embeds_ada_norm: Optional[int] = None,
+ ):
+ super().__init__()
+ self.transformers = nn.LayerList(
+ [
+ Transformer2DModel(
+ num_attention_heads=num_attention_heads,
+ attention_head_dim=attention_head_dim,
+ in_channels=in_channels,
+ num_layers=num_layers,
+ dropout=dropout,
+ norm_num_groups=norm_num_groups,
+ cross_attention_dim=cross_attention_dim,
+ attention_bias=attention_bias,
+ sample_size=sample_size,
+ num_vector_embeds=num_vector_embeds,
+ activation_fn=activation_fn,
+ num_embeds_ada_norm=num_embeds_ada_norm,
+ )
+ for _ in range(2)
+ ]
+ )
+
+ # Variables that can be set by a pipeline:
+
+ # The ratio of transformer1 to transformer2's output states to be combined during inference
+ self.mix_ratio = 0.5
+
+ # The shape of `encoder_hidden_states` is expected to be
+ # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)`
+ self.condition_lengths = [77, 257]
+
+ # Which transformer to use to encode which condition.
+ # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])`
+ self.transformer_index_for_condition = [1, 0]
+
+ def forward(
+ self,
+ hidden_states,
+ encoder_hidden_states,
+ timestep=None,
+ attention_mask=None,
+ cross_attention_kwargs=None,
+ return_dict: bool = True,
+ ):
+ """
+ Args:
+ hidden_states ( When discrete, `torch.LongTensor` of shape `(batch size, num latent pixels)`.
+ When continuous, `torch.FloatTensor` of shape `(batch size, channel, height, width)`): Input
+ hidden_states
+ encoder_hidden_states ( `torch.LongTensor` of shape `(batch size, encoder_hidden_states dim)`, *optional*):
+ Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
+ self-attention.
+ timestep ( `torch.long`, *optional*):
+ Optional timestep to be applied as an embedding in AdaLayerNorm's. Used to indicate denoising step.
+ attention_mask (`torch.FloatTensor`, *optional*):
+ Optional attention mask to be applied in CrossAttention
+ return_dict (`bool`, *optional*, defaults to `True`):
+ Whether or not to return a [`models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple.
+
+ Returns:
+ [`~models.attention.Transformer2DModelOutput`] or `tuple`: [`~models.attention.Transformer2DModelOutput`]
+ if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is the sample
+ tensor.
+ """
+ input_states = hidden_states
+
+ encoded_states = []
+ tokens_start = 0
+ # attention_mask is not used yet
+ for i in range(2):
+ # for each of the two transformers, pass the corresponding condition tokens
+ condition_state = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]]
+ transformer_index = self.transformer_index_for_condition[i]
+ encoded_state = self.transformers[transformer_index](
+ input_states,
+ encoder_hidden_states=condition_state,
+ timestep=timestep,
+ cross_attention_kwargs=cross_attention_kwargs,
+ return_dict=False,
+ )[0]
+ encoded_states.append(encoded_state - input_states)
+ tokens_start += self.condition_lengths[i]
+
+ output_states = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio)
+ output_states = output_states + input_states
+
+ if not return_dict:
+ return (output_states,)
+
+ return Transformer2DModelOutput(sample=output_states)
diff --git a/ppdiffusers/models/cross_attention.py b/ppdiffusers/models/cross_attention.py
new file mode 100644
index 0000000000000000000000000000000000000000..3bda145120f9f8837eda3919d8862a19d132750b
--- /dev/null
+++ b/ppdiffusers/models/cross_attention.py
@@ -0,0 +1,435 @@
+# Copyright 2022 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+from typing import Optional, Union
+
+import paddle
+import paddle.nn as nn
+import paddle.nn.functional as F
+
+from ..initializer import normal_, zeros_
+
+
+class CrossAttention(nn.Layer):
+ r"""
+ A cross attention layer.
+
+ Parameters:
+ query_dim (`int`): The number of channels in the query.
+ cross_attention_dim (`int`, *optional*):
+ The number of channels in the encoder_hidden_states. If not given, defaults to `query_dim`.
+ heads (`int`, *optional*, defaults to 8): The number of heads to use for multi-head attention.
+ dim_head (`int`, *optional*, defaults to 64): The number of channels in each head.
+ dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
+ bias (`bool`, *optional*, defaults to False):
+ Set to `True` for the query, key, and value linear layers to contain a bias parameter.
+ """
+
+ def __init__(
+ self,
+ query_dim: int,
+ cross_attention_dim: Optional[int] = None,
+ heads: int = 8,
+ dim_head: int = 64,
+ dropout: float = 0.0,
+ bias=False,
+ upcast_attention: bool = False,
+ upcast_softmax: bool = False,
+ added_kv_proj_dim: Optional[int] = None,
+ norm_num_groups: Optional[int] = None,
+ processor: Optional["AttnProcessor"] = None,
+ ):
+ super().__init__()
+ inner_dim = dim_head * heads
+ cross_attention_dim = cross_attention_dim if cross_attention_dim is not None else query_dim
+ self.upcast_attention = upcast_attention
+ self.upcast_softmax = upcast_softmax
+
+ self.scale = dim_head**-0.5
+ self.num_heads = heads
+ self.head_dim = inner_dim // heads
+ # for slice_size > 0 the attention score computation
+ # is split across the batch axis to save memory
+ # You can set slice_size with `set_attention_slice`
+ self.sliceable_head_dim = heads
+
+ self.added_kv_proj_dim = added_kv_proj_dim
+
+ if norm_num_groups is not None:
+ self.group_norm = nn.GroupNorm(num_channels=inner_dim, num_groups=norm_num_groups, epsilon=1e-5)
+ else:
+ self.group_norm = None
+
+ self.to_q = nn.Linear(query_dim, inner_dim, bias_attr=bias)
+ self.to_k = nn.Linear(cross_attention_dim, inner_dim, bias_attr=bias)
+ self.to_v = nn.Linear(cross_attention_dim, inner_dim, bias_attr=bias)
+
+ if self.added_kv_proj_dim is not None:
+ self.add_k_proj = nn.Linear(added_kv_proj_dim, cross_attention_dim)
+ self.add_v_proj = nn.Linear(added_kv_proj_dim, cross_attention_dim)
+
+ self.to_out = nn.LayerList([])
+ self.to_out.append(nn.Linear(inner_dim, query_dim))
+ self.to_out.append(nn.Dropout(dropout))
+
+ # set attention processor
+ processor = processor if processor is not None else CrossAttnProcessor()
+ self.set_processor(processor)
+
+ def set_attention_slice(self, slice_size):
+ if slice_size is not None and slice_size > self.sliceable_head_dim:
+ raise ValueError(f"slice_size {slice_size} has to be smaller or equal to {self.sliceable_head_dim}.")
+
+ if slice_size is not None and self.added_kv_proj_dim is not None:
+ processor = SlicedAttnAddedKVProcessor(slice_size)
+ elif slice_size is not None:
+ processor = SlicedAttnProcessor(slice_size)
+ elif self.added_kv_proj_dim is not None:
+ processor = CrossAttnAddedKVProcessor()
+ else:
+ processor = CrossAttnProcessor()
+
+ self.set_processor(processor)
+
+ def set_processor(self, processor: "AttnProcessor"):
+ self.processor = processor
+
+ def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None, **cross_attention_kwargs):
+ # The `CrossAttention` class can call different attention processors / attention functions
+ # here we simply pass along all tensors to the selected processor class
+ # For standard processors that are defined here, `**cross_attention_kwargs` is empty
+ return self.processor(
+ self,
+ hidden_states,
+ encoder_hidden_states=encoder_hidden_states,
+ attention_mask=attention_mask,
+ **cross_attention_kwargs,
+ )
+
+ def batch_to_head_dim(self, tensor):
+ tensor = tensor.transpose([0, 2, 1, 3])
+ tensor = tensor.reshape([0, 0, tensor.shape[2] * tensor.shape[3]])
+ return tensor
+
+ def head_to_batch_dim(self, tensor):
+ tensor = tensor.reshape([0, 0, self.num_heads, self.head_dim])
+ tensor = tensor.transpose([0, 2, 1, 3])
+ return tensor
+
+ def get_attention_scores(self, query, key, attention_mask=None):
+ if self.upcast_attention:
+ query = query.cast("float32")
+ key = key.cast("float32")
+
+ attention_scores = paddle.matmul(query, key, transpose_y=True) * self.scale
+
+ if attention_mask is not None:
+ attention_scores = attention_scores + attention_mask
+
+ if self.upcast_softmax:
+ attention_scores = attention_scores.cast("float32")
+
+ attention_probs = F.softmax(attention_scores, axis=-1)
+ if self.upcast_softmax:
+ attention_probs = attention_probs.cast(query.dtype)
+
+ return attention_probs
+
+ def prepare_attention_mask(self, attention_mask, target_length):
+ if attention_mask is None:
+ return attention_mask
+
+ if attention_mask.shape[-1] != target_length:
+ attention_mask = F.pad(attention_mask, (0, target_length), value=0.0, data_format="NCL")
+ attention_mask = attention_mask.repeat_interleave(self.num_heads, axis=0)
+ return attention_mask
+
+
+class CrossAttnProcessor:
+ def __call__(self, attn: CrossAttention, hidden_states, encoder_hidden_states=None, attention_mask=None):
+ batch_size, sequence_length, _ = hidden_states.shape
+ attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length)
+ attention_mask = (
+ attention_mask.reshape([batch_size, attn.num_heads, -1, attention_mask.shape[-1]])
+ if attention_mask is not None
+ else None
+ )
+
+ query = attn.to_q(hidden_states)
+ query = attn.head_to_batch_dim(query)
+
+ encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states
+ key = attn.to_k(encoder_hidden_states)
+ value = attn.to_v(encoder_hidden_states)
+ key = attn.head_to_batch_dim(key)
+ value = attn.head_to_batch_dim(value)
+
+ attention_probs = attn.get_attention_scores(query, key, attention_mask)
+ hidden_states = paddle.matmul(attention_probs, value)
+ hidden_states = attn.batch_to_head_dim(hidden_states)
+
+ # linear proj
+ hidden_states = attn.to_out[0](hidden_states)
+ # dropout
+ hidden_states = attn.to_out[1](hidden_states)
+
+ return hidden_states
+
+
+class LoRALinearLayer(nn.Layer):
+ def __init__(self, in_features, out_features, rank=4):
+ super().__init__()
+
+ if rank > min(in_features, out_features):
+ raise ValueError(f"LoRA rank {rank} must be less or equal than {min(in_features, out_features)}")
+
+ self.down = nn.Linear(in_features, rank, bias_attr=False)
+ self.up = nn.Linear(rank, out_features, bias_attr=False)
+ self.scale = 1.0
+
+ normal_(self.down.weight, std=1 / rank)
+ zeros_(self.up.weight)
+
+ def forward(self, hidden_states):
+ orig_dtype = hidden_states.dtype
+ dtype = self.down.weight.dtype
+
+ down_hidden_states = self.down(hidden_states.cast(dtype))
+ up_hidden_states = self.up(down_hidden_states)
+
+ return up_hidden_states.cast(orig_dtype)
+
+
+class LoRACrossAttnProcessor(nn.Layer):
+ def __init__(self, hidden_size, cross_attention_dim=None, rank=4):
+ super().__init__()
+
+ self.hidden_size = hidden_size
+ self.cross_attention_dim = cross_attention_dim
+ self.rank = rank
+
+ self.to_q_lora = LoRALinearLayer(hidden_size, hidden_size, rank)
+ self.to_k_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size, rank)
+ self.to_v_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size, rank)
+ self.to_out_lora = LoRALinearLayer(hidden_size, hidden_size, rank)
+
+ def __call__(
+ self, attn: CrossAttention, hidden_states, encoder_hidden_states=None, attention_mask=None, scale=1.0
+ ):
+ batch_size, sequence_length, _ = hidden_states.shape
+ attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length)
+ attention_mask = (
+ attention_mask.reshape([batch_size, attn.num_heads, -1, attention_mask.shape[-1]])
+ if attention_mask is not None
+ else None
+ )
+
+ query = attn.to_q(hidden_states) + scale * self.to_q_lora(hidden_states)
+ query = attn.head_to_batch_dim(query)
+
+ encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states
+
+ key = attn.to_k(encoder_hidden_states) + scale * self.to_k_lora(encoder_hidden_states)
+ value = attn.to_v(encoder_hidden_states) + scale * self.to_v_lora(encoder_hidden_states)
+
+ key = attn.head_to_batch_dim(key)
+ value = attn.head_to_batch_dim(value)
+
+ attention_probs = attn.get_attention_scores(query, key, attention_mask)
+ hidden_states = paddle.matmul(attention_probs, value)
+ hidden_states = attn.batch_to_head_dim(hidden_states)
+
+ # linear proj
+ hidden_states = attn.to_out[0](hidden_states) + scale * self.to_out_lora(hidden_states)
+ # dropout
+ hidden_states = attn.to_out[1](hidden_states)
+
+ return hidden_states
+
+
+class CrossAttnAddedKVProcessor:
+ def __call__(self, attn: CrossAttention, hidden_states, encoder_hidden_states=None, attention_mask=None):
+ residual = hidden_states
+ hidden_states = hidden_states.reshape([hidden_states.shape[0], hidden_states.shape[1], -1]).transpose(
+ [0, 2, 1]
+ )
+ batch_size, sequence_length, _ = hidden_states.shape
+ encoder_hidden_states = encoder_hidden_states.transpose([0, 2, 1])
+
+ attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length)
+ attention_mask = (
+ attention_mask.reshape([batch_size, attn.num_heads, -1, attention_mask.shape[-1]])
+ if attention_mask is not None
+ else None
+ )
+
+ hidden_states = attn.group_norm(hidden_states.transpose([0, 2, 1])).transpose([0, 2, 1])
+
+ query = attn.to_q(hidden_states)
+ query = attn.head_to_batch_dim(query)
+
+ key = attn.to_k(hidden_states)
+ value = attn.to_v(hidden_states)
+ key = attn.head_to_batch_dim(key)
+ value = attn.head_to_batch_dim(value)
+
+ encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
+ encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)
+ encoder_hidden_states_key_proj = attn.head_to_batch_dim(encoder_hidden_states_key_proj)
+ encoder_hidden_states_value_proj = attn.head_to_batch_dim(encoder_hidden_states_value_proj)
+
+ key = paddle.concat([encoder_hidden_states_key_proj, key], axis=2)
+ value = paddle.concat([encoder_hidden_states_value_proj, value], axis=2)
+
+ attention_probs = attn.get_attention_scores(query, key, attention_mask)
+ hidden_states = paddle.matmul(attention_probs, value)
+ hidden_states = attn.batch_to_head_dim(hidden_states)
+
+ # linear proj
+ hidden_states = attn.to_out[0](hidden_states)
+ # dropout
+ hidden_states = attn.to_out[1](hidden_states)
+
+ hidden_states = hidden_states.transpose([0, 2, 1]).reshape(residual.shape)
+ hidden_states = hidden_states + residual
+
+ return hidden_states
+
+
+class SlicedAttnProcessor:
+ def __init__(self, slice_size):
+ self.slice_size = slice_size
+
+ def __call__(self, attn: CrossAttention, hidden_states, encoder_hidden_states=None, attention_mask=None):
+ batch_size, sequence_length, _ = hidden_states.shape
+
+ attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length)
+
+ query = attn.to_q(hidden_states)
+ query = attn.head_to_batch_dim(query)
+
+ encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states
+ key = attn.to_k(encoder_hidden_states)
+ value = attn.to_v(encoder_hidden_states)
+ key = attn.head_to_batch_dim(key)
+ value = attn.head_to_batch_dim(value)
+
+ query = query.flatten(0, 1)
+ key = key.flatten(0, 1)
+ value = value.flatten(0, 1)
+
+ batch_size_attention = query.shape[0]
+ hidden_states = paddle.zeros((batch_size_attention, sequence_length, attn.head_dim), dtype=query.dtype)
+
+ for i in range(hidden_states.shape[0] // self.slice_size):
+ start_idx = i * self.slice_size
+ end_idx = (i + 1) * self.slice_size
+
+ query_slice = query[start_idx:end_idx]
+ key_slice = key[start_idx:end_idx]
+ attn_mask_slice = attention_mask[start_idx:end_idx] if attention_mask is not None else None
+
+ attn_slice = attn.get_attention_scores(query_slice, key_slice, attn_mask_slice)
+
+ attn_slice = paddle.matmul(attn_slice, value[start_idx:end_idx])
+
+ hidden_states[start_idx:end_idx] = attn_slice
+
+ # reshape back to [bs, num_heads, seqlen, head_dim]
+ hidden_states = hidden_states.reshape([-1, attn.num_heads, sequence_length, attn.head_dim])
+ # reshape hidden_states
+ hidden_states = attn.batch_to_head_dim(hidden_states)
+
+ # linear proj
+ hidden_states = attn.to_out[0](hidden_states)
+ # dropout
+ hidden_states = attn.to_out[1](hidden_states)
+
+ return hidden_states
+
+
+class SlicedAttnAddedKVProcessor:
+ def __init__(self, slice_size):
+ self.slice_size = slice_size
+
+ def __call__(self, attn: "CrossAttention", hidden_states, encoder_hidden_states=None, attention_mask=None):
+ residual = hidden_states
+ hidden_states = hidden_states.reshape([hidden_states.shape[0], hidden_states.shape[1], -1]).transpose(
+ [0, 2, 1]
+ )
+ encoder_hidden_states = encoder_hidden_states.transpose([0, 2, 1])
+
+ batch_size, sequence_length, _ = hidden_states.shape
+
+ attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length)
+
+ hidden_states = attn.group_norm(hidden_states.transpose([0, 2, 1])).transpose([0, 2, 1])
+
+ query = attn.to_q(hidden_states)
+ query = attn.head_to_batch_dim(query)
+
+ key = attn.to_k(hidden_states)
+ value = attn.to_v(hidden_states)
+ encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
+ encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)
+
+ key = attn.head_to_batch_dim(key)
+ value = attn.head_to_batch_dim(value)
+ encoder_hidden_states_key_proj = attn.head_to_batch_dim(encoder_hidden_states_key_proj)
+ encoder_hidden_states_value_proj = attn.head_to_batch_dim(encoder_hidden_states_value_proj)
+
+ key = paddle.concat([encoder_hidden_states_key_proj, key], axis=2)
+ value = paddle.concat([encoder_hidden_states_value_proj, value], axis=2)
+
+ query = query.flatten(0, 1)
+ key = key.flatten(0, 1)
+ value = value.flatten(0, 1)
+
+ batch_size_attention = query.shape[0]
+ hidden_states = paddle.zeros((batch_size_attention, sequence_length, attn.head_dim), dtype=query.dtype)
+ for i in range(hidden_states.shape[0] // self.slice_size):
+ start_idx = i * self.slice_size
+ end_idx = (i + 1) * self.slice_size
+
+ query_slice = query[start_idx:end_idx]
+ key_slice = key[start_idx:end_idx]
+ attn_mask_slice = attention_mask[start_idx:end_idx] if attention_mask is not None else None
+
+ attn_slice = attn.get_attention_scores(query_slice, key_slice, attn_mask_slice)
+
+ attn_slice = paddle.matmul(attn_slice, value[start_idx:end_idx])
+
+ hidden_states[start_idx:end_idx] = attn_slice
+
+ # reshape back to [bs, num_heads, seqlen, head_dim]
+ hidden_states = hidden_states.reshape([-1, attn.num_heads, sequence_length, attn.head_dim])
+ # reshape hidden_states
+ hidden_states = attn.batch_to_head_dim(hidden_states)
+
+ # linear proj
+ hidden_states = attn.to_out[0](hidden_states)
+ # dropout
+ hidden_states = attn.to_out[1](hidden_states)
+
+ hidden_states = hidden_states.transpose([0, 2, 1]).reshape(residual.shape)
+ hidden_states = hidden_states + residual
+
+ return hidden_states
+
+
+AttnProcessor = Union[
+ CrossAttnProcessor,
+ SlicedAttnProcessor,
+ CrossAttnAddedKVProcessor,
+ SlicedAttnAddedKVProcessor,
+]
diff --git a/ppdiffusers/models/ema.py b/ppdiffusers/models/ema.py
new file mode 100644
index 0000000000000000000000000000000000000000..f5ce3ad6407a106cc5f9f863af51ef7977c03e23
--- /dev/null
+++ b/ppdiffusers/models/ema.py
@@ -0,0 +1,103 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+# Copyright 2022 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import paddle
+from paddle import nn
+
+
+class LitEma(nn.Layer):
+ """
+ Exponential Moving Average (EMA) of model updates
+
+ Parameters:
+ model: The model architecture for apply EMA.
+ decay: The exponential decay. Default 0.9999.
+ use_num_updates: Whether to use number of updates when computing
+ averages.
+ """
+
+ def __init__(self, model, decay=0.9999, use_num_upates=True):
+ super().__init__()
+ if decay < 0.0 or decay > 1.0:
+ raise ValueError("Decay must be between 0 and 1")
+
+ self.m_name2s_name = {}
+ self.register_buffer("decay", paddle.to_tensor(decay, dtype=paddle.float32))
+ self.register_buffer(
+ "num_updates",
+ paddle.to_tensor(0, dtype=paddle.int64) if use_num_upates else paddle.to_tensor(-1, dtype=paddle.int64),
+ )
+
+ for name, p in model.named_parameters():
+ if not p.stop_gradient:
+ # remove as '.'-character is not allowed in buffers
+ s_name = name.replace(".", "")
+ self.m_name2s_name.update({name: s_name})
+ self.register_buffer(s_name, p.clone().detach())
+
+ self.collected_params = []
+
+ def forward(self, model):
+ decay = self.decay
+
+ if self.num_updates >= 0:
+ self.num_updates += 1
+ decay = min(self.decay, (1 + self.num_updates) / (10 + self.num_updates))
+
+ one_minus_decay = 1.0 - decay
+
+ with paddle.no_grad():
+ m_param = dict(model.named_parameters())
+ shadow_params = dict(self.named_buffers())
+
+ for key in m_param:
+ if not m_param[key].stop_gradient:
+ sname = self.m_name2s_name[key]
+ shadow_params[sname].scale_(decay)
+ shadow_params[sname].add_(m_param[key] * one_minus_decay)
+ else:
+ assert key not in self.m_name2s_name
+
+ def copy_to(self, model):
+ m_param = dict(model.named_parameters())
+ shadow_params = dict(self.named_buffers())
+ for key in m_param:
+ if not m_param[key].stop_gradient:
+ m_param[key].copy_(shadow_params[self.m_name2s_name[key]], True)
+ else:
+ assert key not in self.m_name2s_name
+
+ def store(self, parameters):
+ """
+ Save the current parameters for restoring later.
+ Args:
+ parameters: Iterable of `EagerParamBase`; the parameters to be
+ temporarily stored.
+ """
+ self.collected_params = [param.clone() for param in parameters]
+
+ def restore(self, parameters):
+ """
+ Restore the parameters stored with the `store` method.
+ Useful to validate the model with EMA parameters without affecting the
+ original optimization process. Store the parameters before the
+ `copy_to` method. After validation (or model saving), use this to
+ restore the former parameters.
+ Args:
+ parameters: Iterable of `EagerParamBase`; the parameters to be
+ updated with the stored parameters.
+ """
+ for c_param, param in zip(self.collected_params, parameters):
+ param.copy_(c_param, True)
diff --git a/ppdiffusers/models/embeddings.py b/ppdiffusers/models/embeddings.py
new file mode 100644
index 0000000000000000000000000000000000000000..a7b5c91ca515c0b6d89541d266290f0cf46e0609
--- /dev/null
+++ b/ppdiffusers/models/embeddings.py
@@ -0,0 +1,199 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+# Copyright 2022 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+import math
+
+import numpy as np
+import paddle
+from paddle import nn
+
+
+def get_timestep_embedding(
+ timesteps: paddle.Tensor,
+ embedding_dim: int,
+ flip_sin_to_cos: bool = False,
+ downscale_freq_shift: float = 1,
+ scale: float = 1,
+ max_period: int = 10000,
+):
+ """
+ This matches the implementation in Denoising Diffusion Probabilistic Models: Create sinusoidal timestep embeddings.
+
+ :param timesteps: a 1-D Tensor of N indices, one per batch element.
+ These may be fractional.
+ :param embedding_dim: the dimension of the output. :param max_period: controls the minimum frequency of the
+ embeddings. :return: an [N x dim] Tensor of positional embeddings.
+ """
+ assert len(timesteps.shape) == 1, "Timesteps should be a 1d-array"
+
+ half_dim = embedding_dim // 2
+ exponent = -math.log(max_period) * paddle.arange(start=0, end=half_dim, dtype="float32")
+ exponent = exponent / (half_dim - downscale_freq_shift)
+
+ emb = paddle.exp(exponent)
+ emb = timesteps[:, None].cast("float32") * emb[None, :]
+
+ # scale embeddings
+ emb = scale * emb
+
+ # concat sine and cosine embeddings
+ emb = paddle.concat([paddle.sin(emb), paddle.cos(emb)], axis=-1)
+
+ # flip sine and cosine embeddings
+ if flip_sin_to_cos:
+ emb = paddle.concat([emb[:, half_dim:], emb[:, :half_dim]], axis=-1)
+
+ # zero pad
+ if embedding_dim % 2 == 1:
+ emb = paddle.concat(emb, paddle.zeros([emb.shape[0], 1]), axis=-1)
+ return emb
+
+
+class TimestepEmbedding(nn.Layer):
+ def __init__(self, in_channels: int, time_embed_dim: int, act_fn: str = "silu", out_dim: int = None):
+ super().__init__()
+
+ self.linear_1 = nn.Linear(in_channels, time_embed_dim)
+ self.act = None
+ if act_fn == "silu":
+ self.act = nn.Silu()
+ elif act_fn == "mish":
+ self.act = nn.Mish()
+
+ if out_dim is not None:
+ time_embed_dim_out = out_dim
+ else:
+ time_embed_dim_out = time_embed_dim
+ self.linear_2 = nn.Linear(time_embed_dim, time_embed_dim_out)
+
+ def forward(self, sample):
+ sample = self.linear_1(sample)
+
+ if self.act is not None:
+ sample = self.act(sample)
+
+ sample = self.linear_2(sample)
+ return sample
+
+
+class Timesteps(nn.Layer):
+ def __init__(self, num_channels: int, flip_sin_to_cos: bool, downscale_freq_shift: float):
+ super().__init__()
+ self.num_channels = num_channels
+ self.flip_sin_to_cos = flip_sin_to_cos
+ self.downscale_freq_shift = downscale_freq_shift
+
+ def forward(self, timesteps):
+ t_emb = get_timestep_embedding(
+ timesteps,
+ self.num_channels,
+ flip_sin_to_cos=self.flip_sin_to_cos,
+ downscale_freq_shift=self.downscale_freq_shift,
+ )
+ return t_emb
+
+
+class GaussianFourierProjection(nn.Layer):
+ """Gaussian Fourier embeddings for noise levels."""
+
+ def __init__(
+ self, embedding_size: int = 256, scale: float = 1.0, set_W_to_weight=True, log=True, flip_sin_to_cos=False
+ ):
+ super().__init__()
+ self.register_buffer("weight", paddle.randn((embedding_size,)) * scale)
+ self.log = log
+ self.flip_sin_to_cos = flip_sin_to_cos
+
+ if set_W_to_weight:
+ # to delete later
+ self.register_buffer("W", paddle.randn((embedding_size,)) * scale)
+
+ self.weight = self.W
+
+ def forward(self, x):
+ if self.log:
+ x = paddle.log(x.cast(self.weight.dtype))
+
+ x_proj = x[:, None] * self.weight[None, :] * 2 * np.pi
+
+ if self.flip_sin_to_cos:
+ out = paddle.concat([paddle.cos(x_proj), paddle.sin(x_proj)], axis=-1)
+ else:
+ out = paddle.concat([paddle.sin(x_proj), paddle.cos(x_proj)], axis=-1)
+ return out
+
+
+class ImagePositionalEmbeddings(nn.Layer):
+ """
+ Converts latent image classes into vector embeddings. Sums the vector embeddings with positional embeddings for the
+ height and width of the latent space.
+
+ For more details, see figure 10 of the dall-e paper: https://arxiv.org/abs/2102.12092
+
+ For VQ-diffusion:
+
+ Output vector embeddings are used as input for the transformer.
+
+ Note that the vector embeddings for the transformer are different than the vector embeddings from the VQVAE.
+
+ Args:
+ num_embed (`int`):
+ Number of embeddings for the latent pixels embeddings.
+ height (`int`):
+ Height of the latent image i.e. the number of height embeddings.
+ width (`int`):
+ Width of the latent image i.e. the number of width embeddings.
+ embed_dim (`int`):
+ Dimension of the produced vector embeddings. Used for the latent pixel, height, and width embeddings.
+ """
+
+ def __init__(
+ self,
+ num_embed: int,
+ height: int,
+ width: int,
+ embed_dim: int,
+ ):
+ super().__init__()
+
+ self.height = height
+ self.width = width
+ self.num_embed = num_embed
+ self.embed_dim = embed_dim
+
+ self.emb = nn.Embedding(self.num_embed, embed_dim)
+ self.height_emb = nn.Embedding(self.height, embed_dim)
+ self.width_emb = nn.Embedding(self.width, embed_dim)
+
+ def forward(self, index):
+ emb = self.emb(index)
+
+ height_emb = self.height_emb(paddle.arange(self.height).reshape([1, self.height]))
+
+ # 1 x H x D -> 1 x H x 1 x D
+ height_emb = height_emb.unsqueeze(2)
+
+ width_emb = self.width_emb(paddle.arange(self.width).reshape([1, self.width]))
+
+ # 1 x W x D -> 1 x 1 x W x D
+ width_emb = width_emb.unsqueeze(1)
+
+ pos_emb = height_emb + width_emb
+
+ # 1 x H x W x D -> 1 x L xD
+ pos_emb = pos_emb.reshape([1, self.height * self.width, -1])
+
+ emb = emb + pos_emb[:, : emb.shape[1], :]
+
+ return emb
diff --git a/ppdiffusers/models/prior_transformer.py b/ppdiffusers/models/prior_transformer.py
new file mode 100644
index 0000000000000000000000000000000000000000..8f28c72050dab88e85dfabc37dead90389a2df2f
--- /dev/null
+++ b/ppdiffusers/models/prior_transformer.py
@@ -0,0 +1,220 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from dataclasses import dataclass
+from typing import Optional, Union
+
+import paddle
+import paddle.nn as nn
+import paddle.nn.functional as F
+
+from ..configuration_utils import ConfigMixin, register_to_config
+from ..modeling_utils import ModelMixin
+from ..utils import BaseOutput
+from .attention import BasicTransformerBlock
+from .embeddings import TimestepEmbedding, Timesteps
+
+NEG_INF = -1e4
+
+
+@dataclass
+class PriorTransformerOutput(BaseOutput):
+ """
+ Args:
+ predicted_image_embedding (`paddle.Tensor` of shape `(batch_size, embedding_dim)`):
+ The predicted CLIP image embedding conditioned on the CLIP text embedding input.
+ """
+
+ predicted_image_embedding: paddle.Tensor
+
+
+class PriorTransformer(ModelMixin, ConfigMixin):
+ """
+ The prior transformer from unCLIP is used to predict CLIP image embeddings from CLIP text embeddings. Note that the
+ transformer predicts the image embeddings through a denoising diffusion process.
+
+ This model inherits from [`ModelMixin`]. Check the superclass documentation for the generic methods the library
+ implements for all the models (such as downloading or saving, etc.)
+
+ For more details, see the original paper: https://arxiv.org/abs/2204.06125
+
+ Parameters:
+ num_attention_heads (`int`, *optional*, defaults to 32): The number of heads to use for multi-head attention.
+ attention_head_dim (`int`, *optional*, defaults to 64): The number of channels in each head.
+ num_layers (`int`, *optional*, defaults to 20): The number of layers of Transformer blocks to use.
+ embedding_dim (`int`, *optional*, defaults to 768): The dimension of the CLIP embeddings. Note that CLIP
+ image embeddings and text embeddings are both the same dimension.
+ num_embeddings (`int`, *optional*, defaults to 77): The max number of clip embeddings allowed. I.e. the
+ length of the prompt after it has been tokenized.
+ additional_embeddings (`int`, *optional*, defaults to 4): The number of additional tokens appended to the
+ projected hidden_states. The actual length of the used hidden_states is `num_embeddings +
+ additional_embeddings`.
+ dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
+
+ """
+
+ @register_to_config
+ def __init__(
+ self,
+ num_attention_heads: int = 32,
+ attention_head_dim: int = 64,
+ num_layers: int = 20,
+ embedding_dim: int = 768,
+ num_embeddings=77,
+ additional_embeddings=4,
+ dropout: float = 0.0,
+ ):
+ super().__init__()
+ self.num_attention_heads = num_attention_heads
+ self.attention_head_dim = attention_head_dim
+ inner_dim = num_attention_heads * attention_head_dim
+ self.additional_embeddings = additional_embeddings
+
+ self.time_proj = Timesteps(inner_dim, True, 0)
+ self.time_embedding = TimestepEmbedding(inner_dim, inner_dim)
+
+ self.proj_in = nn.Linear(embedding_dim, inner_dim)
+
+ self.embedding_proj = nn.Linear(embedding_dim, inner_dim)
+ self.encoder_hidden_states_proj = nn.Linear(embedding_dim, inner_dim)
+
+ self.positional_embedding = self.create_parameter(
+ (1, num_embeddings + additional_embeddings, inner_dim),
+ dtype=paddle.get_default_dtype(),
+ default_initializer=nn.initializer.Constant(0.0),
+ )
+
+ self.prd_embedding = self.create_parameter(
+ (1, 1, inner_dim), dtype=paddle.get_default_dtype(), default_initializer=nn.initializer.Constant(0.0)
+ )
+
+ self.transformer_blocks = nn.LayerList(
+ [
+ BasicTransformerBlock(
+ inner_dim,
+ num_attention_heads,
+ attention_head_dim,
+ dropout=dropout,
+ activation_fn="gelu",
+ attention_bias=True,
+ )
+ for d in range(num_layers)
+ ]
+ )
+
+ self.norm_out = nn.LayerNorm(inner_dim)
+ self.proj_to_clip_embeddings = nn.Linear(inner_dim, embedding_dim)
+
+ causal_attention_mask = paddle.triu(
+ paddle.full([num_embeddings + additional_embeddings, num_embeddings + additional_embeddings], NEG_INF), 1
+ )
+ causal_attention_mask = causal_attention_mask.unsqueeze(0)
+ self.register_buffer("causal_attention_mask", causal_attention_mask, persistable=False)
+
+ self.clip_mean = self.create_parameter(
+ (1, embedding_dim), dtype=paddle.get_default_dtype(), default_initializer=nn.initializer.Constant(0.0)
+ )
+ self.clip_std = self.create_parameter(
+ (1, embedding_dim), dtype=paddle.get_default_dtype(), default_initializer=nn.initializer.Constant(0.0)
+ )
+
+ def forward(
+ self,
+ hidden_states,
+ timestep: Union[paddle.Tensor, float, int],
+ proj_embedding: paddle.Tensor,
+ encoder_hidden_states: paddle.Tensor,
+ attention_mask: Optional[paddle.Tensor] = None,
+ return_dict: bool = True,
+ ):
+ """
+ Args:
+ hidden_states (`paddle.Tensor` of shape `(batch_size, embedding_dim)`):
+ x_t, the currently predicted image embeddings.
+ timestep (`paddle.Tensor`):
+ Current denoising step.
+ proj_embedding (`paddle.Tensor` of shape `(batch_size, embedding_dim)`):
+ Projected embedding vector the denoising process is conditioned on.
+ encoder_hidden_states (`paddle.Tensor` of shape `(batch_size, num_embeddings, embedding_dim)`):
+ Hidden states of the text embeddings the denoising process is conditioned on.
+ attention_mask (`paddle.Tensor` of shape `(batch_size, num_embeddings)`):
+ Text mask for the text embeddings.
+ return_dict (`bool`, *optional*, defaults to `True`):
+ Whether or not to return a [`models.prior_transformer.PriorTransformerOutput`] instead of a plain
+ tuple.
+
+ Returns:
+ [`~models.prior_transformer.PriorTransformerOutput`] or `tuple`:
+ [`~models.prior_transformer.PriorTransformerOutput`] if `return_dict` is True, otherwise a `tuple`. When
+ returning a tuple, the first element is the sample tensor.
+ """
+ batch_size = hidden_states.shape[0]
+
+ timesteps = timestep
+ if not paddle.is_tensor(timesteps):
+ timesteps = paddle.to_tensor([timesteps], dtype=paddle.int64)
+ elif paddle.is_tensor(timesteps) and len(timesteps.shape) == 0:
+ timesteps = timesteps[None]
+ # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
+ timesteps = timesteps * paddle.ones((batch_size,), dtype=timesteps.dtype)
+
+ timesteps_projected = self.time_proj(timesteps)
+
+ # timesteps does not contain any weights and will always return f32 tensors
+ # but time_embedding might be fp16, so we need to cast here.
+ timesteps_projected = timesteps_projected.cast(dtype=self.dtype)
+ time_embeddings = self.time_embedding(timesteps_projected)
+
+ proj_embeddings = self.embedding_proj(proj_embedding)
+ encoder_hidden_states = self.encoder_hidden_states_proj(encoder_hidden_states)
+ hidden_states = self.proj_in(hidden_states)
+ prd_embedding = self.prd_embedding.cast(hidden_states.dtype).expand([batch_size, -1, -1])
+ positional_embeddings = self.positional_embedding.cast(hidden_states.dtype)
+
+ hidden_states = paddle.concat(
+ [
+ encoder_hidden_states,
+ proj_embeddings[:, None, :],
+ time_embeddings[:, None, :],
+ hidden_states[:, None, :],
+ prd_embedding,
+ ],
+ axis=1,
+ )
+
+ hidden_states = hidden_states + positional_embeddings
+
+ if attention_mask is not None:
+ attention_mask = (1 - attention_mask.cast(hidden_states.dtype)) * -10000.0
+ attention_mask = F.pad(
+ attention_mask.unsqueeze(0), (0, self.additional_embeddings), value=0.0, data_format="NCL"
+ ).squeeze(0)
+ attention_mask = (attention_mask[:, None, :] + self.causal_attention_mask).cast(hidden_states.dtype)
+ attention_mask = attention_mask.repeat_interleave(self.config.num_attention_heads, axis=0)
+
+ for block in self.transformer_blocks:
+ hidden_states = block(hidden_states, attention_mask=attention_mask)
+
+ hidden_states = self.norm_out(hidden_states)
+ hidden_states = hidden_states[:, -1]
+ predicted_image_embedding = self.proj_to_clip_embeddings(hidden_states)
+
+ if not return_dict:
+ return (predicted_image_embedding,)
+
+ return PriorTransformerOutput(predicted_image_embedding=predicted_image_embedding)
+
+ def post_process_latents(self, prior_latents):
+ prior_latents = (prior_latents * self.clip_std) + self.clip_mean
+ return prior_latents
diff --git a/ppdiffusers/models/resnet.py b/ppdiffusers/models/resnet.py
new file mode 100644
index 0000000000000000000000000000000000000000..8972e0c384ecbe87fed40bb06f139a3f06d1f57d
--- /dev/null
+++ b/ppdiffusers/models/resnet.py
@@ -0,0 +1,716 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+# Copyright 2022 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from functools import partial
+
+import paddle
+import paddle.nn as nn
+import paddle.nn.functional as F
+
+
+class Upsample1D(nn.Layer):
+ """
+ An upsampling layer with an optional convolution.
+
+ Parameters:
+ channels: channels in the inputs and outputs.
+ use_conv: a bool determining if a convolution is applied.
+ use_conv_transpose:
+ out_channels:
+ """
+
+ def __init__(self, channels, use_conv=False, use_conv_transpose=False, out_channels=None, name="conv"):
+ super().__init__()
+ self.channels = channels
+ self.out_channels = out_channels or channels
+ self.use_conv = use_conv
+ self.use_conv_transpose = use_conv_transpose
+ self.name = name
+
+ self.conv = None
+ if use_conv_transpose:
+ self.conv = nn.Conv1DTranspose(channels, self.out_channels, 4, 2, 1)
+ elif use_conv:
+ self.conv = nn.Conv1D(self.channels, self.out_channels, 3, padding=1)
+
+ def forward(self, x):
+ assert x.shape[1] == self.channels
+ if self.use_conv_transpose:
+ return self.conv(x)
+
+ x = F.interpolate(x, scale_factor=2.0, mode="nearest")
+
+ if self.use_conv:
+ x = self.conv(x)
+
+ return x
+
+
+class Downsample1D(nn.Layer):
+ """
+ A downsampling layer with an optional convolution.
+
+ Parameters:
+ channels: channels in the inputs and outputs.
+ use_conv: a bool determining if a convolution is applied.
+ out_channels:
+ padding:
+ """
+
+ def __init__(self, channels, use_conv=False, out_channels=None, padding=1, name="conv"):
+ super().__init__()
+ self.channels = channels
+ self.out_channels = out_channels or channels
+ self.use_conv = use_conv
+ self.padding = padding
+ stride = 2
+ self.name = name
+
+ if use_conv:
+ self.conv = nn.Conv1D(self.channels, self.out_channels, 3, stride=stride, padding=padding)
+ else:
+ assert self.channels == self.out_channels
+ self.conv = nn.AvgPool1D(kernel_size=stride, stride=stride)
+
+ def forward(self, x):
+ assert x.shape[1] == self.channels
+ return self.conv(x)
+
+
+class Upsample2D(nn.Layer):
+ """
+ An upsampling layer with an optional convolution.
+
+ Parameters:
+ channels: channels in the inputs and outputs.
+ use_conv: a bool determining if a convolution is applied.
+ use_conv_transpose:
+ out_channels:
+ """
+
+ def __init__(self, channels, use_conv=False, use_conv_transpose=False, out_channels=None, name="conv"):
+ super().__init__()
+ self.channels = channels
+ self.out_channels = out_channels or channels
+ self.use_conv = use_conv
+ self.use_conv_transpose = use_conv_transpose
+ self.name = name
+
+ conv = None
+ if use_conv_transpose:
+ conv = nn.Conv2DTranspose(channels, self.out_channels, 4, 2, 1)
+ elif use_conv:
+ conv = nn.Conv2D(self.channels, self.out_channels, 3, padding=1)
+
+ # TODO(Suraj, Patrick) - clean up after weight dicts are correctly renamed
+ if name == "conv":
+ self.conv = conv
+ else:
+ self.Conv2d_0 = conv
+
+ def forward(self, hidden_states, output_size=None):
+ assert hidden_states.shape[1] == self.channels
+
+ if self.use_conv_transpose:
+ return self.conv(hidden_states)
+
+ # Cast to float32 to as 'upsample_nearest2d_out_frame' op does not support bfloat16
+ # TODO(Suraj): Remove this cast once the issue is fixed in PyTorch
+ # https://github.com/pytorch/pytorch/issues/86679
+ dtype = hidden_states.dtype
+ if dtype == paddle.bfloat16:
+ hidden_states = hidden_states.cast("float32")
+
+ # if `output_size` is passed we force the interpolation output
+ # size and do not make use of `scale_factor=2`
+ if output_size is None:
+ hidden_states = F.interpolate(hidden_states, scale_factor=2.0, mode="nearest")
+ else:
+ hidden_states = F.interpolate(hidden_states, size=output_size, mode="nearest")
+
+ # If the input is bfloat16, we cast back to bfloat16
+ if dtype == paddle.bfloat16:
+ hidden_states = hidden_states.cast(dtype)
+
+ # TODO(Suraj, Patrick) - clean up after weight dicts are correctly renamed
+ if self.use_conv:
+ if self.name == "conv":
+ hidden_states = self.conv(hidden_states)
+ else:
+ hidden_states = self.Conv2d_0(hidden_states)
+
+ return hidden_states
+
+
+class Downsample2D(nn.Layer):
+ """
+ A downsampling layer with an optional convolution.
+
+ Parameters:
+ channels: channels in the inputs and outputs.
+ use_conv: a bool determining if a convolution is applied.
+ out_channels:
+ padding:
+ """
+
+ def __init__(self, channels, use_conv=False, out_channels=None, padding=1, name="conv"):
+ super().__init__()
+ self.channels = channels
+ self.out_channels = out_channels or channels
+ self.use_conv = use_conv
+ self.padding = padding
+ stride = 2
+ self.name = name
+
+ if use_conv:
+ conv = nn.Conv2D(self.channels, self.out_channels, 3, stride=stride, padding=padding)
+ else:
+ assert self.channels == self.out_channels
+ conv = nn.AvgPool2D(kernel_size=stride, stride=stride)
+
+ # TODO(Suraj, Patrick) - clean up after weight dicts are correctly renamed
+ if name == "conv":
+ self.Conv2d_0 = conv
+ self.conv = conv
+ elif name == "Conv2d_0":
+ self.conv = conv
+ else:
+ self.conv = conv
+
+ def forward(self, hidden_states):
+ assert hidden_states.shape[1] == self.channels
+ if self.use_conv and self.padding == 0:
+ pad = (0, 1, 0, 1)
+ hidden_states = F.pad(hidden_states, pad, mode="constant", value=0)
+
+ assert hidden_states.shape[1] == self.channels
+ hidden_states = self.conv(hidden_states)
+
+ return hidden_states
+
+
+class FirUpsample2D(nn.Layer):
+ def __init__(self, channels=None, out_channels=None, use_conv=False, fir_kernel=(1, 3, 3, 1)):
+ super().__init__()
+ out_channels = out_channels if out_channels else channels
+ if use_conv:
+ self.Conv2d_0 = nn.Conv2D(channels, out_channels, kernel_size=3, stride=1, padding=1)
+ self.use_conv = use_conv
+ self.fir_kernel = fir_kernel
+ self.out_channels = out_channels
+
+ def _upsample_2d(self, hidden_states, weight=None, kernel=None, factor=2, gain=1):
+ """Fused `upsample_2d()` followed by `Conv2d()`.
+
+ Padding is performed only once at the beginning, not between the operations. The fused op is considerably more
+ efficient than performing the same calculation using standard TensorFlow ops. It supports gradients of
+ arbitrary order.
+
+ Args:
+ hidden_states: Input tensor of the shape `[N, C, H, W]` or `[N, H, W, C]`.
+ weight: Weight tensor of the shape `[filterH, filterW, inChannels,
+ outChannels]`. Grouped convolution can be performed by `inChannels = x.shape[0] // numGroups`.
+ kernel: FIR filter of the shape `[firH, firW]` or `[firN]`
+ (separable). The default is `[1] * factor`, which corresponds to nearest-neighbor upsampling.
+ factor: Integer upsampling factor (default: 2).
+ gain: Scaling factor for signal magnitude (default: 1.0).
+
+ Returns:
+ output: Tensor of the shape `[N, C, H * factor, W * factor]` or `[N, H * factor, W * factor, C]`, and same
+ datatype as `hidden_states`.
+ """
+
+ assert isinstance(factor, int) and factor >= 1
+
+ # Setup filter kernel.
+ if kernel is None:
+ kernel = [1] * factor
+
+ # setup kernel
+ kernel = paddle.to_tensor(kernel, dtype="float32")
+ if kernel.ndim == 1:
+ kernel = paddle.outer(kernel, kernel)
+ kernel /= paddle.sum(kernel)
+
+ kernel = kernel * (gain * (factor**2))
+
+ if self.use_conv:
+ convH = weight.shape[2]
+ convW = weight.shape[3]
+ inC = weight.shape[1]
+
+ pad_value = (kernel.shape[0] - factor) - (convW - 1)
+
+ stride = (factor, factor)
+ # Determine data dimensions.
+ output_shape = (
+ (hidden_states.shape[2] - 1) * factor + convH,
+ (hidden_states.shape[3] - 1) * factor + convW,
+ )
+ output_padding = (
+ output_shape[0] - (hidden_states.shape[2] - 1) * stride[0] - convH,
+ output_shape[1] - (hidden_states.shape[3] - 1) * stride[1] - convW,
+ )
+ assert output_padding[0] >= 0 and output_padding[1] >= 0
+ num_groups = hidden_states.shape[1] // inC
+
+ # Transpose weights.
+ weight = weight.reshape([num_groups, -1, inC, convH, convW])
+ weight = paddle.flip(weight, axis=[3, 4]).transpose([0, 2, 1, 3, 4])
+ weight = weight.reshape([num_groups * inC, -1, convH, convW])
+
+ inverse_conv = F.conv2d_transpose(
+ hidden_states, weight, stride=stride, output_padding=output_padding, padding=0
+ )
+
+ output = upfirdn2d_native(
+ inverse_conv,
+ paddle.to_tensor(kernel),
+ pad=((pad_value + 1) // 2 + factor - 1, pad_value // 2 + 1),
+ )
+ else:
+ pad_value = kernel.shape[0] - factor
+ output = upfirdn2d_native(
+ hidden_states,
+ paddle.to_tensor(kernel),
+ up=factor,
+ pad=((pad_value + 1) // 2 + factor - 1, pad_value // 2),
+ )
+
+ return output
+
+ def forward(self, hidden_states):
+ if self.use_conv:
+ height = self._upsample_2d(hidden_states, self.Conv2d_0.weight, kernel=self.fir_kernel)
+ height = height + self.Conv2d_0.bias.reshape([1, -1, 1, 1])
+ else:
+ height = self._upsample_2d(hidden_states, kernel=self.fir_kernel, factor=2)
+
+ return height
+
+
+class FirDownsample2D(nn.Layer):
+ def __init__(self, channels=None, out_channels=None, use_conv=False, fir_kernel=(1, 3, 3, 1)):
+ super().__init__()
+ out_channels = out_channels if out_channels else channels
+ if use_conv:
+ self.Conv2d_0 = nn.Conv2D(channels, out_channels, kernel_size=3, stride=1, padding=1)
+ self.fir_kernel = fir_kernel
+ self.use_conv = use_conv
+ self.out_channels = out_channels
+
+ def _downsample_2d(self, hidden_states, weight=None, kernel=None, factor=2, gain=1):
+ """Fused `Conv2d()` followed by `downsample_2d()`.
+ Padding is performed only once at the beginning, not between the operations. The fused op is considerably more
+ efficient than performing the same calculation using standard TensorFlow ops. It supports gradients of
+ arbitrary order.
+
+ Args:
+ hidden_states: Input tensor of the shape `[N, C, H, W]` or `[N, H, W, C]`.
+ weight:
+ Weight tensor of the shape `[filterH, filterW, inChannels, outChannels]`. Grouped convolution can be
+ performed by `inChannels = x.shape[0] // numGroups`.
+ kernel: FIR filter of the shape `[firH, firW]` or `[firN]` (separable). The default is `[1] *
+ factor`, which corresponds to average pooling.
+ factor: Integer downsampling factor (default: 2).
+ gain: Scaling factor for signal magnitude (default: 1.0).
+
+ Returns:
+ output: Tensor of the shape `[N, C, H // factor, W // factor]` or `[N, H // factor, W // factor, C]`, and
+ same datatype as `x`.
+ """
+
+ assert isinstance(factor, int) and factor >= 1
+ if kernel is None:
+ kernel = [1] * factor
+
+ # setup kernel
+ kernel = paddle.to_tensor(kernel, dtype="float32")
+ if kernel.ndim == 1:
+ kernel = paddle.outer(kernel, kernel)
+ kernel /= paddle.sum(kernel)
+
+ kernel = kernel * gain
+
+ if self.use_conv:
+ _, _, convH, convW = weight.shape
+ pad_value = (kernel.shape[0] - factor) + (convW - 1)
+ stride_value = [factor, factor]
+ upfirdn_input = upfirdn2d_native(
+ hidden_states,
+ paddle.to_tensor(kernel),
+ pad=((pad_value + 1) // 2, pad_value // 2),
+ )
+ output = F.conv2d(upfirdn_input, weight, stride=stride_value, padding=0)
+ else:
+ pad_value = kernel.shape[0] - factor
+ output = upfirdn2d_native(
+ hidden_states,
+ paddle.to_tensor(kernel),
+ down=factor,
+ pad=((pad_value + 1) // 2, pad_value // 2),
+ )
+
+ return output
+
+ def forward(self, hidden_states):
+ if self.use_conv:
+ downsample_input = self._downsample_2d(hidden_states, weight=self.Conv2d_0.weight, kernel=self.fir_kernel)
+ hidden_states = downsample_input + self.Conv2d_0.bias.reshape([1, -1, 1, 1])
+ else:
+ hidden_states = self._downsample_2d(hidden_states, kernel=self.fir_kernel, factor=2)
+
+ return hidden_states
+
+
+class ResnetBlock2D(nn.Layer):
+ def __init__(
+ self,
+ *,
+ in_channels,
+ out_channels=None,
+ conv_shortcut=False,
+ dropout=0.0,
+ temb_channels=512,
+ groups=32,
+ groups_out=None,
+ pre_norm=True,
+ eps=1e-6,
+ non_linearity="swish",
+ time_embedding_norm="default",
+ kernel=None,
+ output_scale_factor=1.0,
+ use_in_shortcut=None,
+ up=False,
+ down=False,
+ ):
+ super().__init__()
+ self.pre_norm = pre_norm
+ self.pre_norm = True
+ self.in_channels = in_channels
+ out_channels = in_channels if out_channels is None else out_channels
+ self.out_channels = out_channels
+ self.use_conv_shortcut = conv_shortcut
+ self.time_embedding_norm = time_embedding_norm
+ self.up = up
+ self.down = down
+ self.output_scale_factor = output_scale_factor
+
+ if groups_out is None:
+ groups_out = groups
+
+ self.norm1 = nn.GroupNorm(num_groups=groups, num_channels=in_channels, epsilon=eps)
+
+ self.conv1 = nn.Conv2D(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
+
+ if temb_channels is not None:
+ if self.time_embedding_norm == "default":
+ time_emb_proj_out_channels = out_channels
+ elif self.time_embedding_norm == "scale_shift":
+ time_emb_proj_out_channels = out_channels * 2
+ else:
+ raise ValueError(f"unknown time_embedding_norm : {self.time_embedding_norm} ")
+
+ self.time_emb_proj = nn.Linear(temb_channels, time_emb_proj_out_channels)
+ else:
+ self.time_emb_proj = None
+
+ self.norm2 = nn.GroupNorm(num_groups=groups_out, num_channels=out_channels, epsilon=eps)
+ self.dropout = nn.Dropout(dropout)
+ self.conv2 = nn.Conv2D(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
+
+ if non_linearity == "swish":
+ self.nonlinearity = lambda x: F.silu(x)
+ elif non_linearity == "mish":
+ self.nonlinearity = Mish()
+ elif non_linearity == "silu":
+ self.nonlinearity = nn.Silu()
+
+ self.upsample = self.downsample = None
+ if self.up:
+ if kernel == "fir":
+ fir_kernel = (1, 3, 3, 1)
+ self.upsample = lambda x: upsample_2d(x, kernel=fir_kernel)
+ elif kernel == "sde_vp":
+ self.upsample = partial(F.interpolate, scale_factor=2.0, mode="nearest")
+ else:
+ self.upsample = Upsample2D(in_channels, use_conv=False)
+ elif self.down:
+ if kernel == "fir":
+ fir_kernel = (1, 3, 3, 1)
+ self.downsample = lambda x: downsample_2d(x, kernel=fir_kernel)
+ elif kernel == "sde_vp":
+ self.downsample = partial(F.avg_pool2d, kernel_size=2, stride=2)
+ else:
+ self.downsample = Downsample2D(in_channels, use_conv=False, padding=1, name="op")
+
+ self.use_in_shortcut = self.in_channels != self.out_channels if use_in_shortcut is None else use_in_shortcut
+
+ self.conv_shortcut = None
+ if self.use_in_shortcut:
+ self.conv_shortcut = nn.Conv2D(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
+
+ def forward(self, input_tensor, temb):
+ hidden_states = input_tensor
+
+ hidden_states = self.norm1(hidden_states)
+ hidden_states = self.nonlinearity(hidden_states)
+
+ if self.upsample is not None:
+ input_tensor = self.upsample(input_tensor)
+ hidden_states = self.upsample(hidden_states)
+ elif self.downsample is not None:
+ input_tensor = self.downsample(input_tensor)
+ hidden_states = self.downsample(hidden_states)
+
+ hidden_states = self.conv1(hidden_states)
+
+ if temb is not None:
+ temb = self.time_emb_proj(self.nonlinearity(temb))[:, :, None, None]
+
+ if temb is not None and self.time_embedding_norm == "default":
+ hidden_states = hidden_states + temb
+
+ hidden_states = self.norm2(hidden_states)
+
+ if temb is not None and self.time_embedding_norm == "scale_shift":
+ scale, shift = paddle.chunk(temb, 2, axis=1)
+ hidden_states = hidden_states * (1 + scale) + shift
+
+ hidden_states = self.nonlinearity(hidden_states)
+
+ hidden_states = self.dropout(hidden_states)
+ hidden_states = self.conv2(hidden_states)
+
+ if self.conv_shortcut is not None:
+ input_tensor = self.conv_shortcut(input_tensor)
+
+ output_tensor = (input_tensor + hidden_states) / self.output_scale_factor
+
+ return output_tensor
+
+
+class Mish(nn.Layer):
+ def forward(self, hidden_states):
+ return hidden_states * paddle.tanh(F.softplus(hidden_states))
+
+
+# unet_rl.py
+def rearrange_dims(tensor):
+ if len(tensor.shape) == 2:
+ return tensor[:, :, None]
+ if len(tensor.shape) == 3:
+ return tensor[:, :, None, :]
+ elif len(tensor.shape) == 4:
+ return tensor[:, :, 0, :]
+ else:
+ raise ValueError(f"`len(tensor)`: {len(tensor)} has to be 2, 3 or 4.")
+
+
+class Conv1dBlock(nn.Layer):
+ """
+ Conv1d --> GroupNorm --> Mish
+ """
+
+ def __init__(self, inp_channels, out_channels, kernel_size, n_groups=8):
+ super().__init__()
+
+ self.conv1d = nn.Conv1D(inp_channels, out_channels, kernel_size, padding=kernel_size // 2)
+ self.group_norm = nn.GroupNorm(n_groups, out_channels)
+ self.mish = nn.Mish()
+
+ def forward(self, x):
+ x = self.conv1d(x)
+ x = rearrange_dims(x)
+ x = self.group_norm(x)
+ x = rearrange_dims(x)
+ x = self.mish(x)
+ return x
+
+
+# unet_rl.py
+class ResidualTemporalBlock1D(nn.Layer):
+ def __init__(self, inp_channels, out_channels, embed_dim, kernel_size=5):
+ super().__init__()
+ self.conv_in = Conv1dBlock(inp_channels, out_channels, kernel_size)
+ self.conv_out = Conv1dBlock(out_channels, out_channels, kernel_size)
+
+ self.time_emb_act = nn.Mish()
+ self.time_emb = nn.Linear(embed_dim, out_channels)
+
+ self.residual_conv = (
+ nn.Conv1D(inp_channels, out_channels, 1) if inp_channels != out_channels else nn.Identity()
+ )
+
+ def forward(self, x, t):
+ """
+ Args:
+ x : [ batch_size x inp_channels x horizon ]
+ t : [ batch_size x embed_dim ]
+
+ returns:
+ out : [ batch_size x out_channels x horizon ]
+ """
+ t = self.time_emb_act(t)
+ t = self.time_emb(t)
+ out = self.conv_in(x) + rearrange_dims(t)
+ out = self.conv_out(out)
+ return out + self.residual_conv(x)
+
+
+def upsample_2d(hidden_states, kernel=None, factor=2, gain=1):
+ r"""Upsample2D a batch of 2D images with the given filter.
+ Accepts a batch of 2D images of the shape `[N, C, H, W]` or `[N, H, W, C]` and upsamples each image with the given
+ filter. The filter is normalized so that if the input pixels are constant, they will be scaled by the specified
+ `gain`. Pixels outside the image are assumed to be zero, and the filter is padded with zeros so that its shape is
+ a: multiple of the upsampling factor.
+
+ Args:
+ hidden_states: Input tensor of the shape `[N, C, H, W]` or `[N, H, W, C]`.
+ kernel: FIR filter of the shape `[firH, firW]` or `[firN]`
+ (separable). The default is `[1] * factor`, which corresponds to nearest-neighbor upsampling.
+ factor: Integer upsampling factor (default: 2).
+ gain: Scaling factor for signal magnitude (default: 1.0).
+
+ Returns:
+ output: Tensor of the shape `[N, C, H * factor, W * factor]`
+ """
+ assert isinstance(factor, int) and factor >= 1
+ if kernel is None:
+ kernel = [1] * factor
+
+ kernel = paddle.to_tensor(kernel, dtype="float32")
+ if kernel.ndim == 1:
+ kernel = paddle.outer(kernel, kernel)
+ kernel /= paddle.sum(kernel)
+
+ if gain != 1:
+ kernel = kernel * (gain * (factor**2))
+ else:
+ kernel = kernel * (factor**2)
+ pad_value = kernel.shape[0] - factor
+ output = upfirdn2d_native(
+ hidden_states,
+ kernel,
+ up=factor,
+ pad=((pad_value + 1) // 2 + factor - 1, pad_value // 2),
+ )
+ return output
+
+
+def downsample_2d(hidden_states, kernel=None, factor=2, gain=1):
+ r"""Downsample2D a batch of 2D images with the given filter.
+ Accepts a batch of 2D images of the shape `[N, C, H, W]` or `[N, H, W, C]` and downsamples each image with the
+ given filter. The filter is normalized so that if the input pixels are constant, they will be scaled by the
+ specified `gain`. Pixels outside the image are assumed to be zero, and the filter is padded with zeros so that its
+ shape is a multiple of the downsampling factor.
+
+ Args:
+ hidden_states: Input tensor of the shape `[N, C, H, W]` or `[N, H, W, C]`.
+ kernel: FIR filter of the shape `[firH, firW]` or `[firN]`
+ (separable). The default is `[1] * factor`, which corresponds to average pooling.
+ factor: Integer downsampling factor (default: 2).
+ gain: Scaling factor for signal magnitude (default: 1.0).
+
+ Returns:
+ output: Tensor of the shape `[N, C, H // factor, W // factor]`
+ """
+
+ assert isinstance(factor, int) and factor >= 1
+ if kernel is None:
+ kernel = [1] * factor
+
+ kernel = paddle.to_tensor(kernel, dtype="float32")
+ if kernel.ndim == 1:
+ kernel = paddle.outer(kernel, kernel)
+ kernel /= paddle.sum(kernel)
+
+ kernel = kernel * gain
+ pad_value = kernel.shape[0] - factor
+ output = upfirdn2d_native(hidden_states, kernel, down=factor, pad=((pad_value + 1) // 2, pad_value // 2))
+ return output
+
+
+def dummy_pad(tensor, up_x=0, up_y=0):
+ if up_x > 0:
+ tensor = paddle.concat(
+ [
+ tensor,
+ paddle.zeros(
+ [tensor.shape[0], tensor.shape[1], tensor.shape[2], tensor.shape[3], up_x, tensor.shape[5]],
+ dtype=tensor.dtype,
+ ),
+ ],
+ axis=4,
+ )
+ if up_y > 0:
+ tensor = paddle.concat(
+ [
+ tensor,
+ paddle.zeros(
+ [tensor.shape[0], tensor.shape[1], up_y, tensor.shape[3], tensor.shape[4], tensor.shape[5]],
+ dtype=tensor.dtype,
+ ),
+ ],
+ axis=2,
+ )
+ return tensor
+
+
+def upfirdn2d_native(tensor, kernel, up=1, down=1, pad=(0, 0)):
+ up_x = up_y = up
+ down_x = down_y = down
+ pad_x0 = pad_y0 = pad[0]
+ pad_x1 = pad_y1 = pad[1]
+
+ _, channel, in_h, in_w = tensor.shape
+ tensor = tensor.reshape([-1, in_h, in_w, 1])
+
+ _, in_h, in_w, minor = tensor.shape
+ kernel_h, kernel_w = kernel.shape
+
+ out = tensor.reshape([-1, in_h, 1, in_w, 1, minor])
+ # (TODO, junnyu F.pad bug)
+ # F.pad(out, [0, 0, 0, up_x - 1, 0, 0, 0, up_y - 1])
+ out = dummy_pad(out, up_x - 1, up_y - 1)
+ out = out.reshape([-1, in_h * up_y, in_w * up_x, minor])
+
+ # (TODO, junnyu F.pad bug)
+ # out = F.pad(out, [0, 0, max(pad_x0, 0), max(pad_x1, 0), max(pad_y0, 0), max(pad_y1, 0)])
+ out = out.unsqueeze(0)
+ out = F.pad(out, [max(pad_x0, 0), max(pad_x1, 0), max(pad_y0, 0), max(pad_y1, 0), 0, 0], data_format="NDHWC")
+ out = out.squeeze(0)
+
+ out = out[
+ :,
+ max(-pad_y0, 0) : out.shape[1] - max(-pad_y1, 0),
+ max(-pad_x0, 0) : out.shape[2] - max(-pad_x1, 0),
+ :,
+ ]
+
+ out = out.transpose([0, 3, 1, 2])
+ out = out.reshape([-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x + pad_x0 + pad_x1])
+ w = paddle.flip(kernel, [0, 1]).reshape([1, 1, kernel_h, kernel_w])
+ out = F.conv2d(out, w)
+ out = out.reshape(
+ [-1, minor, in_h * up_y + pad_y0 + pad_y1 - kernel_h + 1, in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1]
+ )
+ out = out.transpose([0, 2, 3, 1])
+ out = out[:, ::down_y, ::down_x, :]
+
+ out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1
+ out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1
+
+ return out.reshape([-1, channel, out_h, out_w])
diff --git a/ppdiffusers/models/unet_1d.py b/ppdiffusers/models/unet_1d.py
new file mode 100644
index 0000000000000000000000000000000000000000..864cbf089cefb893e0d8274cc58d3a3ddd3a634b
--- /dev/null
+++ b/ppdiffusers/models/unet_1d.py
@@ -0,0 +1,247 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+# Copyright 2022 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from dataclasses import dataclass
+from typing import Optional, Tuple, Union
+
+import paddle
+import paddle.nn as nn
+
+from ..configuration_utils import ConfigMixin, register_to_config
+from ..modeling_utils import ModelMixin
+from ..utils import BaseOutput
+from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps
+from .unet_1d_blocks import get_down_block, get_mid_block, get_out_block, get_up_block
+
+
+@dataclass
+class UNet1DOutput(BaseOutput):
+ """
+ Args:
+ sample (`paddle.Tensor` of shape `(batch_size, num_channels, sample_size)`):
+ Hidden states output. Output of last layer of model.
+ """
+
+ sample: paddle.Tensor
+
+
+class UNet1DModel(ModelMixin, ConfigMixin):
+ r"""
+ UNet1DModel is a 1D UNet model that takes in a noisy sample and a timestep and returns sample shaped output.
+
+ This model inherits from [`ModelMixin`]. Check the superclass documentation for the generic methods the library
+ implements for all the model (such as downloading or saving, etc.)
+
+ Parameters:
+ sample_size (`int`, *optional*): Default length of sample. Should be adaptable at runtime.
+ in_channels (`int`, *optional*, defaults to 2): Number of channels in the input sample.
+ out_channels (`int`, *optional*, defaults to 2): Number of channels in the output.
+ time_embedding_type (`str`, *optional*, defaults to `"fourier"`): Type of time embedding to use.
+ freq_shift (`float`, *optional*, defaults to 0.0): Frequency shift for fourier time embedding.
+ flip_sin_to_cos (`bool`, *optional*, defaults to :
+ obj:`False`): Whether to flip sin to cos for fourier time embedding.
+ down_block_types (`Tuple[str]`, *optional*, defaults to :
+ obj:`("DownBlock1D", "DownBlock1DNoSkip", "AttnDownBlock1D")`): Tuple of downsample block types.
+ up_block_types (`Tuple[str]`, *optional*, defaults to :
+ obj:`("UpBlock1D", "UpBlock1DNoSkip", "AttnUpBlock1D")`): Tuple of upsample block types.
+ block_out_channels (`Tuple[int]`, *optional*, defaults to :
+ obj:`(32, 32, 64)`): Tuple of block output channels.
+ mid_block_type (`str`, *optional*, defaults to "UNetMidBlock1D"): block type for middle of UNet.
+ out_block_type (`str`, *optional*, defaults to `None`): optional output processing of UNet.
+ act_fn (`str`, *optional*, defaults to None): optional activitation function in UNet blocks.
+ norm_num_groups (`int`, *optional*, defaults to 8): group norm member count in UNet blocks.
+ layers_per_block (`int`, *optional*, defaults to 1): added number of layers in a UNet block.
+ downsample_each_block (`int`, *optional*, defaults to False:
+ experimental feature for using a UNet without upsampling.
+ """
+
+ @register_to_config
+ def __init__(
+ self,
+ sample_size: int = 65536,
+ sample_rate: Optional[int] = None,
+ in_channels: int = 2,
+ out_channels: int = 2,
+ extra_in_channels: int = 0,
+ time_embedding_type: str = "fourier",
+ flip_sin_to_cos: bool = True,
+ use_timestep_embedding: bool = False,
+ freq_shift: float = 0.0,
+ down_block_types: Tuple[str] = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D"),
+ up_block_types: Tuple[str] = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip"),
+ mid_block_type: Tuple[str] = "UNetMidBlock1D",
+ out_block_type: str = None,
+ block_out_channels: Tuple[int] = (32, 32, 64),
+ act_fn: str = None,
+ norm_num_groups: int = 8,
+ layers_per_block: int = 1,
+ downsample_each_block: bool = False,
+ ):
+ super().__init__()
+ self.sample_size = sample_size
+
+ # time
+ if time_embedding_type == "fourier":
+ self.time_proj = GaussianFourierProjection(
+ embedding_size=8, set_W_to_weight=False, log=False, flip_sin_to_cos=flip_sin_to_cos
+ )
+ timestep_input_dim = 2 * block_out_channels[0]
+ elif time_embedding_type == "positional":
+ self.time_proj = Timesteps(
+ block_out_channels[0], flip_sin_to_cos=flip_sin_to_cos, downscale_freq_shift=freq_shift
+ )
+ timestep_input_dim = block_out_channels[0]
+
+ if use_timestep_embedding:
+ time_embed_dim = block_out_channels[0] * 4
+ self.time_mlp = TimestepEmbedding(
+ in_channels=timestep_input_dim,
+ time_embed_dim=time_embed_dim,
+ act_fn=act_fn,
+ out_dim=block_out_channels[0],
+ )
+
+ self.down_blocks = nn.LayerList([])
+ self.mid_block = None
+ self.up_blocks = nn.LayerList([])
+ self.out_block = None
+
+ # down
+ output_channel = in_channels
+ for i, down_block_type in enumerate(down_block_types):
+ input_channel = output_channel
+ output_channel = block_out_channels[i]
+
+ if i == 0:
+ input_channel += extra_in_channels
+
+ is_final_block = i == len(block_out_channels) - 1
+
+ down_block = get_down_block(
+ down_block_type,
+ num_layers=layers_per_block,
+ in_channels=input_channel,
+ out_channels=output_channel,
+ temb_channels=block_out_channels[0],
+ add_downsample=not is_final_block or downsample_each_block,
+ )
+ self.down_blocks.append(down_block)
+
+ # mid
+ self.mid_block = get_mid_block(
+ mid_block_type,
+ in_channels=block_out_channels[-1],
+ mid_channels=block_out_channels[-1],
+ out_channels=block_out_channels[-1],
+ embed_dim=block_out_channels[0],
+ num_layers=layers_per_block,
+ add_downsample=downsample_each_block,
+ )
+
+ # up
+ reversed_block_out_channels = list(reversed(block_out_channels))
+ output_channel = reversed_block_out_channels[0]
+ if out_block_type is None:
+ final_upsample_channels = out_channels
+ else:
+ final_upsample_channels = block_out_channels[0]
+
+ for i, up_block_type in enumerate(up_block_types):
+ prev_output_channel = output_channel
+ output_channel = (
+ reversed_block_out_channels[i + 1] if i < len(up_block_types) - 1 else final_upsample_channels
+ )
+
+ is_final_block = i == len(block_out_channels) - 1
+
+ up_block = get_up_block(
+ up_block_type,
+ num_layers=layers_per_block,
+ in_channels=prev_output_channel,
+ out_channels=output_channel,
+ temb_channels=block_out_channels[0],
+ add_upsample=not is_final_block,
+ )
+ self.up_blocks.append(up_block)
+ prev_output_channel = output_channel
+
+ # out
+ num_groups_out = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4, 32)
+ self.out_block = get_out_block(
+ out_block_type=out_block_type,
+ num_groups_out=num_groups_out,
+ embed_dim=block_out_channels[0],
+ out_channels=out_channels,
+ act_fn=act_fn,
+ fc_dim=block_out_channels[-1] // 4,
+ )
+
+ def forward(
+ self,
+ sample: paddle.Tensor,
+ timestep: Union[paddle.Tensor, float, int],
+ return_dict: bool = True,
+ ) -> Union[UNet1DOutput, Tuple]:
+ r"""
+ Args:
+ sample (`paddle.Tensor`): `(batch_size, sample_size, num_channels)` noisy inputs tensor
+ timestep (`paddle.Tensor` or `float` or `int): (batch) timesteps
+ return_dict (`bool`, *optional*, defaults to `True`):
+ Whether or not to return a [`~models.unet_1d.UNet1DOutput`] instead of a plain tuple.
+
+ Returns:
+ [`~models.unet_1d.UNet1DOutput`] or `tuple`: [`~models.unet_1d.UNet1DOutput`] if `return_dict` is True,
+ otherwise a `tuple`. When returning a tuple, the first element is the sample tensor.
+ """
+
+ # 1. time
+ timesteps = timestep
+ if not paddle.is_tensor(timesteps):
+ timesteps = paddle.to_tensor([timesteps], dtype="int64")
+ elif paddle.is_tensor(timesteps) and len(timesteps.shape) == 0:
+ timesteps = timesteps[None]
+
+ timestep_embed = self.time_proj(timesteps)
+ if self.config.use_timestep_embedding:
+ timestep_embed = self.time_mlp(timestep_embed)
+ else:
+ timestep_embed = timestep_embed[..., None]
+ timestep_embed = timestep_embed.tile([1, 1, sample.shape[2]]).cast(sample.dtype)
+ timestep_embed = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]))
+
+ # 2. down
+ down_block_res_samples = ()
+ for downsample_block in self.down_blocks:
+ sample, res_samples = downsample_block(hidden_states=sample, temb=timestep_embed)
+ down_block_res_samples += res_samples
+
+ # 3. mid
+ if self.mid_block:
+ sample = self.mid_block(sample, timestep_embed)
+
+ # 4. up
+ for i, upsample_block in enumerate(self.up_blocks):
+ res_samples = down_block_res_samples[-1:]
+ down_block_res_samples = down_block_res_samples[:-1]
+ sample = upsample_block(sample, res_hidden_states_tuple=res_samples, temb=timestep_embed)
+
+ # 5. post-process
+ if self.out_block:
+ sample = self.out_block(sample, timestep_embed)
+
+ if not return_dict:
+ return (sample,)
+
+ return UNet1DOutput(sample=sample)
diff --git a/ppdiffusers/models/unet_1d_blocks.py b/ppdiffusers/models/unet_1d_blocks.py
new file mode 100644
index 0000000000000000000000000000000000000000..a895423756b7a19bb6c6f42327fb1d24fa623c50
--- /dev/null
+++ b/ppdiffusers/models/unet_1d_blocks.py
@@ -0,0 +1,668 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+# Copyright 2022 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+import math
+
+import paddle
+import paddle.nn.functional as F
+from paddle import nn
+
+from .resnet import Downsample1D, ResidualTemporalBlock1D, Upsample1D, rearrange_dims
+
+
+class DownResnetBlock1D(nn.Layer):
+ def __init__(
+ self,
+ in_channels,
+ out_channels=None,
+ num_layers=1,
+ conv_shortcut=False,
+ temb_channels=32,
+ groups=32,
+ groups_out=None,
+ non_linearity=None,
+ time_embedding_norm="default",
+ output_scale_factor=1.0,
+ add_downsample=True,
+ ):
+ super().__init__()
+ self.in_channels = in_channels
+ out_channels = in_channels if out_channels is None else out_channels
+ self.out_channels = out_channels
+ self.use_conv_shortcut = conv_shortcut
+ self.time_embedding_norm = time_embedding_norm
+ self.add_downsample = add_downsample
+ self.output_scale_factor = output_scale_factor
+
+ if groups_out is None:
+ groups_out = groups
+
+ # there will always be at least one resnet
+ resnets = [ResidualTemporalBlock1D(in_channels, out_channels, embed_dim=temb_channels)]
+
+ for _ in range(num_layers):
+ resnets.append(ResidualTemporalBlock1D(out_channels, out_channels, embed_dim=temb_channels))
+
+ self.resnets = nn.LayerList(resnets)
+
+ if non_linearity == "swish":
+ self.nonlinearity = lambda x: F.silu(x)
+ elif non_linearity == "mish":
+ self.nonlinearity = nn.Mish()
+ elif non_linearity == "silu":
+ self.nonlinearity = nn.Silu()
+ else:
+ self.nonlinearity = None
+
+ self.downsample = None
+ if add_downsample:
+ self.downsample = Downsample1D(out_channels, use_conv=True, padding=1)
+
+ def forward(self, hidden_states, temb=None):
+ output_states = ()
+
+ hidden_states = self.resnets[0](hidden_states, temb)
+ for resnet in self.resnets[1:]:
+ hidden_states = resnet(hidden_states, temb)
+
+ output_states += (hidden_states,)
+
+ if self.nonlinearity is not None:
+ hidden_states = self.nonlinearity(hidden_states)
+
+ if self.downsample is not None:
+ hidden_states = self.downsample(hidden_states)
+
+ return hidden_states, output_states
+
+
+class UpResnetBlock1D(nn.Layer):
+ def __init__(
+ self,
+ in_channels,
+ out_channels=None,
+ num_layers=1,
+ temb_channels=32,
+ groups=32,
+ groups_out=None,
+ non_linearity=None,
+ time_embedding_norm="default",
+ output_scale_factor=1.0,
+ add_upsample=True,
+ ):
+ super().__init__()
+ self.in_channels = in_channels
+ out_channels = in_channels if out_channels is None else out_channels
+ self.out_channels = out_channels
+ self.time_embedding_norm = time_embedding_norm
+ self.add_upsample = add_upsample
+ self.output_scale_factor = output_scale_factor
+
+ if groups_out is None:
+ groups_out = groups
+
+ # there will always be at least one resnet
+ resnets = [ResidualTemporalBlock1D(2 * in_channels, out_channels, embed_dim=temb_channels)]
+
+ for _ in range(num_layers):
+ resnets.append(ResidualTemporalBlock1D(out_channels, out_channels, embed_dim=temb_channels))
+
+ self.resnets = nn.LayerList(resnets)
+
+ if non_linearity == "swish":
+ self.nonlinearity = lambda x: F.silu(x)
+ elif non_linearity == "mish":
+ self.nonlinearity = nn.Mish()
+ elif non_linearity == "silu":
+ self.nonlinearity = nn.Silu()
+ else:
+ self.nonlinearity = None
+
+ self.upsample = None
+ if add_upsample:
+ self.upsample = Upsample1D(out_channels, use_conv_transpose=True)
+
+ def forward(self, hidden_states, res_hidden_states_tuple=None, temb=None):
+ if res_hidden_states_tuple is not None:
+ res_hidden_states = res_hidden_states_tuple[-1]
+ hidden_states = paddle.concat((hidden_states, res_hidden_states), axis=1)
+
+ hidden_states = self.resnets[0](hidden_states, temb)
+ for resnet in self.resnets[1:]:
+ hidden_states = resnet(hidden_states, temb)
+
+ if self.nonlinearity is not None:
+ hidden_states = self.nonlinearity(hidden_states)
+
+ if self.upsample is not None:
+ hidden_states = self.upsample(hidden_states)
+
+ return hidden_states
+
+
+class ValueFunctionMidBlock1D(nn.Layer):
+ def __init__(self, in_channels, out_channels, embed_dim):
+ super().__init__()
+ self.in_channels = in_channels
+ self.out_channels = out_channels
+ self.embed_dim = embed_dim
+
+ self.res1 = ResidualTemporalBlock1D(in_channels, in_channels // 2, embed_dim=embed_dim)
+ self.down1 = Downsample1D(out_channels // 2, use_conv=True)
+ self.res2 = ResidualTemporalBlock1D(in_channels // 2, in_channels // 4, embed_dim=embed_dim)
+ self.down2 = Downsample1D(out_channels // 4, use_conv=True)
+
+ def forward(self, x, temb=None):
+ x = self.res1(x, temb)
+ x = self.down1(x)
+ x = self.res2(x, temb)
+ x = self.down2(x)
+ return x
+
+
+class MidResTemporalBlock1D(nn.Layer):
+ def __init__(
+ self,
+ in_channels,
+ out_channels,
+ embed_dim,
+ num_layers: int = 1,
+ add_downsample: bool = False,
+ add_upsample: bool = False,
+ non_linearity=None,
+ ):
+ super().__init__()
+ self.in_channels = in_channels
+ self.out_channels = out_channels
+ self.add_downsample = add_downsample
+
+ # there will always be at least one resnet
+ resnets = [ResidualTemporalBlock1D(in_channels, out_channels, embed_dim=embed_dim)]
+
+ for _ in range(num_layers):
+ resnets.append(ResidualTemporalBlock1D(out_channels, out_channels, embed_dim=embed_dim))
+
+ self.resnets = nn.LayerList(resnets)
+
+ if non_linearity == "swish":
+ self.nonlinearity = lambda x: F.silu(x)
+ elif non_linearity == "mish":
+ self.nonlinearity = nn.Mish()
+ elif non_linearity == "silu":
+ self.nonlinearity = nn.Silu()
+ else:
+ self.nonlinearity = None
+
+ self.upsample = None
+ if add_upsample:
+ self.upsample = Downsample1D(out_channels, use_conv=True)
+
+ self.downsample = None
+ if add_downsample:
+ self.downsample = Downsample1D(out_channels, use_conv=True)
+
+ if self.upsample and self.downsample:
+ raise ValueError("Block cannot downsample and upsample")
+
+ def forward(self, hidden_states, temb):
+ hidden_states = self.resnets[0](hidden_states, temb)
+ for resnet in self.resnets[1:]:
+ hidden_states = resnet(hidden_states, temb)
+
+ if self.upsample:
+ hidden_states = self.upsample(hidden_states)
+ if self.downsample:
+ self.downsample = self.downsample(hidden_states)
+
+ return hidden_states
+
+
+class OutConv1DBlock(nn.Layer):
+ def __init__(self, num_groups_out, out_channels, embed_dim, act_fn):
+ super().__init__()
+ self.final_conv1d_1 = nn.Conv1D(embed_dim, embed_dim, 5, padding=2)
+ self.final_conv1d_gn = nn.GroupNorm(num_groups_out, embed_dim)
+ if act_fn == "silu":
+ self.final_conv1d_act = nn.Silu()
+ if act_fn == "mish":
+ self.final_conv1d_act = nn.Mish()
+ self.final_conv1d_2 = nn.Conv1D(embed_dim, out_channels, 1)
+
+ def forward(self, hidden_states, temb=None):
+ hidden_states = self.final_conv1d_1(hidden_states)
+ hidden_states = rearrange_dims(hidden_states)
+ hidden_states = self.final_conv1d_gn(hidden_states)
+ hidden_states = rearrange_dims(hidden_states)
+ hidden_states = self.final_conv1d_act(hidden_states)
+ hidden_states = self.final_conv1d_2(hidden_states)
+ return hidden_states
+
+
+class OutValueFunctionBlock(nn.Layer):
+ def __init__(self, fc_dim, embed_dim):
+ super().__init__()
+ self.final_block = nn.LayerList(
+ [
+ nn.Linear(fc_dim + embed_dim, fc_dim // 2),
+ nn.Mish(),
+ nn.Linear(fc_dim // 2, 1),
+ ]
+ )
+
+ def forward(self, hidden_states, temb):
+ hidden_states = hidden_states.reshape([hidden_states.shape[0], -1])
+ hidden_states = paddle.concat((hidden_states, temb), axis=-1)
+ for layer in self.final_block:
+ hidden_states = layer(hidden_states)
+
+ return hidden_states
+
+
+_kernels = {
+ "linear": [1 / 8, 3 / 8, 3 / 8, 1 / 8],
+ "cubic": [-0.01171875, -0.03515625, 0.11328125, 0.43359375, 0.43359375, 0.11328125, -0.03515625, -0.01171875],
+ "lanczos3": [
+ 0.003689131001010537,
+ 0.015056144446134567,
+ -0.03399861603975296,
+ -0.066637322306633,
+ 0.13550527393817902,
+ 0.44638532400131226,
+ 0.44638532400131226,
+ 0.13550527393817902,
+ -0.066637322306633,
+ -0.03399861603975296,
+ 0.015056144446134567,
+ 0.003689131001010537,
+ ],
+}
+
+
+class Downsample1d(nn.Layer):
+ def __init__(self, kernel="linear", pad_mode="reflect"):
+ super().__init__()
+ self.pad_mode = pad_mode
+ kernel_1d = paddle.to_tensor(_kernels[kernel])
+ self.pad = kernel_1d.shape[0] // 2 - 1
+ self.register_buffer("kernel", kernel_1d)
+
+ def forward(self, hidden_states):
+ hidden_states = F.pad(hidden_states, (self.pad,) * 2, self.pad_mode, data_format="NCL")
+ weight = paddle.zeros([hidden_states.shape[1], hidden_states.shape[1], self.kernel.shape[0]])
+ indices = paddle.arange(hidden_states.shape[1])
+ weight[indices, indices] = self.kernel.cast(weight.dtype)
+ return F.conv1d(hidden_states, weight, stride=2)
+
+
+class Upsample1d(nn.Layer):
+ def __init__(self, kernel="linear", pad_mode="reflect"):
+ super().__init__()
+ self.pad_mode = pad_mode
+ kernel_1d = paddle.to_tensor(_kernels[kernel]) * 2
+ self.pad = kernel_1d.shape[0] // 2 - 1
+ self.register_buffer("kernel", kernel_1d)
+
+ def forward(self, hidden_states, temb=None):
+ hidden_states = F.pad(hidden_states, ((self.pad + 1) // 2,) * 2, self.pad_mode, data_format="NCL")
+ weight = paddle.zeros([hidden_states.shape[1], hidden_states.shape[1], self.kernel.shape[0]])
+ indices = paddle.arange(hidden_states.shape[1])
+ weight[indices, indices] = self.kernel.cast(weight.dtype)
+ return F.conv1d_transpose(hidden_states, weight, stride=2, padding=self.pad * 2 + 1)
+
+
+class SelfAttention1d(nn.Layer):
+ def __init__(self, in_channels, n_head=1, dropout_rate=0.0):
+ super().__init__()
+ self.channels = in_channels
+ self.group_norm = nn.GroupNorm(1, num_channels=in_channels)
+ self.num_heads = n_head
+
+ self.query = nn.Linear(self.channels, self.channels)
+ self.key = nn.Linear(self.channels, self.channels)
+ self.value = nn.Linear(self.channels, self.channels)
+
+ self.proj_attn = nn.Linear(self.channels, self.channels)
+
+ self.dropout = nn.Dropout(dropout_rate)
+
+ # (TODO junnyu) refactor self attention
+ def transpose_for_scores(self, projection: paddle.Tensor) -> paddle.Tensor:
+ new_projection_shape = projection.shape[:-1] + [self.num_heads, -1]
+ # move heads to 2nd position (B, T, H * D) -> (B, T, H, D) -> (B, H, T, D)
+ new_projection = projection.reshape(new_projection_shape).transpose([0, 2, 1, 3])
+ return new_projection
+
+ def forward(self, hidden_states):
+ residual = hidden_states
+
+ hidden_states = self.group_norm(hidden_states)
+ hidden_states = hidden_states.transpose([0, 2, 1])
+
+ query_proj = self.query(hidden_states)
+ key_proj = self.key(hidden_states)
+ value_proj = self.value(hidden_states)
+
+ query_states = self.transpose_for_scores(query_proj)
+ key_states = self.transpose_for_scores(key_proj)
+ value_states = self.transpose_for_scores(value_proj)
+
+ scale = 1 / math.sqrt(math.sqrt(key_states.shape[-1]))
+
+ attention_scores = paddle.matmul(query_states * scale, key_states * scale, transpose_y=True)
+ attention_probs = F.softmax(attention_scores, axis=-1)
+
+ # compute attention output
+ hidden_states = paddle.matmul(attention_probs, value_states)
+
+ hidden_states = hidden_states.transpose([0, 2, 1, 3])
+ new_hidden_states_shape = hidden_states.shape[:-2] + [
+ self.channels,
+ ]
+ hidden_states = hidden_states.reshape(new_hidden_states_shape)
+
+ # compute next hidden_states
+ hidden_states = self.proj_attn(hidden_states)
+ hidden_states = hidden_states.transpose([0, 2, 1])
+ hidden_states = self.dropout(hidden_states)
+ output = hidden_states + residual
+
+ return output
+
+
+class ResConvBlock(nn.Layer):
+ def __init__(self, in_channels, mid_channels, out_channels, is_last=False):
+ super().__init__()
+ self.is_last = is_last
+ self.has_conv_skip = in_channels != out_channels
+
+ if self.has_conv_skip:
+ self.conv_skip = nn.Conv1D(in_channels, out_channels, 1, bias_attr=False)
+
+ self.conv_1 = nn.Conv1D(in_channels, mid_channels, 5, padding=2)
+ self.group_norm_1 = nn.GroupNorm(1, mid_channels)
+ self.gelu_1 = nn.GELU()
+ self.conv_2 = nn.Conv1D(mid_channels, out_channels, 5, padding=2)
+
+ if not self.is_last:
+ self.group_norm_2 = nn.GroupNorm(1, out_channels)
+ self.gelu_2 = nn.GELU()
+
+ def forward(self, hidden_states):
+ residual = self.conv_skip(hidden_states) if self.has_conv_skip else hidden_states
+
+ hidden_states = self.conv_1(hidden_states)
+ hidden_states = self.group_norm_1(hidden_states)
+ hidden_states = self.gelu_1(hidden_states)
+ hidden_states = self.conv_2(hidden_states)
+
+ if not self.is_last:
+ hidden_states = self.group_norm_2(hidden_states)
+ hidden_states = self.gelu_2(hidden_states)
+
+ output = hidden_states + residual
+ return output
+
+
+class UNetMidBlock1D(nn.Layer):
+ def __init__(self, mid_channels, in_channels, out_channels=None):
+ super().__init__()
+
+ out_channels = in_channels if out_channels is None else out_channels
+
+ # there is always at least one resnet
+ self.down = Downsample1d("cubic")
+ resnets = [
+ ResConvBlock(in_channels, mid_channels, mid_channels),
+ ResConvBlock(mid_channels, mid_channels, mid_channels),
+ ResConvBlock(mid_channels, mid_channels, mid_channels),
+ ResConvBlock(mid_channels, mid_channels, mid_channels),
+ ResConvBlock(mid_channels, mid_channels, mid_channels),
+ ResConvBlock(mid_channels, mid_channels, out_channels),
+ ]
+ attentions = [
+ SelfAttention1d(mid_channels, mid_channels // 32),
+ SelfAttention1d(mid_channels, mid_channels // 32),
+ SelfAttention1d(mid_channels, mid_channels // 32),
+ SelfAttention1d(mid_channels, mid_channels // 32),
+ SelfAttention1d(mid_channels, mid_channels // 32),
+ SelfAttention1d(out_channels, out_channels // 32),
+ ]
+ self.up = Upsample1d(kernel="cubic")
+
+ self.attentions = nn.LayerList(attentions)
+ self.resnets = nn.LayerList(resnets)
+
+ def forward(self, hidden_states, temb=None):
+ hidden_states = self.down(hidden_states)
+ for attn, resnet in zip(self.attentions, self.resnets):
+ hidden_states = resnet(hidden_states)
+ hidden_states = attn(hidden_states)
+
+ hidden_states = self.up(hidden_states)
+
+ return hidden_states
+
+
+class AttnDownBlock1D(nn.Layer):
+ def __init__(self, out_channels, in_channels, mid_channels=None):
+ super().__init__()
+ mid_channels = out_channels if mid_channels is None else mid_channels
+
+ self.down = Downsample1d("cubic")
+ resnets = [
+ ResConvBlock(in_channels, mid_channels, mid_channels),
+ ResConvBlock(mid_channels, mid_channels, mid_channels),
+ ResConvBlock(mid_channels, mid_channels, out_channels),
+ ]
+ attentions = [
+ SelfAttention1d(mid_channels, mid_channels // 32),
+ SelfAttention1d(mid_channels, mid_channels // 32),
+ SelfAttention1d(out_channels, out_channels // 32),
+ ]
+
+ self.attentions = nn.LayerList(attentions)
+ self.resnets = nn.LayerList(resnets)
+
+ def forward(self, hidden_states, temb=None):
+ hidden_states = self.down(hidden_states)
+
+ for resnet, attn in zip(self.resnets, self.attentions):
+ hidden_states = resnet(hidden_states)
+ hidden_states = attn(hidden_states)
+
+ return hidden_states, (hidden_states,)
+
+
+class DownBlock1D(nn.Layer):
+ def __init__(self, out_channels, in_channels, mid_channels=None):
+ super().__init__()
+ mid_channels = out_channels if mid_channels is None else mid_channels
+
+ self.down = Downsample1d("cubic")
+ resnets = [
+ ResConvBlock(in_channels, mid_channels, mid_channels),
+ ResConvBlock(mid_channels, mid_channels, mid_channels),
+ ResConvBlock(mid_channels, mid_channels, out_channels),
+ ]
+
+ self.resnets = nn.LayerList(resnets)
+
+ def forward(self, hidden_states, temb=None):
+ hidden_states = self.down(hidden_states)
+
+ for resnet in self.resnets:
+ hidden_states = resnet(hidden_states)
+
+ return hidden_states, (hidden_states,)
+
+
+class DownBlock1DNoSkip(nn.Layer):
+ def __init__(self, out_channels, in_channels, mid_channels=None):
+ super().__init__()
+ mid_channels = out_channels if mid_channels is None else mid_channels
+
+ resnets = [
+ ResConvBlock(in_channels, mid_channels, mid_channels),
+ ResConvBlock(mid_channels, mid_channels, mid_channels),
+ ResConvBlock(mid_channels, mid_channels, out_channels),
+ ]
+
+ self.resnets = nn.LayerList(resnets)
+
+ def forward(self, hidden_states, temb=None):
+ hidden_states = paddle.concat([hidden_states, temb], axis=1)
+ for resnet in self.resnets:
+ hidden_states = resnet(hidden_states)
+
+ return hidden_states, (hidden_states,)
+
+
+class AttnUpBlock1D(nn.Layer):
+ def __init__(self, in_channels, out_channels, mid_channels=None):
+ super().__init__()
+ mid_channels = out_channels if mid_channels is None else mid_channels
+
+ resnets = [
+ ResConvBlock(2 * in_channels, mid_channels, mid_channels),
+ ResConvBlock(mid_channels, mid_channels, mid_channels),
+ ResConvBlock(mid_channels, mid_channels, out_channels),
+ ]
+ attentions = [
+ SelfAttention1d(mid_channels, mid_channels // 32),
+ SelfAttention1d(mid_channels, mid_channels // 32),
+ SelfAttention1d(out_channels, out_channels // 32),
+ ]
+
+ self.attentions = nn.LayerList(attentions)
+ self.resnets = nn.LayerList(resnets)
+ self.up = Upsample1d(kernel="cubic")
+
+ def forward(self, hidden_states, res_hidden_states_tuple, temb=None):
+ res_hidden_states = res_hidden_states_tuple[-1]
+ hidden_states = paddle.concat([hidden_states, res_hidden_states], axis=1)
+
+ for resnet, attn in zip(self.resnets, self.attentions):
+ hidden_states = resnet(hidden_states)
+ hidden_states = attn(hidden_states)
+
+ hidden_states = self.up(hidden_states)
+
+ return hidden_states
+
+
+class UpBlock1D(nn.Layer):
+ def __init__(self, in_channels, out_channels, mid_channels=None):
+ super().__init__()
+ mid_channels = in_channels if mid_channels is None else mid_channels
+
+ resnets = [
+ ResConvBlock(2 * in_channels, mid_channels, mid_channels),
+ ResConvBlock(mid_channels, mid_channels, mid_channels),
+ ResConvBlock(mid_channels, mid_channels, out_channels),
+ ]
+
+ self.resnets = nn.LayerList(resnets)
+ self.up = Upsample1d(kernel="cubic")
+
+ def forward(self, hidden_states, res_hidden_states_tuple, temb=None):
+ res_hidden_states = res_hidden_states_tuple[-1]
+ hidden_states = paddle.concat([hidden_states, res_hidden_states], axis=1)
+ for resnet in self.resnets:
+ hidden_states = resnet(hidden_states)
+
+ hidden_states = self.up(hidden_states)
+
+ return hidden_states
+
+
+class UpBlock1DNoSkip(nn.Layer):
+ def __init__(self, in_channels, out_channels, mid_channels=None):
+ super().__init__()
+ mid_channels = in_channels if mid_channels is None else mid_channels
+
+ resnets = [
+ ResConvBlock(2 * in_channels, mid_channels, mid_channels),
+ ResConvBlock(mid_channels, mid_channels, mid_channels),
+ ResConvBlock(mid_channels, mid_channels, out_channels, is_last=True),
+ ]
+
+ self.resnets = nn.LayerList(resnets)
+
+ def forward(self, hidden_states, res_hidden_states_tuple, temb=None):
+ res_hidden_states = res_hidden_states_tuple[-1]
+ hidden_states = paddle.concat([hidden_states, res_hidden_states], axis=1)
+ for resnet in self.resnets:
+ hidden_states = resnet(hidden_states)
+
+ return hidden_states
+
+
+def get_down_block(down_block_type, num_layers, in_channels, out_channels, temb_channels, add_downsample):
+ if down_block_type == "DownResnetBlock1D":
+ return DownResnetBlock1D(
+ in_channels=in_channels,
+ num_layers=num_layers,
+ out_channels=out_channels,
+ temb_channels=temb_channels,
+ add_downsample=add_downsample,
+ )
+ elif down_block_type == "DownBlock1D":
+ return DownBlock1D(out_channels=out_channels, in_channels=in_channels)
+ elif down_block_type == "AttnDownBlock1D":
+ return AttnDownBlock1D(out_channels=out_channels, in_channels=in_channels)
+ elif down_block_type == "DownBlock1DNoSkip":
+ return DownBlock1DNoSkip(out_channels=out_channels, in_channels=in_channels)
+ raise ValueError(f"{down_block_type} does not exist.")
+
+
+def get_up_block(up_block_type, num_layers, in_channels, out_channels, temb_channels, add_upsample):
+ if up_block_type == "UpResnetBlock1D":
+ return UpResnetBlock1D(
+ in_channels=in_channels,
+ num_layers=num_layers,
+ out_channels=out_channels,
+ temb_channels=temb_channels,
+ add_upsample=add_upsample,
+ )
+ elif up_block_type == "UpBlock1D":
+ return UpBlock1D(in_channels=in_channels, out_channels=out_channels)
+ elif up_block_type == "AttnUpBlock1D":
+ return AttnUpBlock1D(in_channels=in_channels, out_channels=out_channels)
+ elif up_block_type == "UpBlock1DNoSkip":
+ return UpBlock1DNoSkip(in_channels=in_channels, out_channels=out_channels)
+ raise ValueError(f"{up_block_type} does not exist.")
+
+
+def get_mid_block(mid_block_type, num_layers, in_channels, mid_channels, out_channels, embed_dim, add_downsample):
+ if mid_block_type == "MidResTemporalBlock1D":
+ return MidResTemporalBlock1D(
+ num_layers=num_layers,
+ in_channels=in_channels,
+ out_channels=out_channels,
+ embed_dim=embed_dim,
+ add_downsample=add_downsample,
+ )
+ elif mid_block_type == "ValueFunctionMidBlock1D":
+ return ValueFunctionMidBlock1D(in_channels=in_channels, out_channels=out_channels, embed_dim=embed_dim)
+ elif mid_block_type == "UNetMidBlock1D":
+ return UNetMidBlock1D(in_channels=in_channels, mid_channels=mid_channels, out_channels=out_channels)
+ raise ValueError(f"{mid_block_type} does not exist.")
+
+
+def get_out_block(*, out_block_type, num_groups_out, embed_dim, out_channels, act_fn, fc_dim):
+ if out_block_type == "OutConv1DBlock":
+ return OutConv1DBlock(num_groups_out, out_channels, embed_dim, act_fn)
+ elif out_block_type == "ValueFunction":
+ return OutValueFunctionBlock(fc_dim, embed_dim)
+ return None
diff --git a/ppdiffusers/models/unet_2d.py b/ppdiffusers/models/unet_2d.py
new file mode 100644
index 0000000000000000000000000000000000000000..b5e1fd461c1c136749416360011ce08db93f0d3b
--- /dev/null
+++ b/ppdiffusers/models/unet_2d.py
@@ -0,0 +1,271 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+# Copyright 2022 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+from dataclasses import dataclass
+from typing import Optional, Tuple, Union
+
+import paddle
+import paddle.nn as nn
+
+from ..configuration_utils import ConfigMixin, register_to_config
+from ..modeling_utils import ModelMixin
+from ..utils import BaseOutput
+from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps
+from .unet_2d_blocks import UNetMidBlock2D, get_down_block, get_up_block
+
+
+@dataclass
+class UNet2DOutput(BaseOutput):
+ """
+ Args:
+ sample (`paddle.Tensor` of shape `(batch_size, num_channels, height, width)`):
+ Hidden states output. Output of last layer of model.
+ """
+
+ sample: paddle.Tensor
+
+
+class UNet2DModel(ModelMixin, ConfigMixin):
+ r"""
+ UNet2DModel is a 2D UNet model that takes in a noisy sample and a timestep and returns sample shaped output.
+
+ This model inherits from [`ModelMixin`]. Check the superclass documentation for the generic methods the library
+ implements for all the model (such as downloading or saving, etc.)
+
+ Parameters:
+ sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`):
+ Height and width of input/output sample.
+ in_channels (`int`, *optional*, defaults to 3): Number of channels in the input image.
+ out_channels (`int`, *optional*, defaults to 3): Number of channels in the output.
+ center_input_sample (`bool`, *optional*, defaults to `False`): Whether to center the input sample.
+ time_embedding_type (`str`, *optional*, defaults to `"positional"`): Type of time embedding to use.
+ freq_shift (`int`, *optional*, defaults to 0): Frequency shift for fourier time embedding.
+ flip_sin_to_cos (`bool`, *optional*, defaults to :
+ obj:`True`): Whether to flip sin to cos for fourier time embedding.
+ down_block_types (`Tuple[str]`, *optional*, defaults to :
+ obj:`("DownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D")`): Tuple of downsample block
+ types.
+ mid_block_type (`str`, *optional*, defaults to `"UNetMidBlock2D"`):
+ The mid block type. Choose from `UNetMidBlock2D` or `UnCLIPUNetMidBlock2D`.
+ up_block_types (`Tuple[str]`, *optional*, defaults to :
+ obj:`("AttnUpBlock2D", "AttnUpBlock2D", "AttnUpBlock2D", "UpBlock2D")`): Tuple of upsample block types.
+ block_out_channels (`Tuple[int]`, *optional*, defaults to :
+ obj:`(224, 448, 672, 896)`): Tuple of block output channels.
+ layers_per_block (`int`, *optional*, defaults to `2`): The number of layers per block.
+ mid_block_scale_factor (`float`, *optional*, defaults to `1`): The scale factor for the mid block.
+ downsample_padding (`int`, *optional*, defaults to `1`): The padding for the downsample convolution.
+ act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
+ attention_head_dim (`int`, *optional*, defaults to `8`): The attention head dimension.
+ norm_num_groups (`int`, *optional*, defaults to `32`): The number of groups for the normalization.
+ norm_eps (`float`, *optional*, defaults to `1e-5`): The epsilon for the normalization.
+ resnet_time_scale_shift (`str`, *optional*, defaults to `"default"`): Time scale shift config
+ for resnet blocks, see [`~models.resnet.ResnetBlock2D`]. Choose from `default` or `scale_shift`.
+ """
+
+ @register_to_config
+ def __init__(
+ self,
+ sample_size: Optional[Union[int, Tuple[int, int]]] = None,
+ in_channels: int = 3,
+ out_channels: int = 3,
+ center_input_sample: bool = False,
+ time_embedding_type: str = "positional",
+ freq_shift: int = 0,
+ flip_sin_to_cos: bool = True,
+ down_block_types: Tuple[str] = ("DownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D"),
+ up_block_types: Tuple[str] = ("AttnUpBlock2D", "AttnUpBlock2D", "AttnUpBlock2D", "UpBlock2D"),
+ block_out_channels: Tuple[int] = (224, 448, 672, 896),
+ layers_per_block: int = 2,
+ mid_block_scale_factor: float = 1,
+ downsample_padding: int = 1,
+ act_fn: str = "silu",
+ attention_head_dim: int = 8,
+ norm_num_groups: int = 32,
+ norm_eps: float = 1e-5,
+ resnet_time_scale_shift: str = "default",
+ add_attention: bool = True,
+ ):
+ super().__init__()
+
+ self.sample_size = sample_size
+ time_embed_dim = block_out_channels[0] * 4
+
+ # input
+ self.conv_in = nn.Conv2D(in_channels, block_out_channels[0], kernel_size=3, padding=(1, 1))
+
+ # time
+ if time_embedding_type == "fourier":
+ self.time_proj = GaussianFourierProjection(embedding_size=block_out_channels[0], scale=16)
+ timestep_input_dim = 2 * block_out_channels[0]
+ elif time_embedding_type == "positional":
+ self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
+ timestep_input_dim = block_out_channels[0]
+
+ self.time_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
+
+ self.down_blocks = nn.LayerList([])
+ self.mid_block = None
+ self.up_blocks = nn.LayerList([])
+
+ # down
+ output_channel = block_out_channels[0]
+ for i, down_block_type in enumerate(down_block_types):
+ input_channel = output_channel
+ output_channel = block_out_channels[i]
+ is_final_block = i == len(block_out_channels) - 1
+
+ down_block = get_down_block(
+ down_block_type,
+ num_layers=layers_per_block,
+ in_channels=input_channel,
+ out_channels=output_channel,
+ temb_channels=time_embed_dim,
+ add_downsample=not is_final_block,
+ resnet_eps=norm_eps,
+ resnet_act_fn=act_fn,
+ resnet_groups=norm_num_groups,
+ attn_num_head_channels=attention_head_dim,
+ downsample_padding=downsample_padding,
+ resnet_time_scale_shift=resnet_time_scale_shift,
+ )
+ self.down_blocks.append(down_block)
+
+ # mid
+ self.mid_block = UNetMidBlock2D(
+ in_channels=block_out_channels[-1],
+ temb_channels=time_embed_dim,
+ resnet_eps=norm_eps,
+ resnet_act_fn=act_fn,
+ output_scale_factor=mid_block_scale_factor,
+ resnet_time_scale_shift=resnet_time_scale_shift,
+ attn_num_head_channels=attention_head_dim,
+ resnet_groups=norm_num_groups,
+ add_attention=add_attention,
+ )
+
+ # up
+ reversed_block_out_channels = list(reversed(block_out_channels))
+ output_channel = reversed_block_out_channels[0]
+ for i, up_block_type in enumerate(up_block_types):
+ prev_output_channel = output_channel
+ output_channel = reversed_block_out_channels[i]
+ input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
+
+ is_final_block = i == len(block_out_channels) - 1
+
+ up_block = get_up_block(
+ up_block_type,
+ num_layers=layers_per_block + 1,
+ in_channels=input_channel,
+ out_channels=output_channel,
+ prev_output_channel=prev_output_channel,
+ temb_channels=time_embed_dim,
+ add_upsample=not is_final_block,
+ resnet_eps=norm_eps,
+ resnet_act_fn=act_fn,
+ resnet_groups=norm_num_groups,
+ attn_num_head_channels=attention_head_dim,
+ resnet_time_scale_shift=resnet_time_scale_shift,
+ )
+ self.up_blocks.append(up_block)
+ prev_output_channel = output_channel
+
+ # out
+ num_groups_out = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4, 32)
+ self.conv_norm_out = nn.GroupNorm(
+ num_channels=block_out_channels[0], num_groups=num_groups_out, epsilon=norm_eps
+ )
+ self.conv_act = nn.Silu()
+ self.conv_out = nn.Conv2D(block_out_channels[0], out_channels, kernel_size=3, padding=1)
+
+ def forward(
+ self,
+ sample: paddle.Tensor,
+ timestep: Union[paddle.Tensor, float, int],
+ return_dict: bool = True,
+ ) -> Union[UNet2DOutput, Tuple]:
+ r"""
+ Args:
+ sample (`paddle.Tensor`): (batch, channel, height, width) noisy inputs tensor
+ timestep (`paddle.Tensor` or `float` or `int): (batch) timesteps
+ return_dict (`bool`, *optional*, defaults to `True`):
+ Whether or not to return a [`~models.unet_2d.UNet2DOutput`] instead of a plain tuple.
+
+ Returns:
+ [`~models.unet_2d.UNet2DOutput`] or `tuple`: [`~models.unet_2d.UNet2DOutput`] if `return_dict` is True,
+ otherwise a `tuple`. When returning a tuple, the first element is the sample tensor.
+ """
+ # 0. center input if necessary
+ if self.config.center_input_sample:
+ sample = 2 * sample - 1.0
+
+ # 1. time
+ timesteps = timestep
+ if not paddle.is_tensor(timesteps):
+ timesteps = paddle.to_tensor([timesteps], dtype="int64")
+ elif paddle.is_tensor(timesteps) and len(timesteps.shape) == 0:
+ timesteps = timesteps[None]
+
+ # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
+ timesteps = timesteps * paddle.ones((sample.shape[0],), dtype=timesteps.dtype)
+
+ t_emb = self.time_proj(timesteps).cast(self.dtype)
+ emb = self.time_embedding(t_emb)
+
+ # 2. pre-process
+ skip_sample = sample
+ sample = self.conv_in(sample)
+
+ # 3. down
+ down_block_res_samples = (sample,)
+ for downsample_block in self.down_blocks:
+ if hasattr(downsample_block, "skip_conv"):
+ sample, res_samples, skip_sample = downsample_block(
+ hidden_states=sample, temb=emb, skip_sample=skip_sample
+ )
+ else:
+ sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
+
+ down_block_res_samples += res_samples
+
+ # 4. mid
+ sample = self.mid_block(sample, emb)
+
+ # 5. up
+ skip_sample = None
+ for upsample_block in self.up_blocks:
+ res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
+ down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
+
+ if hasattr(upsample_block, "skip_conv"):
+ sample, skip_sample = upsample_block(sample, res_samples, emb, skip_sample)
+ else:
+ sample = upsample_block(sample, res_samples, emb)
+
+ # 6. post-process
+ sample = self.conv_norm_out(sample)
+ sample = self.conv_act(sample)
+ sample = self.conv_out(sample)
+
+ if skip_sample is not None:
+ sample += skip_sample
+
+ if self.config.time_embedding_type == "fourier":
+ timesteps = timesteps.reshape([sample.shape[0], *([1] * len(sample.shape[1:]))])
+ sample = sample / timesteps
+
+ if not return_dict:
+ return (sample,)
+
+ return UNet2DOutput(sample=sample)
diff --git a/ppdiffusers/models/unet_2d_blocks.py b/ppdiffusers/models/unet_2d_blocks.py
new file mode 100644
index 0000000000000000000000000000000000000000..534e5148b1eb044e82fca8eec7ce404a8a922557
--- /dev/null
+++ b/ppdiffusers/models/unet_2d_blocks.py
@@ -0,0 +1,2223 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+# Copyright 2022 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+import numpy as np
+import paddle
+from paddle import nn
+from paddle.distributed.fleet.utils import recompute
+
+from .attention import AttentionBlock, DualTransformer2DModel, Transformer2DModel
+from .cross_attention import CrossAttention, CrossAttnAddedKVProcessor
+from .resnet import (
+ Downsample2D,
+ FirDownsample2D,
+ FirUpsample2D,
+ ResnetBlock2D,
+ Upsample2D,
+)
+
+
+def get_down_block(
+ down_block_type,
+ num_layers,
+ in_channels,
+ out_channels,
+ temb_channels,
+ add_downsample,
+ resnet_eps,
+ resnet_act_fn,
+ attn_num_head_channels,
+ resnet_groups=None,
+ cross_attention_dim=None,
+ downsample_padding=None,
+ dual_cross_attention=False,
+ use_linear_projection=False,
+ only_cross_attention=False,
+ upcast_attention=False,
+ resnet_time_scale_shift="default",
+):
+ down_block_type = down_block_type[7:] if down_block_type.startswith("UNetRes") else down_block_type
+ if down_block_type == "DownBlock2D":
+ return DownBlock2D(
+ num_layers=num_layers,
+ in_channels=in_channels,
+ out_channels=out_channels,
+ temb_channels=temb_channels,
+ add_downsample=add_downsample,
+ resnet_eps=resnet_eps,
+ resnet_act_fn=resnet_act_fn,
+ resnet_groups=resnet_groups,
+ downsample_padding=downsample_padding,
+ resnet_time_scale_shift=resnet_time_scale_shift,
+ )
+ elif down_block_type == "ResnetDownsampleBlock2D":
+ return ResnetDownsampleBlock2D(
+ num_layers=num_layers,
+ in_channels=in_channels,
+ out_channels=out_channels,
+ temb_channels=temb_channels,
+ add_downsample=add_downsample,
+ resnet_eps=resnet_eps,
+ resnet_act_fn=resnet_act_fn,
+ resnet_groups=resnet_groups,
+ resnet_time_scale_shift=resnet_time_scale_shift,
+ )
+ elif down_block_type == "AttnDownBlock2D":
+ return AttnDownBlock2D(
+ num_layers=num_layers,
+ in_channels=in_channels,
+ out_channels=out_channels,
+ temb_channels=temb_channels,
+ add_downsample=add_downsample,
+ resnet_eps=resnet_eps,
+ resnet_act_fn=resnet_act_fn,
+ resnet_groups=resnet_groups,
+ downsample_padding=downsample_padding,
+ attn_num_head_channels=attn_num_head_channels,
+ resnet_time_scale_shift=resnet_time_scale_shift,
+ )
+ elif down_block_type == "CrossAttnDownBlock2D":
+ if cross_attention_dim is None:
+ raise ValueError("cross_attention_dim must be specified for CrossAttnDownBlock2D")
+ return CrossAttnDownBlock2D(
+ num_layers=num_layers,
+ in_channels=in_channels,
+ out_channels=out_channels,
+ temb_channels=temb_channels,
+ add_downsample=add_downsample,
+ resnet_eps=resnet_eps,
+ resnet_act_fn=resnet_act_fn,
+ resnet_groups=resnet_groups,
+ downsample_padding=downsample_padding,
+ cross_attention_dim=cross_attention_dim,
+ attn_num_head_channels=attn_num_head_channels,
+ dual_cross_attention=dual_cross_attention,
+ use_linear_projection=use_linear_projection,
+ only_cross_attention=only_cross_attention,
+ upcast_attention=upcast_attention,
+ resnet_time_scale_shift=resnet_time_scale_shift,
+ )
+ elif down_block_type == "SimpleCrossAttnDownBlock2D":
+ if cross_attention_dim is None:
+ raise ValueError("cross_attention_dim must be specified for SimpleCrossAttnDownBlock2D")
+ return SimpleCrossAttnDownBlock2D(
+ num_layers=num_layers,
+ in_channels=in_channels,
+ out_channels=out_channels,
+ temb_channels=temb_channels,
+ add_downsample=add_downsample,
+ resnet_eps=resnet_eps,
+ resnet_act_fn=resnet_act_fn,
+ resnet_groups=resnet_groups,
+ cross_attention_dim=cross_attention_dim,
+ attn_num_head_channels=attn_num_head_channels,
+ resnet_time_scale_shift=resnet_time_scale_shift,
+ )
+ elif down_block_type == "SkipDownBlock2D":
+ return SkipDownBlock2D(
+ num_layers=num_layers,
+ in_channels=in_channels,
+ out_channels=out_channels,
+ temb_channels=temb_channels,
+ add_downsample=add_downsample,
+ resnet_eps=resnet_eps,
+ resnet_act_fn=resnet_act_fn,
+ downsample_padding=downsample_padding,
+ resnet_time_scale_shift=resnet_time_scale_shift,
+ )
+ elif down_block_type == "AttnSkipDownBlock2D":
+ return AttnSkipDownBlock2D(
+ num_layers=num_layers,
+ in_channels=in_channels,
+ out_channels=out_channels,
+ temb_channels=temb_channels,
+ add_downsample=add_downsample,
+ resnet_eps=resnet_eps,
+ resnet_act_fn=resnet_act_fn,
+ downsample_padding=downsample_padding,
+ attn_num_head_channels=attn_num_head_channels,
+ resnet_time_scale_shift=resnet_time_scale_shift,
+ )
+ elif down_block_type == "DownEncoderBlock2D":
+ return DownEncoderBlock2D(
+ num_layers=num_layers,
+ in_channels=in_channels,
+ out_channels=out_channels,
+ add_downsample=add_downsample,
+ resnet_eps=resnet_eps,
+ resnet_act_fn=resnet_act_fn,
+ resnet_groups=resnet_groups,
+ downsample_padding=downsample_padding,
+ resnet_time_scale_shift=resnet_time_scale_shift,
+ )
+ elif down_block_type == "AttnDownEncoderBlock2D":
+ return AttnDownEncoderBlock2D(
+ num_layers=num_layers,
+ in_channels=in_channels,
+ out_channels=out_channels,
+ add_downsample=add_downsample,
+ resnet_eps=resnet_eps,
+ resnet_act_fn=resnet_act_fn,
+ resnet_groups=resnet_groups,
+ downsample_padding=downsample_padding,
+ attn_num_head_channels=attn_num_head_channels,
+ resnet_time_scale_shift=resnet_time_scale_shift,
+ )
+ raise ValueError(f"{down_block_type} does not exist.")
+
+
+def get_up_block(
+ up_block_type,
+ num_layers,
+ in_channels,
+ out_channels,
+ prev_output_channel,
+ temb_channels,
+ add_upsample,
+ resnet_eps,
+ resnet_act_fn,
+ attn_num_head_channels,
+ resnet_groups=None,
+ cross_attention_dim=None,
+ dual_cross_attention=False,
+ use_linear_projection=False,
+ only_cross_attention=False,
+ upcast_attention=False,
+ resnet_time_scale_shift="default",
+):
+ up_block_type = up_block_type[7:] if up_block_type.startswith("UNetRes") else up_block_type
+ if up_block_type == "UpBlock2D":
+ return UpBlock2D(
+ num_layers=num_layers,
+ in_channels=in_channels,
+ out_channels=out_channels,
+ prev_output_channel=prev_output_channel,
+ temb_channels=temb_channels,
+ add_upsample=add_upsample,
+ resnet_eps=resnet_eps,
+ resnet_act_fn=resnet_act_fn,
+ resnet_groups=resnet_groups,
+ resnet_time_scale_shift=resnet_time_scale_shift,
+ )
+ elif up_block_type == "ResnetUpsampleBlock2D":
+ return ResnetUpsampleBlock2D(
+ num_layers=num_layers,
+ in_channels=in_channels,
+ out_channels=out_channels,
+ prev_output_channel=prev_output_channel,
+ temb_channels=temb_channels,
+ add_upsample=add_upsample,
+ resnet_eps=resnet_eps,
+ resnet_act_fn=resnet_act_fn,
+ resnet_groups=resnet_groups,
+ resnet_time_scale_shift=resnet_time_scale_shift,
+ )
+ elif up_block_type == "CrossAttnUpBlock2D":
+ if cross_attention_dim is None:
+ raise ValueError("cross_attention_dim must be specified for CrossAttnUpBlock2D")
+ return CrossAttnUpBlock2D(
+ num_layers=num_layers,
+ in_channels=in_channels,
+ out_channels=out_channels,
+ prev_output_channel=prev_output_channel,
+ temb_channels=temb_channels,
+ add_upsample=add_upsample,
+ resnet_eps=resnet_eps,
+ resnet_act_fn=resnet_act_fn,
+ resnet_groups=resnet_groups,
+ cross_attention_dim=cross_attention_dim,
+ attn_num_head_channels=attn_num_head_channels,
+ dual_cross_attention=dual_cross_attention,
+ use_linear_projection=use_linear_projection,
+ only_cross_attention=only_cross_attention,
+ upcast_attention=upcast_attention,
+ resnet_time_scale_shift=resnet_time_scale_shift,
+ )
+ elif up_block_type == "SimpleCrossAttnUpBlock2D":
+ if cross_attention_dim is None:
+ raise ValueError("cross_attention_dim must be specified for SimpleCrossAttnUpBlock2D")
+ return SimpleCrossAttnUpBlock2D(
+ num_layers=num_layers,
+ in_channels=in_channels,
+ out_channels=out_channels,
+ prev_output_channel=prev_output_channel,
+ temb_channels=temb_channels,
+ add_upsample=add_upsample,
+ resnet_eps=resnet_eps,
+ resnet_act_fn=resnet_act_fn,
+ resnet_groups=resnet_groups,
+ cross_attention_dim=cross_attention_dim,
+ attn_num_head_channels=attn_num_head_channels,
+ resnet_time_scale_shift=resnet_time_scale_shift,
+ )
+ elif up_block_type == "AttnUpBlock2D":
+ return AttnUpBlock2D(
+ num_layers=num_layers,
+ in_channels=in_channels,
+ out_channels=out_channels,
+ prev_output_channel=prev_output_channel,
+ temb_channels=temb_channels,
+ add_upsample=add_upsample,
+ resnet_eps=resnet_eps,
+ resnet_act_fn=resnet_act_fn,
+ resnet_groups=resnet_groups,
+ attn_num_head_channels=attn_num_head_channels,
+ resnet_time_scale_shift=resnet_time_scale_shift,
+ )
+ elif up_block_type == "SkipUpBlock2D":
+ return SkipUpBlock2D(
+ num_layers=num_layers,
+ in_channels=in_channels,
+ out_channels=out_channels,
+ prev_output_channel=prev_output_channel,
+ temb_channels=temb_channels,
+ add_upsample=add_upsample,
+ resnet_eps=resnet_eps,
+ resnet_act_fn=resnet_act_fn,
+ resnet_time_scale_shift=resnet_time_scale_shift,
+ )
+ elif up_block_type == "AttnSkipUpBlock2D":
+ return AttnSkipUpBlock2D(
+ num_layers=num_layers,
+ in_channels=in_channels,
+ out_channels=out_channels,
+ prev_output_channel=prev_output_channel,
+ temb_channels=temb_channels,
+ add_upsample=add_upsample,
+ resnet_eps=resnet_eps,
+ resnet_act_fn=resnet_act_fn,
+ attn_num_head_channels=attn_num_head_channels,
+ resnet_time_scale_shift=resnet_time_scale_shift,
+ )
+ elif up_block_type == "UpDecoderBlock2D":
+ return UpDecoderBlock2D(
+ num_layers=num_layers,
+ in_channels=in_channels,
+ out_channels=out_channels,
+ add_upsample=add_upsample,
+ resnet_eps=resnet_eps,
+ resnet_act_fn=resnet_act_fn,
+ resnet_groups=resnet_groups,
+ resnet_time_scale_shift=resnet_time_scale_shift,
+ )
+ elif up_block_type == "AttnUpDecoderBlock2D":
+ return AttnUpDecoderBlock2D(
+ num_layers=num_layers,
+ in_channels=in_channels,
+ out_channels=out_channels,
+ add_upsample=add_upsample,
+ resnet_eps=resnet_eps,
+ resnet_act_fn=resnet_act_fn,
+ resnet_groups=resnet_groups,
+ attn_num_head_channels=attn_num_head_channels,
+ resnet_time_scale_shift=resnet_time_scale_shift,
+ )
+ raise ValueError(f"{up_block_type} does not exist.")
+
+
+class UNetMidBlock2D(nn.Layer):
+ def __init__(
+ self,
+ in_channels: int,
+ temb_channels: int,
+ dropout: float = 0.0,
+ num_layers: int = 1,
+ resnet_eps: float = 1e-6,
+ resnet_time_scale_shift: str = "default",
+ resnet_act_fn: str = "swish",
+ resnet_groups: int = 32,
+ resnet_pre_norm: bool = True,
+ add_attention: bool = True,
+ attn_num_head_channels=1,
+ output_scale_factor=1.0,
+ ):
+ super().__init__()
+
+ resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
+ self.add_attention = add_attention
+
+ # there is always at least one resnet
+ resnets = [
+ ResnetBlock2D(
+ in_channels=in_channels,
+ out_channels=in_channels,
+ temb_channels=temb_channels,
+ eps=resnet_eps,
+ groups=resnet_groups,
+ dropout=dropout,
+ time_embedding_norm=resnet_time_scale_shift,
+ non_linearity=resnet_act_fn,
+ output_scale_factor=output_scale_factor,
+ pre_norm=resnet_pre_norm,
+ )
+ ]
+ attentions = []
+
+ for _ in range(num_layers):
+ if self.add_attention:
+ attentions.append(
+ AttentionBlock(
+ in_channels,
+ num_head_channels=attn_num_head_channels,
+ rescale_output_factor=output_scale_factor,
+ eps=resnet_eps,
+ norm_num_groups=resnet_groups,
+ )
+ )
+ else:
+ attentions.append(None)
+
+ resnets.append(
+ ResnetBlock2D(
+ in_channels=in_channels,
+ out_channels=in_channels,
+ temb_channels=temb_channels,
+ eps=resnet_eps,
+ groups=resnet_groups,
+ dropout=dropout,
+ time_embedding_norm=resnet_time_scale_shift,
+ non_linearity=resnet_act_fn,
+ output_scale_factor=output_scale_factor,
+ pre_norm=resnet_pre_norm,
+ )
+ )
+
+ self.attentions = nn.LayerList(attentions)
+ self.resnets = nn.LayerList(resnets)
+
+ def forward(self, hidden_states, temb=None):
+ hidden_states = self.resnets[0](hidden_states, temb)
+ for attn, resnet in zip(self.attentions, self.resnets[1:]):
+ if attn is not None:
+ hidden_states = attn(hidden_states)
+ hidden_states = resnet(hidden_states, temb)
+
+ return hidden_states
+
+
+class UNetMidBlock2DCrossAttn(nn.Layer):
+ def __init__(
+ self,
+ in_channels: int,
+ temb_channels: int,
+ dropout: float = 0.0,
+ num_layers: int = 1,
+ resnet_eps: float = 1e-6,
+ resnet_time_scale_shift: str = "default",
+ resnet_act_fn: str = "swish",
+ resnet_groups: int = 32,
+ resnet_pre_norm: bool = True,
+ attn_num_head_channels=1,
+ output_scale_factor=1.0,
+ cross_attention_dim=1280,
+ dual_cross_attention=False,
+ use_linear_projection=False,
+ only_cross_attention=False,
+ upcast_attention=False,
+ ):
+ super().__init__()
+
+ self.has_cross_attention = True
+ self.attn_num_head_channels = attn_num_head_channels
+ resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
+
+ # there is always at least one resnet
+ resnets = [
+ ResnetBlock2D(
+ in_channels=in_channels,
+ out_channels=in_channels,
+ temb_channels=temb_channels,
+ eps=resnet_eps,
+ groups=resnet_groups,
+ dropout=dropout,
+ time_embedding_norm=resnet_time_scale_shift,
+ non_linearity=resnet_act_fn,
+ output_scale_factor=output_scale_factor,
+ pre_norm=resnet_pre_norm,
+ )
+ ]
+ attentions = []
+
+ for _ in range(num_layers):
+ if not dual_cross_attention:
+ attentions.append(
+ Transformer2DModel(
+ attn_num_head_channels,
+ in_channels // attn_num_head_channels,
+ in_channels=in_channels,
+ num_layers=1,
+ cross_attention_dim=cross_attention_dim,
+ norm_num_groups=resnet_groups,
+ use_linear_projection=use_linear_projection,
+ only_cross_attention=only_cross_attention,
+ upcast_attention=upcast_attention,
+ )
+ )
+ else:
+ attentions.append(
+ DualTransformer2DModel(
+ attn_num_head_channels,
+ in_channels // attn_num_head_channels,
+ in_channels=in_channels,
+ num_layers=1,
+ cross_attention_dim=cross_attention_dim,
+ norm_num_groups=resnet_groups,
+ )
+ )
+ resnets.append(
+ ResnetBlock2D(
+ in_channels=in_channels,
+ out_channels=in_channels,
+ temb_channels=temb_channels,
+ eps=resnet_eps,
+ groups=resnet_groups,
+ dropout=dropout,
+ time_embedding_norm=resnet_time_scale_shift,
+ non_linearity=resnet_act_fn,
+ output_scale_factor=output_scale_factor,
+ pre_norm=resnet_pre_norm,
+ )
+ )
+
+ self.attentions = nn.LayerList(attentions)
+ self.resnets = nn.LayerList(resnets)
+
+ def forward(
+ self, hidden_states, temb=None, encoder_hidden_states=None, attention_mask=None, cross_attention_kwargs=None
+ ):
+ # TODO(Patrick, William) - attention_mask is currently not used. Implement once used
+ hidden_states = self.resnets[0](hidden_states, temb)
+ for attn, resnet in zip(self.attentions, self.resnets[1:]):
+ hidden_states = attn(
+ hidden_states,
+ encoder_hidden_states=encoder_hidden_states,
+ cross_attention_kwargs=cross_attention_kwargs,
+ ).sample
+ hidden_states = resnet(hidden_states, temb)
+
+ return hidden_states
+
+
+class UNetMidBlock2DSimpleCrossAttn(nn.Layer):
+ def __init__(
+ self,
+ in_channels: int,
+ temb_channels: int,
+ dropout: float = 0.0,
+ num_layers: int = 1,
+ resnet_eps: float = 1e-6,
+ resnet_time_scale_shift: str = "default",
+ resnet_act_fn: str = "swish",
+ resnet_groups: int = 32,
+ resnet_pre_norm: bool = True,
+ attn_num_head_channels=1,
+ output_scale_factor=1.0,
+ cross_attention_dim=1280,
+ ):
+ super().__init__()
+
+ self.has_cross_attention = True
+
+ self.attn_num_head_channels = attn_num_head_channels
+ resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
+
+ self.num_heads = in_channels // self.attn_num_head_channels
+
+ # there is always at least one resnet
+ resnets = [
+ ResnetBlock2D(
+ in_channels=in_channels,
+ out_channels=in_channels,
+ temb_channels=temb_channels,
+ eps=resnet_eps,
+ groups=resnet_groups,
+ dropout=dropout,
+ time_embedding_norm=resnet_time_scale_shift,
+ non_linearity=resnet_act_fn,
+ output_scale_factor=output_scale_factor,
+ pre_norm=resnet_pre_norm,
+ )
+ ]
+ attentions = []
+
+ for _ in range(num_layers):
+ attentions.append(
+ CrossAttention(
+ query_dim=in_channels,
+ cross_attention_dim=in_channels,
+ heads=self.num_heads,
+ dim_head=attn_num_head_channels,
+ added_kv_proj_dim=cross_attention_dim,
+ norm_num_groups=resnet_groups,
+ bias=True,
+ upcast_softmax=True,
+ processor=CrossAttnAddedKVProcessor(),
+ )
+ )
+ resnets.append(
+ ResnetBlock2D(
+ in_channels=in_channels,
+ out_channels=in_channels,
+ temb_channels=temb_channels,
+ eps=resnet_eps,
+ groups=resnet_groups,
+ dropout=dropout,
+ time_embedding_norm=resnet_time_scale_shift,
+ non_linearity=resnet_act_fn,
+ output_scale_factor=output_scale_factor,
+ pre_norm=resnet_pre_norm,
+ )
+ )
+
+ self.attentions = nn.LayerList(attentions)
+ self.resnets = nn.LayerList(resnets)
+
+ def set_attention_slice(self, slice_size):
+ head_dims = self.attn_num_head_channels
+ head_dims = [head_dims] if isinstance(head_dims, int) else head_dims
+ if slice_size is not None and any(dim % slice_size != 0 for dim in head_dims):
+ raise ValueError(
+ f"Make sure slice_size {slice_size} is a common divisor of "
+ f"the number of heads used in cross_attention: {head_dims}"
+ )
+ if slice_size is not None and slice_size > min(head_dims):
+ raise ValueError(
+ f"slice_size {slice_size} has to be smaller or equal to "
+ f"the lowest number of heads used in cross_attention: min({head_dims}) = {min(head_dims)}"
+ )
+
+ for attn in self.attentions:
+ attn._set_attention_slice(slice_size)
+
+ def forward(
+ self, hidden_states, temb=None, encoder_hidden_states=None, attention_mask=None, cross_attention_kwargs=None
+ ):
+ cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
+ hidden_states = self.resnets[0](hidden_states, temb)
+ for attn, resnet in zip(self.attentions, self.resnets[1:]):
+ # attn
+ hidden_states = attn(
+ hidden_states,
+ encoder_hidden_states=encoder_hidden_states,
+ attention_mask=attention_mask,
+ **cross_attention_kwargs,
+ )
+ # resnet
+ hidden_states = resnet(hidden_states, temb)
+
+ return hidden_states
+
+
+class AttnDownBlock2D(nn.Layer):
+ def __init__(
+ self,
+ in_channels: int,
+ out_channels: int,
+ temb_channels: int,
+ dropout: float = 0.0,
+ num_layers: int = 1,
+ resnet_eps: float = 1e-6,
+ resnet_time_scale_shift: str = "default",
+ resnet_act_fn: str = "swish",
+ resnet_groups: int = 32,
+ resnet_pre_norm: bool = True,
+ attn_num_head_channels=1,
+ attention_type="default",
+ output_scale_factor=1.0,
+ downsample_padding=1,
+ add_downsample=True,
+ ):
+ super().__init__()
+ resnets = []
+ attentions = []
+
+ self.attention_type = attention_type
+
+ for i in range(num_layers):
+ in_channels = in_channels if i == 0 else out_channels
+ resnets.append(
+ ResnetBlock2D(
+ in_channels=in_channels,
+ out_channels=out_channels,
+ temb_channels=temb_channels,
+ eps=resnet_eps,
+ groups=resnet_groups,
+ dropout=dropout,
+ time_embedding_norm=resnet_time_scale_shift,
+ non_linearity=resnet_act_fn,
+ output_scale_factor=output_scale_factor,
+ pre_norm=resnet_pre_norm,
+ )
+ )
+ attentions.append(
+ AttentionBlock(
+ out_channels,
+ num_head_channels=attn_num_head_channels,
+ rescale_output_factor=output_scale_factor,
+ eps=resnet_eps,
+ norm_num_groups=resnet_groups,
+ )
+ )
+
+ self.attentions = nn.LayerList(attentions)
+ self.resnets = nn.LayerList(resnets)
+
+ if add_downsample:
+ self.downsamplers = nn.LayerList(
+ [
+ Downsample2D(
+ out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
+ )
+ ]
+ )
+ else:
+ self.downsamplers = None
+
+ def forward(self, hidden_states, temb=None):
+ output_states = ()
+
+ for resnet, attn in zip(self.resnets, self.attentions):
+ hidden_states = resnet(hidden_states, temb)
+ hidden_states = attn(hidden_states)
+ output_states += (hidden_states,)
+
+ if self.downsamplers is not None:
+ for downsampler in self.downsamplers:
+ hidden_states = downsampler(hidden_states)
+
+ output_states += (hidden_states,)
+
+ return hidden_states, output_states
+
+
+class CrossAttnDownBlock2D(nn.Layer):
+ def __init__(
+ self,
+ in_channels: int,
+ out_channels: int,
+ temb_channels: int,
+ dropout: float = 0.0,
+ num_layers: int = 1,
+ resnet_eps: float = 1e-6,
+ resnet_time_scale_shift: str = "default",
+ resnet_act_fn: str = "swish",
+ resnet_groups: int = 32,
+ resnet_pre_norm: bool = True,
+ attn_num_head_channels=1,
+ cross_attention_dim=1280,
+ output_scale_factor=1.0,
+ downsample_padding=1,
+ add_downsample=True,
+ dual_cross_attention=False,
+ use_linear_projection=False,
+ only_cross_attention=False,
+ upcast_attention=False,
+ ):
+ super().__init__()
+ resnets = []
+ attentions = []
+
+ self.has_cross_attention = True
+ self.attn_num_head_channels = attn_num_head_channels
+
+ for i in range(num_layers):
+ in_channels = in_channels if i == 0 else out_channels
+ resnets.append(
+ ResnetBlock2D(
+ in_channels=in_channels,
+ out_channels=out_channels,
+ temb_channels=temb_channels,
+ eps=resnet_eps,
+ groups=resnet_groups,
+ dropout=dropout,
+ time_embedding_norm=resnet_time_scale_shift,
+ non_linearity=resnet_act_fn,
+ output_scale_factor=output_scale_factor,
+ pre_norm=resnet_pre_norm,
+ )
+ )
+ if not dual_cross_attention:
+ attentions.append(
+ Transformer2DModel(
+ attn_num_head_channels,
+ out_channels // attn_num_head_channels,
+ in_channels=out_channels,
+ num_layers=1,
+ cross_attention_dim=cross_attention_dim,
+ norm_num_groups=resnet_groups,
+ use_linear_projection=use_linear_projection,
+ upcast_attention=upcast_attention,
+ )
+ )
+ else:
+ attentions.append(
+ DualTransformer2DModel(
+ attn_num_head_channels,
+ out_channels // attn_num_head_channels,
+ in_channels=out_channels,
+ num_layers=1,
+ cross_attention_dim=cross_attention_dim,
+ norm_num_groups=resnet_groups,
+ )
+ )
+ self.attentions = nn.LayerList(attentions)
+ self.resnets = nn.LayerList(resnets)
+
+ if add_downsample:
+ self.downsamplers = nn.LayerList(
+ [
+ Downsample2D(
+ out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
+ )
+ ]
+ )
+ else:
+ self.downsamplers = None
+
+ self.gradient_checkpointing = False
+
+ def forward(
+ self, hidden_states, temb=None, encoder_hidden_states=None, attention_mask=None, cross_attention_kwargs=None
+ ):
+ # TODO(Patrick, William) - attention mask is not used
+ output_states = ()
+
+ for resnet, attn in zip(self.resnets, self.attentions):
+ if self.training and self.gradient_checkpointing:
+
+ def create_custom_forward(module, return_dict=None):
+ def custom_forward(*inputs):
+ if return_dict is not None:
+ return module(*inputs, return_dict=return_dict)[0] # move [0]
+ else:
+ return module(*inputs)
+
+ return custom_forward
+
+ hidden_states = recompute(create_custom_forward(resnet), hidden_states, temb)
+ hidden_states = recompute(
+ create_custom_forward(attn, return_dict=False),
+ hidden_states,
+ encoder_hidden_states,
+ cross_attention_kwargs,
+ ) # [0]
+ else:
+ hidden_states = resnet(hidden_states, temb)
+ hidden_states = attn(
+ hidden_states,
+ encoder_hidden_states=encoder_hidden_states,
+ cross_attention_kwargs=cross_attention_kwargs,
+ ).sample
+ output_states += (hidden_states,)
+
+ if self.downsamplers is not None:
+ for downsampler in self.downsamplers:
+ hidden_states = downsampler(hidden_states)
+
+ output_states += (hidden_states,)
+
+ return hidden_states, output_states
+
+
+class DownBlock2D(nn.Layer):
+ def __init__(
+ self,
+ in_channels: int,
+ out_channels: int,
+ temb_channels: int,
+ dropout: float = 0.0,
+ num_layers: int = 1,
+ resnet_eps: float = 1e-6,
+ resnet_time_scale_shift: str = "default",
+ resnet_act_fn: str = "swish",
+ resnet_groups: int = 32,
+ resnet_pre_norm: bool = True,
+ output_scale_factor=1.0,
+ add_downsample=True,
+ downsample_padding=1,
+ ):
+ super().__init__()
+ resnets = []
+
+ for i in range(num_layers):
+ in_channels = in_channels if i == 0 else out_channels
+ resnets.append(
+ ResnetBlock2D(
+ in_channels=in_channels,
+ out_channels=out_channels,
+ temb_channels=temb_channels,
+ eps=resnet_eps,
+ groups=resnet_groups,
+ dropout=dropout,
+ time_embedding_norm=resnet_time_scale_shift,
+ non_linearity=resnet_act_fn,
+ output_scale_factor=output_scale_factor,
+ pre_norm=resnet_pre_norm,
+ )
+ )
+
+ self.resnets = nn.LayerList(resnets)
+
+ if add_downsample:
+ self.downsamplers = nn.LayerList(
+ [
+ Downsample2D(
+ out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
+ )
+ ]
+ )
+ else:
+ self.downsamplers = None
+
+ self.gradient_checkpointing = False
+
+ def forward(self, hidden_states, temb=None):
+ output_states = ()
+
+ for resnet in self.resnets:
+ if self.training and self.gradient_checkpointing:
+
+ def create_custom_forward(module):
+ def custom_forward(*inputs):
+ return module(*inputs)
+
+ return custom_forward
+
+ hidden_states = recompute(create_custom_forward(resnet), hidden_states, temb)
+ else:
+ hidden_states = resnet(hidden_states, temb)
+
+ output_states += (hidden_states,)
+
+ if self.downsamplers is not None:
+ for downsampler in self.downsamplers:
+ hidden_states = downsampler(hidden_states)
+
+ output_states += (hidden_states,)
+
+ return hidden_states, output_states
+
+
+class DownEncoderBlock2D(nn.Layer):
+ def __init__(
+ self,
+ in_channels: int,
+ out_channels: int,
+ dropout: float = 0.0,
+ num_layers: int = 1,
+ resnet_eps: float = 1e-6,
+ resnet_time_scale_shift: str = "default",
+ resnet_act_fn: str = "swish",
+ resnet_groups: int = 32,
+ resnet_pre_norm: bool = True,
+ output_scale_factor=1.0,
+ add_downsample=True,
+ downsample_padding=1,
+ ):
+ super().__init__()
+ resnets = []
+
+ for i in range(num_layers):
+ in_channels = in_channels if i == 0 else out_channels
+ resnets.append(
+ ResnetBlock2D(
+ in_channels=in_channels,
+ out_channels=out_channels,
+ temb_channels=None,
+ eps=resnet_eps,
+ groups=resnet_groups,
+ dropout=dropout,
+ time_embedding_norm=resnet_time_scale_shift,
+ non_linearity=resnet_act_fn,
+ output_scale_factor=output_scale_factor,
+ pre_norm=resnet_pre_norm,
+ )
+ )
+
+ self.resnets = nn.LayerList(resnets)
+
+ if add_downsample:
+ self.downsamplers = nn.LayerList(
+ [
+ Downsample2D(
+ out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
+ )
+ ]
+ )
+ else:
+ self.downsamplers = None
+
+ def forward(self, hidden_states):
+ for resnet in self.resnets:
+ hidden_states = resnet(hidden_states, temb=None)
+
+ if self.downsamplers is not None:
+ for downsampler in self.downsamplers:
+ hidden_states = downsampler(hidden_states)
+
+ return hidden_states
+
+
+class AttnDownEncoderBlock2D(nn.Layer):
+ def __init__(
+ self,
+ in_channels: int,
+ out_channels: int,
+ dropout: float = 0.0,
+ num_layers: int = 1,
+ resnet_eps: float = 1e-6,
+ resnet_time_scale_shift: str = "default",
+ resnet_act_fn: str = "swish",
+ resnet_groups: int = 32,
+ resnet_pre_norm: bool = True,
+ attn_num_head_channels=1,
+ output_scale_factor=1.0,
+ add_downsample=True,
+ downsample_padding=1,
+ ):
+ super().__init__()
+ resnets = []
+ attentions = []
+
+ for i in range(num_layers):
+ in_channels = in_channels if i == 0 else out_channels
+ resnets.append(
+ ResnetBlock2D(
+ in_channels=in_channels,
+ out_channels=out_channels,
+ temb_channels=None,
+ eps=resnet_eps,
+ groups=resnet_groups,
+ dropout=dropout,
+ time_embedding_norm=resnet_time_scale_shift,
+ non_linearity=resnet_act_fn,
+ output_scale_factor=output_scale_factor,
+ pre_norm=resnet_pre_norm,
+ )
+ )
+ attentions.append(
+ AttentionBlock(
+ out_channels,
+ num_head_channels=attn_num_head_channels,
+ rescale_output_factor=output_scale_factor,
+ eps=resnet_eps,
+ norm_num_groups=resnet_groups,
+ )
+ )
+
+ self.attentions = nn.LayerList(attentions)
+ self.resnets = nn.LayerList(resnets)
+
+ if add_downsample:
+ self.downsamplers = nn.LayerList(
+ [
+ Downsample2D(
+ out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
+ )
+ ]
+ )
+ else:
+ self.downsamplers = None
+
+ def forward(self, hidden_states):
+ for resnet, attn in zip(self.resnets, self.attentions):
+ hidden_states = resnet(hidden_states, temb=None)
+ hidden_states = attn(hidden_states)
+
+ if self.downsamplers is not None:
+ for downsampler in self.downsamplers:
+ hidden_states = downsampler(hidden_states)
+
+ return hidden_states
+
+
+class AttnSkipDownBlock2D(nn.Layer):
+ def __init__(
+ self,
+ in_channels: int,
+ out_channels: int,
+ temb_channels: int,
+ dropout: float = 0.0,
+ num_layers: int = 1,
+ resnet_eps: float = 1e-6,
+ resnet_time_scale_shift: str = "default",
+ resnet_act_fn: str = "swish",
+ resnet_pre_norm: bool = True,
+ attn_num_head_channels=1,
+ output_scale_factor=np.sqrt(2.0),
+ downsample_padding=1,
+ add_downsample=True,
+ ):
+ super().__init__()
+ self.attentions = nn.LayerList([])
+ self.resnets = nn.LayerList([])
+
+ for i in range(num_layers):
+ in_channels = in_channels if i == 0 else out_channels
+ self.resnets.append(
+ ResnetBlock2D(
+ in_channels=in_channels,
+ out_channels=out_channels,
+ temb_channels=temb_channels,
+ eps=resnet_eps,
+ groups=min(in_channels // 4, 32),
+ groups_out=min(out_channels // 4, 32),
+ dropout=dropout,
+ time_embedding_norm=resnet_time_scale_shift,
+ non_linearity=resnet_act_fn,
+ output_scale_factor=output_scale_factor,
+ pre_norm=resnet_pre_norm,
+ )
+ )
+ self.attentions.append(
+ AttentionBlock(
+ out_channels,
+ num_head_channels=attn_num_head_channels,
+ rescale_output_factor=output_scale_factor,
+ eps=resnet_eps,
+ )
+ )
+
+ if add_downsample:
+ self.resnet_down = ResnetBlock2D(
+ in_channels=out_channels,
+ out_channels=out_channels,
+ temb_channels=temb_channels,
+ eps=resnet_eps,
+ groups=min(out_channels // 4, 32),
+ dropout=dropout,
+ time_embedding_norm=resnet_time_scale_shift,
+ non_linearity=resnet_act_fn,
+ output_scale_factor=output_scale_factor,
+ pre_norm=resnet_pre_norm,
+ use_in_shortcut=True,
+ down=True,
+ kernel="fir",
+ )
+ self.downsamplers = nn.LayerList([FirDownsample2D(out_channels, out_channels=out_channels)])
+ self.skip_conv = nn.Conv2D(3, out_channels, kernel_size=(1, 1), stride=(1, 1))
+ else:
+ self.resnet_down = None
+ self.downsamplers = None
+ self.skip_conv = None
+
+ def forward(self, hidden_states, temb=None, skip_sample=None):
+ output_states = ()
+
+ for resnet, attn in zip(self.resnets, self.attentions):
+ hidden_states = resnet(hidden_states, temb)
+ hidden_states = attn(hidden_states)
+ output_states += (hidden_states,)
+
+ if self.downsamplers is not None:
+ hidden_states = self.resnet_down(hidden_states, temb)
+ for downsampler in self.downsamplers:
+ skip_sample = downsampler(skip_sample)
+
+ hidden_states = self.skip_conv(skip_sample) + hidden_states
+
+ output_states += (hidden_states,)
+
+ return hidden_states, output_states, skip_sample
+
+
+class SkipDownBlock2D(nn.Layer):
+ def __init__(
+ self,
+ in_channels: int,
+ out_channels: int,
+ temb_channels: int,
+ dropout: float = 0.0,
+ num_layers: int = 1,
+ resnet_eps: float = 1e-6,
+ resnet_time_scale_shift: str = "default",
+ resnet_act_fn: str = "swish",
+ resnet_pre_norm: bool = True,
+ output_scale_factor=np.sqrt(2.0),
+ add_downsample=True,
+ downsample_padding=1,
+ ):
+ super().__init__()
+ self.resnets = nn.LayerList([])
+
+ for i in range(num_layers):
+ in_channels = in_channels if i == 0 else out_channels
+ self.resnets.append(
+ ResnetBlock2D(
+ in_channels=in_channels,
+ out_channels=out_channels,
+ temb_channels=temb_channels,
+ eps=resnet_eps,
+ groups=min(in_channels // 4, 32),
+ groups_out=min(out_channels // 4, 32),
+ dropout=dropout,
+ time_embedding_norm=resnet_time_scale_shift,
+ non_linearity=resnet_act_fn,
+ output_scale_factor=output_scale_factor,
+ pre_norm=resnet_pre_norm,
+ )
+ )
+
+ if add_downsample:
+ self.resnet_down = ResnetBlock2D(
+ in_channels=out_channels,
+ out_channels=out_channels,
+ temb_channels=temb_channels,
+ eps=resnet_eps,
+ groups=min(out_channels // 4, 32),
+ dropout=dropout,
+ time_embedding_norm=resnet_time_scale_shift,
+ non_linearity=resnet_act_fn,
+ output_scale_factor=output_scale_factor,
+ pre_norm=resnet_pre_norm,
+ use_in_shortcut=True,
+ down=True,
+ kernel="fir",
+ )
+ self.downsamplers = nn.LayerList([FirDownsample2D(out_channels, out_channels=out_channels)])
+ self.skip_conv = nn.Conv2D(3, out_channels, kernel_size=(1, 1), stride=(1, 1))
+ else:
+ self.resnet_down = None
+ self.downsamplers = None
+ self.skip_conv = None
+
+ def forward(self, hidden_states, temb=None, skip_sample=None):
+ output_states = ()
+
+ for resnet in self.resnets:
+ hidden_states = resnet(hidden_states, temb)
+ output_states += (hidden_states,)
+
+ if self.downsamplers is not None:
+ hidden_states = self.resnet_down(hidden_states, temb)
+ for downsampler in self.downsamplers:
+ skip_sample = downsampler(skip_sample)
+
+ hidden_states = self.skip_conv(skip_sample) + hidden_states
+
+ output_states += (hidden_states,)
+
+ return hidden_states, output_states, skip_sample
+
+
+class ResnetDownsampleBlock2D(nn.Layer):
+ def __init__(
+ self,
+ in_channels: int,
+ out_channels: int,
+ temb_channels: int,
+ dropout: float = 0.0,
+ num_layers: int = 1,
+ resnet_eps: float = 1e-6,
+ resnet_time_scale_shift: str = "default",
+ resnet_act_fn: str = "swish",
+ resnet_groups: int = 32,
+ resnet_pre_norm: bool = True,
+ output_scale_factor=1.0,
+ add_downsample=True,
+ ):
+ super().__init__()
+ resnets = []
+
+ for i in range(num_layers):
+ in_channels = in_channels if i == 0 else out_channels
+ resnets.append(
+ ResnetBlock2D(
+ in_channels=in_channels,
+ out_channels=out_channels,
+ temb_channels=temb_channels,
+ eps=resnet_eps,
+ groups=resnet_groups,
+ dropout=dropout,
+ time_embedding_norm=resnet_time_scale_shift,
+ non_linearity=resnet_act_fn,
+ output_scale_factor=output_scale_factor,
+ pre_norm=resnet_pre_norm,
+ )
+ )
+
+ self.resnets = nn.LayerList(resnets)
+
+ if add_downsample:
+ self.downsamplers = nn.LayerList(
+ [
+ ResnetBlock2D(
+ in_channels=out_channels,
+ out_channels=out_channels,
+ temb_channels=temb_channels,
+ eps=resnet_eps,
+ groups=resnet_groups,
+ dropout=dropout,
+ time_embedding_norm=resnet_time_scale_shift,
+ non_linearity=resnet_act_fn,
+ output_scale_factor=output_scale_factor,
+ pre_norm=resnet_pre_norm,
+ down=True,
+ )
+ ]
+ )
+ else:
+ self.downsamplers = None
+
+ self.gradient_checkpointing = False
+
+ def forward(self, hidden_states, temb=None):
+ output_states = ()
+
+ for resnet in self.resnets:
+ if self.training and self.gradient_checkpointing:
+
+ def create_custom_forward(module):
+ def custom_forward(*inputs):
+ return module(*inputs)
+
+ return custom_forward
+
+ hidden_states = recompute(create_custom_forward(resnet), hidden_states, temb)
+ else:
+ hidden_states = resnet(hidden_states, temb)
+
+ output_states += (hidden_states,)
+
+ if self.downsamplers is not None:
+ for downsampler in self.downsamplers:
+ hidden_states = downsampler(hidden_states, temb)
+
+ output_states += (hidden_states,)
+
+ return hidden_states, output_states
+
+
+class SimpleCrossAttnDownBlock2D(nn.Layer):
+ def __init__(
+ self,
+ in_channels: int,
+ out_channels: int,
+ temb_channels: int,
+ dropout: float = 0.0,
+ num_layers: int = 1,
+ resnet_eps: float = 1e-6,
+ resnet_time_scale_shift: str = "default",
+ resnet_act_fn: str = "swish",
+ resnet_groups: int = 32,
+ resnet_pre_norm: bool = True,
+ attn_num_head_channels=1,
+ cross_attention_dim=1280,
+ output_scale_factor=1.0,
+ add_downsample=True,
+ ):
+ super().__init__()
+
+ self.has_cross_attention = True
+
+ resnets = []
+ attentions = []
+
+ self.attn_num_head_channels = attn_num_head_channels
+ self.num_heads = out_channels // self.attn_num_head_channels
+
+ for i in range(num_layers):
+ in_channels = in_channels if i == 0 else out_channels
+ resnets.append(
+ ResnetBlock2D(
+ in_channels=in_channels,
+ out_channels=out_channels,
+ temb_channels=temb_channels,
+ eps=resnet_eps,
+ groups=resnet_groups,
+ dropout=dropout,
+ time_embedding_norm=resnet_time_scale_shift,
+ non_linearity=resnet_act_fn,
+ output_scale_factor=output_scale_factor,
+ pre_norm=resnet_pre_norm,
+ )
+ )
+ attentions.append(
+ CrossAttention(
+ query_dim=out_channels,
+ cross_attention_dim=out_channels,
+ heads=self.num_heads,
+ dim_head=attn_num_head_channels,
+ added_kv_proj_dim=cross_attention_dim,
+ norm_num_groups=resnet_groups,
+ bias=True,
+ upcast_softmax=True,
+ processor=CrossAttnAddedKVProcessor(),
+ )
+ )
+ self.attentions = nn.LayerList(attentions)
+ self.resnets = nn.LayerList(resnets)
+
+ if add_downsample:
+ self.downsamplers = nn.LayerList(
+ [
+ ResnetBlock2D(
+ in_channels=out_channels,
+ out_channels=out_channels,
+ temb_channels=temb_channels,
+ eps=resnet_eps,
+ groups=resnet_groups,
+ dropout=dropout,
+ time_embedding_norm=resnet_time_scale_shift,
+ non_linearity=resnet_act_fn,
+ output_scale_factor=output_scale_factor,
+ pre_norm=resnet_pre_norm,
+ down=True,
+ )
+ ]
+ )
+ else:
+ self.downsamplers = None
+
+ self.gradient_checkpointing = False
+
+ def forward(
+ self, hidden_states, temb=None, encoder_hidden_states=None, attention_mask=None, cross_attention_kwargs=None
+ ):
+ output_states = ()
+ cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
+
+ for resnet, attn in zip(self.resnets, self.attentions):
+ # resnet
+ hidden_states = resnet(hidden_states, temb)
+
+ # attn
+ hidden_states = attn(
+ hidden_states,
+ encoder_hidden_states=encoder_hidden_states,
+ attention_mask=attention_mask,
+ **cross_attention_kwargs,
+ )
+
+ output_states += (hidden_states,)
+
+ if self.downsamplers is not None:
+ for downsampler in self.downsamplers:
+ hidden_states = downsampler(hidden_states, temb)
+
+ output_states += (hidden_states,)
+
+ return hidden_states, output_states
+
+
+class AttnUpBlock2D(nn.Layer):
+ def __init__(
+ self,
+ in_channels: int,
+ prev_output_channel: int,
+ out_channels: int,
+ temb_channels: int,
+ dropout: float = 0.0,
+ num_layers: int = 1,
+ resnet_eps: float = 1e-6,
+ resnet_time_scale_shift: str = "default",
+ resnet_act_fn: str = "swish",
+ resnet_groups: int = 32,
+ resnet_pre_norm: bool = True,
+ attn_num_head_channels=1,
+ output_scale_factor=1.0,
+ add_upsample=True,
+ ):
+ super().__init__()
+ resnets = []
+ attentions = []
+
+ for i in range(num_layers):
+ res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
+ resnet_in_channels = prev_output_channel if i == 0 else out_channels
+
+ resnets.append(
+ ResnetBlock2D(
+ in_channels=resnet_in_channels + res_skip_channels,
+ out_channels=out_channels,
+ temb_channels=temb_channels,
+ eps=resnet_eps,
+ groups=resnet_groups,
+ dropout=dropout,
+ time_embedding_norm=resnet_time_scale_shift,
+ non_linearity=resnet_act_fn,
+ output_scale_factor=output_scale_factor,
+ pre_norm=resnet_pre_norm,
+ )
+ )
+ attentions.append(
+ AttentionBlock(
+ out_channels,
+ num_head_channels=attn_num_head_channels,
+ rescale_output_factor=output_scale_factor,
+ eps=resnet_eps,
+ norm_num_groups=resnet_groups,
+ )
+ )
+
+ self.attentions = nn.LayerList(attentions)
+ self.resnets = nn.LayerList(resnets)
+
+ if add_upsample:
+ self.upsamplers = nn.LayerList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
+ else:
+ self.upsamplers = None
+
+ def forward(self, hidden_states, res_hidden_states_tuple, temb=None):
+ for resnet, attn in zip(self.resnets, self.attentions):
+ # pop res hidden states
+ res_hidden_states = res_hidden_states_tuple[-1]
+ res_hidden_states_tuple = res_hidden_states_tuple[:-1]
+ hidden_states = paddle.concat([hidden_states, res_hidden_states], axis=1)
+
+ hidden_states = resnet(hidden_states, temb)
+ hidden_states = attn(hidden_states)
+
+ if self.upsamplers is not None:
+ for upsampler in self.upsamplers:
+ hidden_states = upsampler(hidden_states)
+
+ return hidden_states
+
+
+class CrossAttnUpBlock2D(nn.Layer):
+ def __init__(
+ self,
+ in_channels: int,
+ out_channels: int,
+ prev_output_channel: int,
+ temb_channels: int,
+ dropout: float = 0.0,
+ num_layers: int = 1,
+ resnet_eps: float = 1e-6,
+ resnet_time_scale_shift: str = "default",
+ resnet_act_fn: str = "swish",
+ resnet_groups: int = 32,
+ resnet_pre_norm: bool = True,
+ attn_num_head_channels=1,
+ cross_attention_dim=1280,
+ output_scale_factor=1.0,
+ add_upsample=True,
+ dual_cross_attention=False,
+ use_linear_projection=False,
+ only_cross_attention=False,
+ upcast_attention=False,
+ ):
+ super().__init__()
+ resnets = []
+ attentions = []
+ self.has_cross_attention = True
+ self.attn_num_head_channels = attn_num_head_channels
+
+ for i in range(num_layers):
+ res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
+ resnet_in_channels = prev_output_channel if i == 0 else out_channels
+
+ resnets.append(
+ ResnetBlock2D(
+ in_channels=resnet_in_channels + res_skip_channels,
+ out_channels=out_channels,
+ temb_channels=temb_channels,
+ eps=resnet_eps,
+ groups=resnet_groups,
+ dropout=dropout,
+ time_embedding_norm=resnet_time_scale_shift,
+ non_linearity=resnet_act_fn,
+ output_scale_factor=output_scale_factor,
+ pre_norm=resnet_pre_norm,
+ )
+ )
+ if not dual_cross_attention:
+ attentions.append(
+ Transformer2DModel(
+ attn_num_head_channels,
+ out_channels // attn_num_head_channels,
+ in_channels=out_channels,
+ num_layers=1,
+ cross_attention_dim=cross_attention_dim,
+ norm_num_groups=resnet_groups,
+ use_linear_projection=use_linear_projection,
+ only_cross_attention=only_cross_attention,
+ upcast_attention=upcast_attention,
+ )
+ )
+ else:
+ attentions.append(
+ DualTransformer2DModel(
+ attn_num_head_channels,
+ out_channels // attn_num_head_channels,
+ in_channels=out_channels,
+ num_layers=1,
+ cross_attention_dim=cross_attention_dim,
+ norm_num_groups=resnet_groups,
+ )
+ )
+ self.attentions = nn.LayerList(attentions)
+ self.resnets = nn.LayerList(resnets)
+
+ if add_upsample:
+ self.upsamplers = nn.LayerList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
+ else:
+ self.upsamplers = None
+
+ self.gradient_checkpointing = False
+
+ def forward(
+ self,
+ hidden_states,
+ res_hidden_states_tuple,
+ temb=None,
+ encoder_hidden_states=None,
+ cross_attention_kwargs=None,
+ upsample_size=None,
+ attention_mask=None,
+ ):
+ # TODO(Patrick, William) - attention mask is not used
+ for resnet, attn in zip(self.resnets, self.attentions):
+ # pop res hidden states
+ res_hidden_states = res_hidden_states_tuple[-1]
+ res_hidden_states_tuple = res_hidden_states_tuple[:-1]
+ hidden_states = paddle.concat([hidden_states, res_hidden_states], axis=1)
+ if self.training and self.gradient_checkpointing:
+
+ def create_custom_forward(module, return_dict=None):
+ def custom_forward(*inputs):
+ if return_dict is not None:
+ return module(*inputs, return_dict=return_dict)[0] # move [0]
+ else:
+ return module(*inputs)
+
+ return custom_forward
+
+ hidden_states = recompute(create_custom_forward(resnet), hidden_states, temb)
+ hidden_states = recompute(
+ create_custom_forward(attn, return_dict=False),
+ hidden_states,
+ encoder_hidden_states,
+ cross_attention_kwargs,
+ ) # [0]
+ else:
+ hidden_states = resnet(hidden_states, temb)
+ hidden_states = attn(
+ hidden_states,
+ encoder_hidden_states=encoder_hidden_states,
+ cross_attention_kwargs=cross_attention_kwargs,
+ ).sample
+
+ if self.upsamplers is not None:
+ for upsampler in self.upsamplers:
+ hidden_states = upsampler(hidden_states, upsample_size)
+
+ return hidden_states
+
+
+class UpBlock2D(nn.Layer):
+ def __init__(
+ self,
+ in_channels: int,
+ prev_output_channel: int,
+ out_channels: int,
+ temb_channels: int,
+ dropout: float = 0.0,
+ num_layers: int = 1,
+ resnet_eps: float = 1e-6,
+ resnet_time_scale_shift: str = "default",
+ resnet_act_fn: str = "swish",
+ resnet_groups: int = 32,
+ resnet_pre_norm: bool = True,
+ output_scale_factor=1.0,
+ add_upsample=True,
+ ):
+ super().__init__()
+ resnets = []
+
+ for i in range(num_layers):
+ res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
+ resnet_in_channels = prev_output_channel if i == 0 else out_channels
+
+ resnets.append(
+ ResnetBlock2D(
+ in_channels=resnet_in_channels + res_skip_channels,
+ out_channels=out_channels,
+ temb_channels=temb_channels,
+ eps=resnet_eps,
+ groups=resnet_groups,
+ dropout=dropout,
+ time_embedding_norm=resnet_time_scale_shift,
+ non_linearity=resnet_act_fn,
+ output_scale_factor=output_scale_factor,
+ pre_norm=resnet_pre_norm,
+ )
+ )
+
+ self.resnets = nn.LayerList(resnets)
+
+ if add_upsample:
+ self.upsamplers = nn.LayerList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
+ else:
+ self.upsamplers = None
+
+ self.gradient_checkpointing = False
+
+ def forward(self, hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None):
+ for resnet in self.resnets:
+ # pop res hidden states
+ res_hidden_states = res_hidden_states_tuple[-1]
+ res_hidden_states_tuple = res_hidden_states_tuple[:-1]
+ hidden_states = paddle.concat([hidden_states, res_hidden_states], axis=1)
+ if self.training and self.gradient_checkpointing:
+
+ def create_custom_forward(module):
+ def custom_forward(*inputs):
+ return module(*inputs)
+
+ return custom_forward
+
+ hidden_states = recompute(create_custom_forward(resnet), hidden_states, temb)
+ else:
+ hidden_states = resnet(hidden_states, temb)
+
+ if self.upsamplers is not None:
+ for upsampler in self.upsamplers:
+ hidden_states = upsampler(hidden_states, upsample_size)
+
+ return hidden_states
+
+
+class UpDecoderBlock2D(nn.Layer):
+ def __init__(
+ self,
+ in_channels: int,
+ out_channels: int,
+ dropout: float = 0.0,
+ num_layers: int = 1,
+ resnet_eps: float = 1e-6,
+ resnet_time_scale_shift: str = "default",
+ resnet_act_fn: str = "swish",
+ resnet_groups: int = 32,
+ resnet_pre_norm: bool = True,
+ output_scale_factor=1.0,
+ add_upsample=True,
+ ):
+ super().__init__()
+ resnets = []
+
+ for i in range(num_layers):
+ input_channels = in_channels if i == 0 else out_channels
+
+ resnets.append(
+ ResnetBlock2D(
+ in_channels=input_channels,
+ out_channels=out_channels,
+ temb_channels=None,
+ eps=resnet_eps,
+ groups=resnet_groups,
+ dropout=dropout,
+ time_embedding_norm=resnet_time_scale_shift,
+ non_linearity=resnet_act_fn,
+ output_scale_factor=output_scale_factor,
+ pre_norm=resnet_pre_norm,
+ )
+ )
+
+ self.resnets = nn.LayerList(resnets)
+
+ if add_upsample:
+ self.upsamplers = nn.LayerList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
+ else:
+ self.upsamplers = None
+
+ def forward(self, hidden_states):
+ for resnet in self.resnets:
+ hidden_states = resnet(hidden_states, temb=None)
+
+ if self.upsamplers is not None:
+ for upsampler in self.upsamplers:
+ hidden_states = upsampler(hidden_states)
+
+ return hidden_states
+
+
+class AttnUpDecoderBlock2D(nn.Layer):
+ def __init__(
+ self,
+ in_channels: int,
+ out_channels: int,
+ dropout: float = 0.0,
+ num_layers: int = 1,
+ resnet_eps: float = 1e-6,
+ resnet_time_scale_shift: str = "default",
+ resnet_act_fn: str = "swish",
+ resnet_groups: int = 32,
+ resnet_pre_norm: bool = True,
+ attn_num_head_channels=1,
+ output_scale_factor=1.0,
+ add_upsample=True,
+ ):
+ super().__init__()
+ resnets = []
+ attentions = []
+
+ for i in range(num_layers):
+ input_channels = in_channels if i == 0 else out_channels
+
+ resnets.append(
+ ResnetBlock2D(
+ in_channels=input_channels,
+ out_channels=out_channels,
+ temb_channels=None,
+ eps=resnet_eps,
+ groups=resnet_groups,
+ dropout=dropout,
+ time_embedding_norm=resnet_time_scale_shift,
+ non_linearity=resnet_act_fn,
+ output_scale_factor=output_scale_factor,
+ pre_norm=resnet_pre_norm,
+ )
+ )
+ attentions.append(
+ AttentionBlock(
+ out_channels,
+ num_head_channels=attn_num_head_channels,
+ rescale_output_factor=output_scale_factor,
+ eps=resnet_eps,
+ norm_num_groups=resnet_groups,
+ )
+ )
+
+ self.attentions = nn.LayerList(attentions)
+ self.resnets = nn.LayerList(resnets)
+
+ if add_upsample:
+ self.upsamplers = nn.LayerList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
+ else:
+ self.upsamplers = None
+
+ def forward(self, hidden_states):
+ for resnet, attn in zip(self.resnets, self.attentions):
+ hidden_states = resnet(hidden_states, temb=None)
+ hidden_states = attn(hidden_states)
+
+ if self.upsamplers is not None:
+ for upsampler in self.upsamplers:
+ hidden_states = upsampler(hidden_states)
+
+ return hidden_states
+
+
+class AttnSkipUpBlock2D(nn.Layer):
+ def __init__(
+ self,
+ in_channels: int,
+ prev_output_channel: int,
+ out_channels: int,
+ temb_channels: int,
+ dropout: float = 0.0,
+ num_layers: int = 1,
+ resnet_eps: float = 1e-6,
+ resnet_time_scale_shift: str = "default",
+ resnet_act_fn: str = "swish",
+ resnet_pre_norm: bool = True,
+ attn_num_head_channels=1,
+ output_scale_factor=np.sqrt(2.0),
+ upsample_padding=1,
+ add_upsample=True,
+ ):
+ super().__init__()
+ self.attentions = nn.LayerList([])
+ self.resnets = nn.LayerList([])
+
+ for i in range(num_layers):
+ res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
+ resnet_in_channels = prev_output_channel if i == 0 else out_channels
+
+ self.resnets.append(
+ ResnetBlock2D(
+ in_channels=resnet_in_channels + res_skip_channels,
+ out_channels=out_channels,
+ temb_channels=temb_channels,
+ eps=resnet_eps,
+ groups=min(resnet_in_channels + res_skip_channels // 4, 32),
+ groups_out=min(out_channels // 4, 32),
+ dropout=dropout,
+ time_embedding_norm=resnet_time_scale_shift,
+ non_linearity=resnet_act_fn,
+ output_scale_factor=output_scale_factor,
+ pre_norm=resnet_pre_norm,
+ )
+ )
+
+ self.attentions.append(
+ AttentionBlock(
+ out_channels,
+ num_head_channels=attn_num_head_channels,
+ rescale_output_factor=output_scale_factor,
+ eps=resnet_eps,
+ )
+ )
+
+ self.upsampler = FirUpsample2D(in_channels, out_channels=out_channels)
+ if add_upsample:
+ self.resnet_up = ResnetBlock2D(
+ in_channels=out_channels,
+ out_channels=out_channels,
+ temb_channels=temb_channels,
+ eps=resnet_eps,
+ groups=min(out_channels // 4, 32),
+ groups_out=min(out_channels // 4, 32),
+ dropout=dropout,
+ time_embedding_norm=resnet_time_scale_shift,
+ non_linearity=resnet_act_fn,
+ output_scale_factor=output_scale_factor,
+ pre_norm=resnet_pre_norm,
+ use_in_shortcut=True,
+ up=True,
+ kernel="fir",
+ )
+ self.skip_conv = nn.Conv2D(out_channels, 3, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
+ self.skip_norm = nn.GroupNorm(
+ num_groups=min(out_channels // 4, 32), num_channels=out_channels, epsilon=resnet_eps
+ )
+ self.act = nn.Silu()
+ else:
+ self.resnet_up = None
+ self.skip_conv = None
+ self.skip_norm = None
+ self.act = None
+
+ def forward(self, hidden_states, res_hidden_states_tuple, temb=None, skip_sample=None):
+ for resnet in self.resnets:
+ # pop res hidden states
+ res_hidden_states = res_hidden_states_tuple[-1]
+ res_hidden_states_tuple = res_hidden_states_tuple[:-1]
+ hidden_states = paddle.concat([hidden_states, res_hidden_states], axis=1)
+ hidden_states = resnet(hidden_states, temb)
+
+ hidden_states = self.attentions[0](hidden_states)
+
+ if skip_sample is not None:
+ skip_sample = self.upsampler(skip_sample)
+ else:
+ skip_sample = 0
+
+ if self.resnet_up is not None:
+ skip_sample_states = self.skip_norm(hidden_states)
+ skip_sample_states = self.act(skip_sample_states)
+ skip_sample_states = self.skip_conv(skip_sample_states)
+
+ skip_sample = skip_sample + skip_sample_states
+
+ hidden_states = self.resnet_up(hidden_states, temb)
+
+ return hidden_states, skip_sample
+
+
+class SkipUpBlock2D(nn.Layer):
+ def __init__(
+ self,
+ in_channels: int,
+ prev_output_channel: int,
+ out_channels: int,
+ temb_channels: int,
+ dropout: float = 0.0,
+ num_layers: int = 1,
+ resnet_eps: float = 1e-6,
+ resnet_time_scale_shift: str = "default",
+ resnet_act_fn: str = "swish",
+ resnet_pre_norm: bool = True,
+ output_scale_factor=np.sqrt(2.0),
+ add_upsample=True,
+ upsample_padding=1,
+ ):
+ super().__init__()
+ self.resnets = nn.LayerList([])
+
+ for i in range(num_layers):
+ res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
+ resnet_in_channels = prev_output_channel if i == 0 else out_channels
+
+ self.resnets.append(
+ ResnetBlock2D(
+ in_channels=resnet_in_channels + res_skip_channels,
+ out_channels=out_channels,
+ temb_channels=temb_channels,
+ eps=resnet_eps,
+ groups=min((resnet_in_channels + res_skip_channels) // 4, 32),
+ groups_out=min(out_channels // 4, 32),
+ dropout=dropout,
+ time_embedding_norm=resnet_time_scale_shift,
+ non_linearity=resnet_act_fn,
+ output_scale_factor=output_scale_factor,
+ pre_norm=resnet_pre_norm,
+ )
+ )
+
+ self.upsampler = FirUpsample2D(in_channels, out_channels=out_channels)
+ if add_upsample:
+ self.resnet_up = ResnetBlock2D(
+ in_channels=out_channels,
+ out_channels=out_channels,
+ temb_channels=temb_channels,
+ eps=resnet_eps,
+ groups=min(out_channels // 4, 32),
+ groups_out=min(out_channels // 4, 32),
+ dropout=dropout,
+ time_embedding_norm=resnet_time_scale_shift,
+ non_linearity=resnet_act_fn,
+ output_scale_factor=output_scale_factor,
+ pre_norm=resnet_pre_norm,
+ use_in_shortcut=True,
+ up=True,
+ kernel="fir",
+ )
+ self.skip_conv = nn.Conv2D(out_channels, 3, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
+ self.skip_norm = nn.GroupNorm(
+ num_groups=min(out_channels // 4, 32), num_channels=out_channels, epsilon=resnet_eps
+ )
+ self.act = nn.Silu()
+ else:
+ self.resnet_up = None
+ self.skip_conv = None
+ self.skip_norm = None
+ self.act = None
+
+ def forward(self, hidden_states, res_hidden_states_tuple, temb=None, skip_sample=None):
+ for resnet in self.resnets:
+ # pop res hidden states
+ res_hidden_states = res_hidden_states_tuple[-1]
+ res_hidden_states_tuple = res_hidden_states_tuple[:-1]
+ hidden_states = paddle.concat([hidden_states, res_hidden_states], axis=1)
+
+ hidden_states = resnet(hidden_states, temb)
+
+ if skip_sample is not None:
+ skip_sample = self.upsampler(skip_sample)
+ else:
+ skip_sample = 0
+
+ if self.resnet_up is not None:
+ skip_sample_states = self.skip_norm(hidden_states)
+ skip_sample_states = self.act(skip_sample_states)
+ skip_sample_states = self.skip_conv(skip_sample_states)
+
+ skip_sample = skip_sample + skip_sample_states
+
+ hidden_states = self.resnet_up(hidden_states, temb)
+
+ return hidden_states, skip_sample
+
+
+class ResnetUpsampleBlock2D(nn.Layer):
+ def __init__(
+ self,
+ in_channels: int,
+ prev_output_channel: int,
+ out_channels: int,
+ temb_channels: int,
+ dropout: float = 0.0,
+ num_layers: int = 1,
+ resnet_eps: float = 1e-6,
+ resnet_time_scale_shift: str = "default",
+ resnet_act_fn: str = "swish",
+ resnet_groups: int = 32,
+ resnet_pre_norm: bool = True,
+ output_scale_factor=1.0,
+ add_upsample=True,
+ ):
+ super().__init__()
+ resnets = []
+
+ for i in range(num_layers):
+ res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
+ resnet_in_channels = prev_output_channel if i == 0 else out_channels
+
+ resnets.append(
+ ResnetBlock2D(
+ in_channels=resnet_in_channels + res_skip_channels,
+ out_channels=out_channels,
+ temb_channels=temb_channels,
+ eps=resnet_eps,
+ groups=resnet_groups,
+ dropout=dropout,
+ time_embedding_norm=resnet_time_scale_shift,
+ non_linearity=resnet_act_fn,
+ output_scale_factor=output_scale_factor,
+ pre_norm=resnet_pre_norm,
+ )
+ )
+
+ self.resnets = nn.LayerList(resnets)
+
+ if add_upsample:
+ self.upsamplers = nn.LayerList(
+ [
+ ResnetBlock2D(
+ in_channels=out_channels,
+ out_channels=out_channels,
+ temb_channels=temb_channels,
+ eps=resnet_eps,
+ groups=resnet_groups,
+ dropout=dropout,
+ time_embedding_norm=resnet_time_scale_shift,
+ non_linearity=resnet_act_fn,
+ output_scale_factor=output_scale_factor,
+ pre_norm=resnet_pre_norm,
+ up=True,
+ )
+ ]
+ )
+ else:
+ self.upsamplers = None
+
+ self.gradient_checkpointing = False
+
+ def forward(self, hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None):
+ for resnet in self.resnets:
+ # pop res hidden states
+ res_hidden_states = res_hidden_states_tuple[-1]
+ res_hidden_states_tuple = res_hidden_states_tuple[:-1]
+ hidden_states = paddle.concat([hidden_states, res_hidden_states], axis=1)
+
+ if self.training and self.gradient_checkpointing:
+
+ def create_custom_forward(module):
+ def custom_forward(*inputs):
+ return module(*inputs)
+
+ return custom_forward
+
+ hidden_states = recompute(create_custom_forward(resnet), hidden_states, temb)
+ else:
+ hidden_states = resnet(hidden_states, temb)
+
+ if self.upsamplers is not None:
+ for upsampler in self.upsamplers:
+ hidden_states = upsampler(hidden_states, temb)
+
+ return hidden_states
+
+
+class SimpleCrossAttnUpBlock2D(nn.Layer):
+ def __init__(
+ self,
+ in_channels: int,
+ out_channels: int,
+ prev_output_channel: int,
+ temb_channels: int,
+ dropout: float = 0.0,
+ num_layers: int = 1,
+ resnet_eps: float = 1e-6,
+ resnet_time_scale_shift: str = "default",
+ resnet_act_fn: str = "swish",
+ resnet_groups: int = 32,
+ resnet_pre_norm: bool = True,
+ attn_num_head_channels=1,
+ cross_attention_dim=1280,
+ output_scale_factor=1.0,
+ add_upsample=True,
+ ):
+ super().__init__()
+ resnets = []
+ attentions = []
+
+ self.has_cross_attention = True
+ self.attn_num_head_channels = attn_num_head_channels
+
+ self.num_heads = out_channels // self.attn_num_head_channels
+
+ for i in range(num_layers):
+ res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
+ resnet_in_channels = prev_output_channel if i == 0 else out_channels
+
+ resnets.append(
+ ResnetBlock2D(
+ in_channels=resnet_in_channels + res_skip_channels,
+ out_channels=out_channels,
+ temb_channels=temb_channels,
+ eps=resnet_eps,
+ groups=resnet_groups,
+ dropout=dropout,
+ time_embedding_norm=resnet_time_scale_shift,
+ non_linearity=resnet_act_fn,
+ output_scale_factor=output_scale_factor,
+ pre_norm=resnet_pre_norm,
+ )
+ )
+ attentions.append(
+ CrossAttention(
+ query_dim=out_channels,
+ cross_attention_dim=out_channels,
+ heads=self.num_heads,
+ dim_head=attn_num_head_channels,
+ added_kv_proj_dim=cross_attention_dim,
+ norm_num_groups=resnet_groups,
+ bias=True,
+ upcast_softmax=True,
+ processor=CrossAttnAddedKVProcessor(),
+ )
+ )
+ self.attentions = nn.LayerList(attentions)
+ self.resnets = nn.LayerList(resnets)
+
+ if add_upsample:
+ self.upsamplers = nn.LayerList(
+ [
+ ResnetBlock2D(
+ in_channels=out_channels,
+ out_channels=out_channels,
+ temb_channels=temb_channels,
+ eps=resnet_eps,
+ groups=resnet_groups,
+ dropout=dropout,
+ time_embedding_norm=resnet_time_scale_shift,
+ non_linearity=resnet_act_fn,
+ output_scale_factor=output_scale_factor,
+ pre_norm=resnet_pre_norm,
+ up=True,
+ )
+ ]
+ )
+ else:
+ self.upsamplers = None
+
+ self.gradient_checkpointing = False
+
+ def forward(
+ self,
+ hidden_states,
+ res_hidden_states_tuple,
+ temb=None,
+ encoder_hidden_states=None,
+ upsample_size=None,
+ attention_mask=None,
+ cross_attention_kwargs=None,
+ ):
+ cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
+ for resnet, attn in zip(self.resnets, self.attentions):
+ # resnet
+ # pop res hidden states
+ res_hidden_states = res_hidden_states_tuple[-1]
+ res_hidden_states_tuple = res_hidden_states_tuple[:-1]
+ hidden_states = paddle.concat([hidden_states, res_hidden_states], axis=1)
+
+ hidden_states = resnet(hidden_states, temb)
+
+ # attn
+ hidden_states = attn(
+ hidden_states,
+ encoder_hidden_states=encoder_hidden_states,
+ attention_mask=attention_mask,
+ **cross_attention_kwargs,
+ )
+
+ if self.upsamplers is not None:
+ for upsampler in self.upsamplers:
+ hidden_states = upsampler(hidden_states, temb)
+
+ return hidden_states
diff --git a/ppdiffusers/models/unet_2d_condition.py b/ppdiffusers/models/unet_2d_condition.py
new file mode 100644
index 0000000000000000000000000000000000000000..61c9b25dde2914867266ca8c9244194bb7626bb4
--- /dev/null
+++ b/ppdiffusers/models/unet_2d_condition.py
@@ -0,0 +1,532 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+# Copyright 2022 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+from dataclasses import dataclass
+from typing import Any, Dict, List, Optional, Tuple, Union
+
+import paddle
+import paddle.nn as nn
+
+from ..configuration_utils import ConfigMixin, register_to_config
+from ..loaders import UNet2DConditionLoadersMixin
+from ..modeling_utils import ModelMixin
+from ..utils import BaseOutput, logging
+from .cross_attention import AttnProcessor
+from .embeddings import TimestepEmbedding, Timesteps
+from .unet_2d_blocks import (
+ CrossAttnDownBlock2D,
+ CrossAttnUpBlock2D,
+ DownBlock2D,
+ UNetMidBlock2DCrossAttn,
+ UNetMidBlock2DSimpleCrossAttn,
+ UpBlock2D,
+ get_down_block,
+ get_up_block,
+)
+
+logger = logging.get_logger(__name__) # pylint: disable=invalid-name
+
+
+@dataclass
+class UNet2DConditionOutput(BaseOutput):
+ """
+ Args:
+ sample (`paddle.Tensor` of shape `(batch_size, num_channels, height, width)`):
+ Hidden states conditioned on `encoder_hidden_states` input. Output of last layer of model.
+ """
+
+ sample: paddle.Tensor
+
+
+class UNet2DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin):
+ r"""
+ UNet2DConditionModel is a conditional 2D UNet model that takes in a noisy sample, conditional state, and a timestep
+ and returns sample shaped output.
+
+ This model inherits from [`ModelMixin`]. Check the superclass documentation for the generic methods the library
+ implements for all the models (such as downloading or saving, etc.)
+
+ Parameters:
+ sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`):
+ Height and width of input/output sample.
+ in_channels (`int`, *optional*, defaults to 4): The number of channels in the input sample.
+ out_channels (`int`, *optional*, defaults to 4): The number of channels in the output.
+ center_input_sample (`bool`, *optional*, defaults to `False`): Whether to center the input sample.
+ flip_sin_to_cos (`bool`, *optional*, defaults to `False`):
+ Whether to flip the sin to cos in the time embedding.
+ freq_shift (`int`, *optional*, defaults to 0): The frequency shift to apply to the time embedding.
+ down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
+ The tuple of downsample blocks to use.
+ mid_block_type (`str`, *optional*, defaults to `"UNetMidBlock2DCrossAttn"`):
+ The mid block type. Choose from `UNetMidBlock2DCrossAttn` or `UNetMidBlock2DSimpleCrossAttn`.
+ up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D",)`):
+ The tuple of upsample blocks to use.
+ block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`):
+ The tuple of output channels for each block.
+ layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block.
+ downsample_padding (`int`, *optional*, defaults to 1): The padding to use for the downsampling convolution.
+ mid_block_scale_factor (`float`, *optional*, defaults to 1.0): The scale factor to use for the mid block.
+ act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
+ norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for the normalization.
+ norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon to use for the normalization.
+ cross_attention_dim (`int`, *optional*, defaults to 1280): The dimension of the cross attention features.
+ attention_head_dim (`int`, *optional*, defaults to 8): The dimension of the attention heads.
+ resnet_time_scale_shift (`str`, *optional*, defaults to `"default"`): Time scale shift config
+ for resnet blocks, see [`~models.resnet.ResnetBlock2D`]. Choose from `default` or `scale_shift`.
+ class_embed_type (`str`, *optional*, defaults to None): The type of class embedding to use which is ultimately
+ summed with the time embeddings. Choose from `None`, `"timestep"`, or `"identity"`.
+ """
+
+ _supports_gradient_checkpointing = True
+
+ @register_to_config
+ def __init__(
+ self,
+ sample_size: Optional[int] = None,
+ in_channels: int = 4,
+ out_channels: int = 4,
+ center_input_sample: bool = False,
+ flip_sin_to_cos: bool = True,
+ freq_shift: int = 0,
+ down_block_types: Tuple[str] = (
+ "CrossAttnDownBlock2D",
+ "CrossAttnDownBlock2D",
+ "CrossAttnDownBlock2D",
+ "DownBlock2D",
+ ),
+ mid_block_type: str = "UNetMidBlock2DCrossAttn",
+ up_block_types: Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D"),
+ only_cross_attention: Union[bool, Tuple[bool]] = False,
+ block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
+ layers_per_block: int = 2,
+ downsample_padding: int = 1,
+ mid_block_scale_factor: float = 1,
+ act_fn: str = "silu",
+ norm_num_groups: int = 32,
+ norm_eps: float = 1e-5,
+ cross_attention_dim: int = 1280,
+ attention_head_dim: Union[int, Tuple[int]] = 8,
+ dual_cross_attention: bool = False,
+ use_linear_projection: bool = False,
+ class_embed_type: Optional[str] = None,
+ num_class_embeds: Optional[int] = None,
+ upcast_attention: bool = False,
+ resnet_time_scale_shift: str = "default",
+ ):
+ super().__init__()
+
+ self.sample_size = sample_size
+ time_embed_dim = block_out_channels[0] * 4
+
+ # input
+ self.conv_in = nn.Conv2D(in_channels, block_out_channels[0], kernel_size=3, padding=(1, 1))
+
+ # time
+ self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
+ timestep_input_dim = block_out_channels[0]
+
+ self.time_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
+
+ # class embedding
+ if class_embed_type is None and num_class_embeds is not None:
+ self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
+ elif class_embed_type == "timestep":
+ self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
+ elif class_embed_type == "identity":
+ self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
+ else:
+ self.class_embedding = None
+
+ self.down_blocks = nn.LayerList([])
+ self.mid_block = None
+ self.up_blocks = nn.LayerList([])
+
+ if isinstance(only_cross_attention, bool):
+ only_cross_attention = [only_cross_attention] * len(down_block_types)
+
+ if isinstance(attention_head_dim, int):
+ attention_head_dim = (attention_head_dim,) * len(down_block_types)
+
+ # down
+ output_channel = block_out_channels[0]
+ for i, down_block_type in enumerate(down_block_types):
+ input_channel = output_channel
+ output_channel = block_out_channels[i]
+ is_final_block = i == len(block_out_channels) - 1
+
+ down_block = get_down_block(
+ down_block_type,
+ num_layers=layers_per_block,
+ in_channels=input_channel,
+ out_channels=output_channel,
+ temb_channels=time_embed_dim,
+ add_downsample=not is_final_block,
+ resnet_eps=norm_eps,
+ resnet_act_fn=act_fn,
+ resnet_groups=norm_num_groups,
+ cross_attention_dim=cross_attention_dim,
+ attn_num_head_channels=attention_head_dim[i],
+ downsample_padding=downsample_padding,
+ dual_cross_attention=dual_cross_attention,
+ use_linear_projection=use_linear_projection,
+ only_cross_attention=only_cross_attention[i],
+ upcast_attention=upcast_attention,
+ resnet_time_scale_shift=resnet_time_scale_shift,
+ )
+ self.down_blocks.append(down_block)
+
+ # mid
+ if mid_block_type == "UNetMidBlock2DCrossAttn":
+ self.mid_block = UNetMidBlock2DCrossAttn(
+ in_channels=block_out_channels[-1],
+ temb_channels=time_embed_dim,
+ resnet_eps=norm_eps,
+ resnet_act_fn=act_fn,
+ output_scale_factor=mid_block_scale_factor,
+ resnet_time_scale_shift=resnet_time_scale_shift,
+ cross_attention_dim=cross_attention_dim,
+ attn_num_head_channels=attention_head_dim[-1],
+ resnet_groups=norm_num_groups,
+ dual_cross_attention=dual_cross_attention,
+ use_linear_projection=use_linear_projection,
+ upcast_attention=upcast_attention,
+ )
+ elif mid_block_type == "UNetMidBlock2DSimpleCrossAttn":
+ self.mid_block = UNetMidBlock2DSimpleCrossAttn(
+ in_channels=block_out_channels[-1],
+ temb_channels=time_embed_dim,
+ resnet_eps=norm_eps,
+ resnet_act_fn=act_fn,
+ output_scale_factor=mid_block_scale_factor,
+ cross_attention_dim=cross_attention_dim,
+ attn_num_head_channels=attention_head_dim[-1],
+ resnet_groups=norm_num_groups,
+ resnet_time_scale_shift=resnet_time_scale_shift,
+ )
+ else:
+ raise ValueError(f"unknown mid_block_type : {mid_block_type}")
+
+ # count how many layers upsample the images
+ self.num_upsamplers = 0
+
+ # up
+ reversed_block_out_channels = list(reversed(block_out_channels))
+ reversed_attention_head_dim = list(reversed(attention_head_dim))
+ reversed_only_cross_attention = list(reversed(only_cross_attention))
+
+ output_channel = reversed_block_out_channels[0]
+ for i, up_block_type in enumerate(up_block_types):
+ is_final_block = i == len(block_out_channels) - 1
+
+ prev_output_channel = output_channel
+ output_channel = reversed_block_out_channels[i]
+ input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
+
+ # add upsample block for all BUT final layer
+ if not is_final_block:
+ add_upsample = True
+ self.num_upsamplers += 1
+ else:
+ add_upsample = False
+
+ up_block = get_up_block(
+ up_block_type,
+ num_layers=layers_per_block + 1,
+ in_channels=input_channel,
+ out_channels=output_channel,
+ prev_output_channel=prev_output_channel,
+ temb_channels=time_embed_dim,
+ add_upsample=add_upsample,
+ resnet_eps=norm_eps,
+ resnet_act_fn=act_fn,
+ resnet_groups=norm_num_groups,
+ cross_attention_dim=cross_attention_dim,
+ attn_num_head_channels=reversed_attention_head_dim[i],
+ dual_cross_attention=dual_cross_attention,
+ use_linear_projection=use_linear_projection,
+ only_cross_attention=reversed_only_cross_attention[i],
+ upcast_attention=upcast_attention,
+ resnet_time_scale_shift=resnet_time_scale_shift,
+ )
+ self.up_blocks.append(up_block)
+ prev_output_channel = output_channel
+
+ # out
+ self.conv_norm_out = nn.GroupNorm(
+ num_channels=block_out_channels[0], num_groups=norm_num_groups, epsilon=norm_eps
+ )
+ self.conv_act = nn.Silu()
+ self.conv_out = nn.Conv2D(block_out_channels[0], out_channels, 3, padding=1)
+
+ @property
+ def attn_processors(self) -> Dict[str, AttnProcessor]:
+ r"""
+ Returns:
+ `dict` of attention processors: A dictionary containing all attention processors used in the model with
+ indexed by its weight name.
+ """
+ # set recursively
+ processors = {}
+
+ def fn_recursive_add_processors(name: str, module: nn.Layer, processors: Dict[str, AttnProcessor]):
+ if hasattr(module, "set_processor"):
+ processors[f"{name}.processor"] = module.processor
+
+ for sub_name, child in module.named_children():
+ fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
+
+ return processors
+
+ for name, module in self.named_children():
+ fn_recursive_add_processors(name, module, processors)
+
+ return processors
+
+ def set_attn_processor(self, processor: Union[AttnProcessor, Dict[str, AttnProcessor]]):
+ r"""
+ Parameters:
+ `processor (`dict` of `AttnProcessor` or `AttnProcessor`):
+ The instantiated processor class or a dictionary of processor classes that will be set as the processor
+ of **all** `CrossAttention` layers.
+ In case `processor` is a dict, the key needs to define the path to the corresponding cross attention processor. This is strongly recommended when setting trainablae attention processors.:
+ """
+ count = len(self.attn_processors.keys())
+
+ if isinstance(processor, dict) and len(processor) != count:
+ raise ValueError(
+ f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
+ f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
+ )
+
+ def fn_recursive_attn_processor(name: str, module: nn.Layer, processor):
+ if hasattr(module, "set_processor"):
+ if not isinstance(processor, dict):
+ module.set_processor(processor)
+ else:
+ module.set_processor(processor.pop(f"{name}.processor"))
+
+ for sub_name, child in module.named_children():
+ fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
+
+ for name, module in self.named_children():
+ fn_recursive_attn_processor(name, module, processor)
+
+ def set_attention_slice(self, slice_size):
+ r"""
+ Enable sliced attention computation.
+ When this option is enabled, the attention module will split the input tensor in slices, to compute attention
+ in several steps. This is useful to save some memory in exchange for a small speed decrease.
+ Args:
+ slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
+ When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If
+ `"max"`, maxium amount of memory will be saved by running only one slice at a time. If a number is
+ provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
+ must be a multiple of `slice_size`.
+ """
+ sliceable_head_dims = []
+
+ def fn_recursive_retrieve_slicable_dims(module: nn.Layer):
+ if hasattr(module, "set_attention_slice"):
+ sliceable_head_dims.append(module.sliceable_head_dim)
+
+ for child in module.children():
+ fn_recursive_retrieve_slicable_dims(child)
+
+ # retrieve number of attention layers
+ for module in self.children():
+ fn_recursive_retrieve_slicable_dims(module)
+
+ num_slicable_layers = len(sliceable_head_dims)
+
+ if slice_size == "auto":
+ # half the attention head size is usually a good trade-off between
+ # speed and memory
+ slice_size = [dim // 2 for dim in sliceable_head_dims]
+ elif slice_size == "max":
+ # make smallest slice possible
+ slice_size = num_slicable_layers * [1]
+
+ slice_size = num_slicable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
+
+ if len(slice_size) != len(sliceable_head_dims):
+ raise ValueError(
+ f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
+ f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
+ )
+
+ for i in range(len(slice_size)):
+ size = slice_size[i]
+ dim = sliceable_head_dims[i]
+ if size is not None and size > dim:
+ raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
+
+ # Recursively walk through all the children.
+ # Any children which exposes the set_attention_slice method
+ # gets the message
+ def fn_recursive_set_attention_slice(module: nn.Layer, slice_size: List[int]):
+ if hasattr(module, "set_attention_slice"):
+ module.set_attention_slice(slice_size.pop())
+
+ for child in module.children():
+ fn_recursive_set_attention_slice(child, slice_size)
+
+ reversed_slice_size = list(reversed(slice_size))
+ for module in self.children():
+ fn_recursive_set_attention_slice(module, reversed_slice_size)
+
+ def _set_gradient_checkpointing(self, module, value=False):
+ if isinstance(module, (CrossAttnDownBlock2D, DownBlock2D, CrossAttnUpBlock2D, UpBlock2D)):
+ module.gradient_checkpointing = value
+
+ def forward(
+ self,
+ sample: paddle.Tensor,
+ timestep: Union[paddle.Tensor, float, int],
+ encoder_hidden_states: paddle.Tensor,
+ class_labels: Optional[paddle.Tensor] = None,
+ attention_mask: Optional[paddle.Tensor] = None,
+ cross_attention_kwargs: Optional[Dict[str, Any]] = None,
+ return_dict: bool = True,
+ ):
+ r"""
+ Args:
+ sample (`paddle.Tensor`): (batch, channel, height, width) noisy inputs tensor
+ timestep (`paddle.Tensor` or `float` or `int`): (batch) timesteps
+ encoder_hidden_states (`paddle.Tensor`): (batch, sequence_length, feature_dim) encoder hidden states
+ return_dict (`bool`, *optional*, defaults to `True`):
+ Whether or not to return a [`models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple.
+
+ Returns:
+ [`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
+ [`~models.unet_2d_condition.UNet2DConditionOutput`] if `return_dict` is True, otherwise a `tuple`. When
+ returning a tuple, the first element is the sample tensor.
+ """
+ # By default samples have to be AT least a multiple of the overall upsampling factor.
+ # The overall upsampling factor is equal to 2 ** (# num of upsampling layears).
+ # However, the upsampling interpolation output size can be forced to fit any upsampling size
+ # on the fly if necessary.
+ default_overall_up_factor = 2**self.num_upsamplers
+
+ # upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
+ forward_upsample_size = False
+ upsample_size = None
+
+ if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]):
+ logger.info("Forward upsample size to force interpolation output size.")
+ forward_upsample_size = True
+
+ # prepare attention_mask
+ if attention_mask is not None:
+ attention_mask = (1 - attention_mask.cast(sample.dtype)) * -10000.0
+ attention_mask = attention_mask.unsqueeze(1)
+
+ # 0. center input if necessary
+ if self.config.center_input_sample:
+ sample = 2 * sample - 1.0
+
+ # 1. time
+ timesteps = timestep
+ if not paddle.is_tensor(timesteps):
+ # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
+ timesteps = paddle.to_tensor([timesteps], dtype="int64")
+ elif paddle.is_tensor(timesteps) and len(timesteps.shape) == 0:
+ timesteps = timesteps[None]
+
+ # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
+ timesteps = timesteps.expand(
+ [
+ sample.shape[0],
+ ]
+ )
+
+ t_emb = self.time_proj(timesteps)
+
+ # timesteps does not contain any weights and will always return f32 tensors
+ # but time_embedding might actually be running in fp16. so we need to cast here.
+ # there might be better ways to encapsulate this.
+ t_emb = t_emb.cast(self.dtype)
+ emb = self.time_embedding(t_emb)
+
+ if self.class_embedding is not None:
+ if class_labels is None:
+ raise ValueError("class_labels should be provided when num_class_embeds > 0")
+
+ if self.config.class_embed_type == "timestep":
+ class_labels = self.time_proj(class_labels)
+
+ class_emb = self.class_embedding(class_labels).cast(self.dtype)
+ emb = emb + class_emb
+
+ # 2. pre-process
+ sample = self.conv_in(sample)
+
+ # 3. down
+ down_block_res_samples = (sample,)
+ for downsample_block in self.down_blocks:
+ if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
+ sample, res_samples = downsample_block(
+ hidden_states=sample,
+ temb=emb,
+ encoder_hidden_states=encoder_hidden_states,
+ attention_mask=attention_mask,
+ cross_attention_kwargs=cross_attention_kwargs,
+ )
+ else:
+ sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
+
+ down_block_res_samples += res_samples
+
+ # 4. mid
+ sample = self.mid_block(
+ sample,
+ emb,
+ encoder_hidden_states=encoder_hidden_states,
+ attention_mask=attention_mask,
+ cross_attention_kwargs=cross_attention_kwargs,
+ )
+ # 5. up
+ for i, upsample_block in enumerate(self.up_blocks):
+ is_final_block = i == len(self.up_blocks) - 1
+
+ res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
+ down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
+
+ # if we have not reached the final block and need to forward the
+ # upsample size, we do it here
+ if not is_final_block and forward_upsample_size:
+ upsample_size = down_block_res_samples[-1].shape[2:]
+
+ if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
+ sample = upsample_block(
+ hidden_states=sample,
+ temb=emb,
+ res_hidden_states_tuple=res_samples,
+ encoder_hidden_states=encoder_hidden_states,
+ cross_attention_kwargs=cross_attention_kwargs,
+ upsample_size=upsample_size,
+ attention_mask=attention_mask,
+ )
+ else:
+ sample = upsample_block(
+ hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size
+ )
+ # 6. post-process
+ sample = self.conv_norm_out(sample)
+ sample = self.conv_act(sample)
+ sample = self.conv_out(sample)
+
+ if not return_dict:
+ return (sample,)
+
+ return UNet2DConditionOutput(sample=sample)
diff --git a/ppdiffusers/models/vae.py b/ppdiffusers/models/vae.py
new file mode 100644
index 0000000000000000000000000000000000000000..a70b60d6d06877059e7d9e12eb12190f824fd028
--- /dev/null
+++ b/ppdiffusers/models/vae.py
@@ -0,0 +1,629 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+# Copyright 2022 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+from dataclasses import dataclass
+from typing import List, Optional, Tuple, Union
+
+import numpy as np
+import paddle
+import paddle.nn as nn
+
+from ..configuration_utils import ConfigMixin, register_to_config
+from ..modeling_utils import ModelMixin
+from ..utils import BaseOutput
+from .unet_2d_blocks import UNetMidBlock2D, get_down_block, get_up_block
+
+
+@dataclass
+class DecoderOutput(BaseOutput):
+ """
+ Output of decoding method.
+
+ Args:
+ sample (`paddle.Tensor` of shape `(batch_size, num_channels, height, width)`):
+ Decoded output sample of the model. Output of the last layer of the model.
+ """
+
+ sample: paddle.Tensor
+
+
+@dataclass
+class VQEncoderOutput(BaseOutput):
+ """
+ Output of VQModel encoding method.
+
+ Args:
+ latents (`paddle.Tensor` of shape `(batch_size, num_channels, height, width)`):
+ Encoded output sample of the model. Output of the last layer of the model.
+ """
+
+ latents: paddle.Tensor
+
+
+@dataclass
+class AutoencoderKLOutput(BaseOutput):
+ """
+ Output of AutoencoderKL encoding method.
+
+ Args:
+ latent_dist (`DiagonalGaussianDistribution`):
+ Encoded outputs of `Encoder` represented as the mean and logvar of `DiagonalGaussianDistribution`.
+ `DiagonalGaussianDistribution` allows for sampling latents from the distribution.
+ """
+
+ latent_dist: "DiagonalGaussianDistribution"
+
+
+class Encoder(nn.Layer):
+ def __init__(
+ self,
+ in_channels=3,
+ out_channels=3,
+ down_block_types=("DownEncoderBlock2D",),
+ block_out_channels=(64,),
+ layers_per_block=2,
+ norm_num_groups=32,
+ act_fn="silu",
+ double_z=True,
+ ):
+ super().__init__()
+ self.layers_per_block = layers_per_block
+
+ self.conv_in = nn.Conv2D(in_channels, block_out_channels[0], kernel_size=3, stride=1, padding=1)
+
+ self.mid_block = None
+ self.down_blocks = nn.LayerList([])
+
+ # down
+ output_channel = block_out_channels[0]
+ for i, down_block_type in enumerate(down_block_types):
+ input_channel = output_channel
+ output_channel = block_out_channels[i]
+ is_final_block = i == len(block_out_channels) - 1
+
+ down_block = get_down_block(
+ down_block_type,
+ num_layers=self.layers_per_block,
+ in_channels=input_channel,
+ out_channels=output_channel,
+ add_downsample=not is_final_block,
+ resnet_eps=1e-6,
+ downsample_padding=0,
+ resnet_act_fn=act_fn,
+ resnet_groups=norm_num_groups,
+ attn_num_head_channels=None,
+ temb_channels=None,
+ )
+ self.down_blocks.append(down_block)
+
+ # mid
+ self.mid_block = UNetMidBlock2D(
+ in_channels=block_out_channels[-1],
+ resnet_eps=1e-6,
+ resnet_act_fn=act_fn,
+ output_scale_factor=1,
+ resnet_time_scale_shift="default",
+ attn_num_head_channels=None,
+ resnet_groups=norm_num_groups,
+ temb_channels=None,
+ )
+
+ # out
+ self.conv_norm_out = nn.GroupNorm(
+ num_channels=block_out_channels[-1], num_groups=norm_num_groups, epsilon=1e-6
+ )
+ self.conv_act = nn.Silu()
+
+ conv_out_channels = 2 * out_channels if double_z else out_channels
+ self.conv_out = nn.Conv2D(block_out_channels[-1], conv_out_channels, 3, padding=1)
+
+ def forward(self, x):
+ sample = x
+ sample = self.conv_in(sample)
+
+ # down
+ for down_block in self.down_blocks:
+ sample = down_block(sample)
+
+ # middle
+ sample = self.mid_block(sample)
+
+ # post-process
+ sample = self.conv_norm_out(sample)
+ sample = self.conv_act(sample)
+ sample = self.conv_out(sample)
+
+ return sample
+
+
+class Decoder(nn.Layer):
+ def __init__(
+ self,
+ in_channels=3,
+ out_channels=3,
+ up_block_types=("UpDecoderBlock2D",),
+ block_out_channels=(64,),
+ layers_per_block=2,
+ norm_num_groups=32,
+ act_fn="silu",
+ ):
+ super().__init__()
+ self.layers_per_block = layers_per_block
+
+ self.conv_in = nn.Conv2D(in_channels, block_out_channels[-1], kernel_size=3, stride=1, padding=1)
+
+ self.mid_block = None
+ self.up_blocks = nn.LayerList([])
+
+ # mid
+ self.mid_block = UNetMidBlock2D(
+ in_channels=block_out_channels[-1],
+ resnet_eps=1e-6,
+ resnet_act_fn=act_fn,
+ output_scale_factor=1,
+ resnet_time_scale_shift="default",
+ attn_num_head_channels=None,
+ resnet_groups=norm_num_groups,
+ temb_channels=None,
+ )
+
+ # up
+ reversed_block_out_channels = list(reversed(block_out_channels))
+ output_channel = reversed_block_out_channels[0]
+ for i, up_block_type in enumerate(up_block_types):
+ prev_output_channel = output_channel
+ output_channel = reversed_block_out_channels[i]
+
+ is_final_block = i == len(block_out_channels) - 1
+
+ up_block = get_up_block(
+ up_block_type,
+ num_layers=self.layers_per_block + 1,
+ in_channels=prev_output_channel,
+ out_channels=output_channel,
+ prev_output_channel=None,
+ add_upsample=not is_final_block,
+ resnet_eps=1e-6,
+ resnet_act_fn=act_fn,
+ resnet_groups=norm_num_groups,
+ attn_num_head_channels=None,
+ temb_channels=None,
+ )
+ self.up_blocks.append(up_block)
+ prev_output_channel = output_channel
+
+ # out
+ self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, epsilon=1e-6)
+ self.conv_act = nn.Silu()
+ self.conv_out = nn.Conv2D(block_out_channels[0], out_channels, 3, padding=1)
+
+ def forward(self, z):
+ sample = z
+ sample = self.conv_in(sample)
+
+ # middle
+ sample = self.mid_block(sample)
+
+ # up
+ for up_block in self.up_blocks:
+ sample = up_block(sample)
+
+ # post-process
+ sample = self.conv_norm_out(sample)
+ sample = self.conv_act(sample)
+ sample = self.conv_out(sample)
+
+ return sample
+
+
+class VectorQuantizer(nn.Layer):
+ """
+ Improved version over VectorQuantizer, can be used as a drop-in replacement. Mostly avoids costly matrix
+ multiplications and allows for post-hoc remapping of indices.
+ """
+
+ # NOTE: due to a bug the beta term was applied to the wrong term. for
+ # backwards compatibility we use the buggy version by default, but you can
+ # specify legacy=False to fix it.
+ def __init__(
+ self, n_e, vq_embed_dim, beta, remap=None, unknown_index="random", sane_index_shape=False, legacy=True
+ ):
+ super().__init__()
+ self.n_e = n_e
+ self.vq_embed_dim = vq_embed_dim
+ self.beta = beta
+ self.legacy = legacy
+
+ self.embedding = nn.Embedding(
+ self.n_e, self.vq_embed_dim, weight_attr=nn.initializer.Uniform(-1.0 / self.n_e, 1.0 / self.n_e)
+ )
+
+ self.remap = remap
+ if self.remap is not None:
+ self.register_buffer("used", paddle.to_tensor(np.load(self.remap)))
+ self.re_embed = self.used.shape[0]
+ self.unknown_index = unknown_index # "random" or "extra" or integer
+ if self.unknown_index == "extra":
+ self.unknown_index = self.re_embed
+ self.re_embed = self.re_embed + 1
+ print(
+ f"Remapping {self.n_e} indices to {self.re_embed} indices. "
+ f"Using {self.unknown_index} for unknown indices."
+ )
+ else:
+ self.re_embed = n_e
+
+ self.sane_index_shape = sane_index_shape
+
+ def remap_to_used(self, inds):
+ ishape = inds.shape
+ assert len(ishape) > 1
+ inds = inds.reshape([ishape[0], -1])
+ used = self.used.cast(inds.dtype)
+ match = (inds[:, :, None] == used[None, None, ...]).cast("int64")
+ new = match.argmax(-1)
+ unknown = match.sum(2) < 1
+ if self.unknown_index == "random":
+ new[unknown] = paddle.randint(0, self.re_embed, shape=new[unknown].shape)
+ else:
+ new[unknown] = self.unknown_index
+ return new.reshape(ishape)
+
+ def unmap_to_all(self, inds):
+ ishape = inds.shape
+ assert len(ishape) > 1
+ inds = inds.reshape([ishape[0], -1])
+ used = self.used.cast(inds.dtype)
+ if self.re_embed > self.used.shape[0]: # extra token
+ inds[inds >= self.used.shape[0]] = 0 # simply set to zero
+ back = paddle.take_along_axis(used[None, :][inds.shape[0] * [0], :], inds, axis=1)
+ return back.reshape(ishape)
+
+ def forward(self, z):
+ # reshape z -> (batch, height, width, channel) and flatten
+ z = z.transpose([0, 2, 3, 1])
+ z_flattened = z.reshape([-1, self.vq_embed_dim])
+ # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z
+
+ d = (
+ paddle.sum(z_flattened**2, axis=1, keepdim=True)
+ + paddle.sum(self.embedding.weight**2, axis=1)
+ - 2 * paddle.matmul(z_flattened, self.embedding.weight, transpose_y=True)
+ )
+
+ min_encoding_indices = paddle.argmin(d, axis=1)
+ z_q = self.embedding(min_encoding_indices).reshape(z.shape)
+ perplexity = None
+ min_encodings = None
+
+ # compute loss for embedding
+ if not self.legacy:
+ loss = self.beta * paddle.mean((z_q.detach() - z) ** 2) + paddle.mean((z_q - z.detach()) ** 2)
+ else:
+ loss = paddle.mean((z_q.detach() - z) ** 2) + self.beta * paddle.mean((z_q - z.detach()) ** 2)
+
+ # preserve gradients
+ z_q = z + (z_q - z).detach()
+
+ # reshape back to match original input shape
+ z_q = z_q.transpose([0, 3, 1, 2])
+
+ if self.remap is not None:
+ min_encoding_indices = min_encoding_indices.reshape([z.shape[0], -1]) # add batch axis
+ min_encoding_indices = self.remap_to_used(min_encoding_indices)
+ min_encoding_indices = min_encoding_indices.reshape([-1, 1]) # flatten
+
+ if self.sane_index_shape:
+ min_encoding_indices = min_encoding_indices.reshape([z_q.shape[0], z_q.shape[2], z_q.shape[3]])
+
+ return z_q, loss, (perplexity, min_encodings, min_encoding_indices)
+
+ def get_codebook_entry(self, indices, shape):
+ # shape specifying (batch, height, width, channel)
+ if self.remap is not None:
+ indices = indices.reshape([shape[0], -1]) # add batch axis
+ indices = self.unmap_to_all(indices)
+ indices = indices.reshape(
+ [
+ -1,
+ ]
+ ) # flatten again
+
+ # get quantized latent vectors
+ z_q = self.embedding(indices)
+
+ if shape is not None:
+ z_q = z_q.reshape(shape)
+ # reshape back to match original input shape
+ z_q = z_q.transpose([0, 3, 1, 2])
+
+ return z_q
+
+
+class DiagonalGaussianDistribution(object):
+ def __init__(self, parameters, deterministic=False):
+ self.parameters = parameters
+ self.mean, self.logvar = paddle.chunk(parameters, 2, axis=1)
+ self.logvar = paddle.clip(self.logvar, -30.0, 20.0)
+ self.deterministic = deterministic
+ self.std = paddle.exp(0.5 * self.logvar)
+ self.var = paddle.exp(self.logvar)
+ if self.deterministic:
+ self.var = self.std = paddle.zeros_like(self.mean, dtype=self.parameters.dtype)
+
+ def sample(self, generator: Optional[paddle.Generator] = None) -> paddle.Tensor:
+ sample = paddle.randn(self.mean.shape, generator=generator)
+ # make sure sample is as the parameters and has same dtype
+ sample = sample.cast(self.parameters.dtype)
+ x = self.mean + self.std * sample
+ return x
+
+ def kl(self, other=None):
+ if self.deterministic:
+ return paddle.to_tensor([0.0])
+ else:
+ if other is None:
+ return 0.5 * paddle.sum(paddle.pow(self.mean, 2) + self.var - 1.0 - self.logvar, axis=[1, 2, 3])
+ else:
+ return 0.5 * paddle.sum(
+ paddle.pow(self.mean - other.mean, 2) / other.var
+ + self.var / other.var
+ - 1.0
+ - self.logvar
+ + other.logvar,
+ axis=[1, 2, 3],
+ )
+
+ def nll(self, sample, axis=[1, 2, 3]):
+ if self.deterministic:
+ return paddle.to_tensor([0.0])
+ logtwopi = np.log(2.0 * np.pi)
+ return 0.5 * paddle.sum(logtwopi + self.logvar + paddle.pow(sample - self.mean, 2) / self.var, axis=axis)
+
+ def mode(self):
+ return self.mean
+
+
+class VQModel(ModelMixin, ConfigMixin):
+ r"""VQ-VAE model from the paper Neural Discrete Representation Learning by Aaron van den Oord, Oriol Vinyals and Koray
+ Kavukcuoglu.
+
+ This model inherits from [`ModelMixin`]. Check the superclass documentation for the generic methods the library
+ implements for all the model (such as downloading or saving, etc.)
+
+ Parameters:
+ in_channels (int, *optional*, defaults to 3): Number of channels in the input image.
+ out_channels (int, *optional*, defaults to 3): Number of channels in the output.
+ down_block_types (`Tuple[str]`, *optional*, defaults to :
+ obj:`("DownEncoderBlock2D",)`): Tuple of downsample block types.
+ up_block_types (`Tuple[str]`, *optional*, defaults to :
+ obj:`("UpDecoderBlock2D",)`): Tuple of upsample block types.
+ block_out_channels (`Tuple[int]`, *optional*, defaults to :
+ obj:`(64,)`): Tuple of block output channels.
+ act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
+ latent_channels (`int`, *optional*, defaults to `3`): Number of channels in the latent space.
+ sample_size (`int`, *optional*, defaults to `32`): TODO
+ num_vq_embeddings (`int`, *optional*, defaults to `256`): Number of codebook vectors in the VQ-VAE.
+ vq_embed_dim (`int`, *optional*): Hidden dim of codebook vectors in the VQ-VAE.
+ """
+
+ @register_to_config
+ def __init__(
+ self,
+ in_channels: int = 3,
+ out_channels: int = 3,
+ down_block_types: Tuple[str] = ("DownEncoderBlock2D",),
+ up_block_types: Tuple[str] = ("UpDecoderBlock2D",),
+ block_out_channels: Tuple[int] = (64,),
+ layers_per_block: int = 1,
+ act_fn: str = "silu",
+ latent_channels: int = 3,
+ sample_size: int = 32,
+ num_vq_embeddings: int = 256,
+ norm_num_groups: int = 32,
+ vq_embed_dim: Optional[int] = None,
+ ):
+ super().__init__()
+
+ # pass init params to Encoder
+ self.encoder = Encoder(
+ in_channels=in_channels,
+ out_channels=latent_channels,
+ down_block_types=down_block_types,
+ block_out_channels=block_out_channels,
+ layers_per_block=layers_per_block,
+ act_fn=act_fn,
+ norm_num_groups=norm_num_groups,
+ double_z=False,
+ )
+
+ vq_embed_dim = vq_embed_dim if vq_embed_dim is not None else latent_channels
+
+ self.quant_conv = nn.Conv2D(latent_channels, vq_embed_dim, 1)
+ self.quantize = VectorQuantizer(num_vq_embeddings, vq_embed_dim, beta=0.25, remap=None, sane_index_shape=False)
+ self.post_quant_conv = nn.Conv2D(vq_embed_dim, latent_channels, 1)
+
+ # pass init params to Decoder
+ self.decoder = Decoder(
+ in_channels=latent_channels,
+ out_channels=out_channels,
+ up_block_types=up_block_types,
+ block_out_channels=block_out_channels,
+ layers_per_block=layers_per_block,
+ act_fn=act_fn,
+ norm_num_groups=norm_num_groups,
+ )
+
+ def encode(self, x: paddle.Tensor, return_dict: bool = True):
+ h = self.encoder(x)
+ h = self.quant_conv(h)
+
+ if not return_dict:
+ return (h,)
+
+ return VQEncoderOutput(latents=h)
+
+ def decode(self, h: paddle.Tensor, force_not_quantize: bool = False, return_dict: bool = True):
+ # also go through quantization layer
+ if not force_not_quantize:
+ quant, emb_loss, info = self.quantize(h)
+ else:
+ quant = h
+ quant = self.post_quant_conv(quant)
+ dec = self.decoder(quant)
+
+ if not return_dict:
+ return (dec,)
+
+ return DecoderOutput(sample=dec)
+
+ def forward(self, sample: paddle.Tensor, return_dict: bool = True):
+ r"""
+ Args:
+ sample (`paddle.Tensor`): Input sample.
+ return_dict (`bool`, *optional*, defaults to `True`):
+ Whether or not to return a [`DecoderOutput`] instead of a plain tuple.
+ """
+ x = sample
+ h = self.encode(x).latents
+ dec = self.decode(h).sample
+
+ if not return_dict:
+ return (dec,)
+
+ return DecoderOutput(sample=dec)
+
+
+class AutoencoderKL(ModelMixin, ConfigMixin):
+ r"""Variational Autoencoder (VAE) model with KL loss from the paper Auto-Encoding Variational Bayes by Diederik P. Kingma
+ and Max Welling.
+
+ This model inherits from [`ModelMixin`]. Check the superclass documentation for the generic methods the library
+ implements for all the model (such as downloading or saving, etc.)
+
+ Parameters:
+ in_channels (int, *optional*, defaults to 3): Number of channels in the input image.
+ out_channels (int, *optional*, defaults to 3): Number of channels in the output.
+ down_block_types (`Tuple[str]`, *optional*, defaults to :
+ obj:`("DownEncoderBlock2D",)`): Tuple of downsample block types.
+ down_block_out_channels (`Tuple[int]`, *optional*, defaults to :
+ None: Tuple of down block output channels.
+ up_block_types (`Tuple[str]`, *optional*, defaults to :
+ obj:`("UpDecoderBlock2D",)`): Tuple of upsample block types.
+ up_block_out_channels (`Tuple[int]`, *optional*, defaults to :
+ None: Tuple of up block output channels.
+ block_out_channels (`Tuple[int]`, *optional*, defaults to :
+ obj:`(64,)`): Tuple of block output channels.
+ act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
+ latent_channels (`int`, *optional*, defaults to `4`): Number of channels in the latent space.
+ sample_size (`int`, *optional*, defaults to `32`): TODO
+ """
+
+ @register_to_config
+ def __init__(
+ self,
+ in_channels: int = 3,
+ out_channels: int = 3,
+ down_block_types: Tuple[str] = ("DownEncoderBlock2D",),
+ down_block_out_channels: Tuple[int] = None,
+ up_block_types: Tuple[str] = ("UpDecoderBlock2D",),
+ up_block_out_channels: Tuple[int] = None,
+ block_out_channels: Tuple[int] = (64,),
+ layers_per_block: int = 1,
+ act_fn: str = "silu",
+ latent_channels: int = 4,
+ norm_num_groups: int = 32,
+ sample_size: int = 32,
+ ):
+ super().__init__()
+
+ # pass init params to Encoder
+ self.encoder = Encoder(
+ in_channels=in_channels,
+ out_channels=latent_channels,
+ down_block_types=down_block_types,
+ block_out_channels=down_block_out_channels
+ if down_block_out_channels
+ is not None # if down_block_out_channels not givien, we will use block_out_channels
+ else block_out_channels,
+ layers_per_block=layers_per_block,
+ act_fn=act_fn,
+ norm_num_groups=norm_num_groups,
+ double_z=True,
+ )
+
+ # pass init params to Decoder
+ self.decoder = Decoder(
+ in_channels=latent_channels,
+ out_channels=out_channels,
+ up_block_types=up_block_types,
+ block_out_channels=up_block_out_channels # if up_block_out_channels not givien, we will use block_out_channels
+ if up_block_out_channels is not None
+ else block_out_channels,
+ layers_per_block=layers_per_block,
+ norm_num_groups=norm_num_groups,
+ act_fn=act_fn,
+ )
+
+ self.quant_conv = nn.Conv2D(2 * latent_channels, 2 * latent_channels, 1)
+ self.post_quant_conv = nn.Conv2D(latent_channels, latent_channels, 1)
+
+ def encode(self, x: paddle.Tensor, return_dict: bool = True):
+ h = self.encoder(x)
+ moments = self.quant_conv(h)
+ posterior = DiagonalGaussianDistribution(moments)
+
+ if not return_dict:
+ return (posterior,)
+
+ return AutoencoderKLOutput(latent_dist=posterior)
+
+ # (TODO junnyu) support vae slice
+ # https://github.com/huggingface/diffusers/commit/c28d3c82ce6f56c4b373a8260c56357d13db900a#diff-64804f08bc5e7a09947fb4eced462f15965acfa2d797354d85033e788f23b443
+ def decode(self, z: paddle.Tensor, return_dict: bool = True):
+ z = self.post_quant_conv(z)
+ dec = self.decoder(z)
+
+ if not return_dict:
+ return (dec,)
+
+ return DecoderOutput(sample=dec)
+
+ def forward(
+ self,
+ sample: paddle.Tensor,
+ sample_posterior: bool = False,
+ return_dict: bool = True,
+ generator: Optional[Union[paddle.Generator, List[paddle.Generator]]] = None,
+ ) -> Union[DecoderOutput, paddle.Tensor]:
+ r"""
+ Args:
+ sample (`paddle.Tensor`): Input sample.
+ sample_posterior (`bool`, *optional*, defaults to `False`):
+ Whether to sample from the posterior.
+ return_dict (`bool`, *optional*, defaults to `True`):
+ Whether or not to return a [`DecoderOutput`] instead of a plain tuple.
+ """
+ x = sample
+ posterior = self.encode(x).latent_dist
+ if sample_posterior:
+ z = posterior.sample(generator=generator)
+ else:
+ z = posterior.mode()
+ dec = self.decode(z).sample
+
+ if not return_dict:
+ return (dec,)
+
+ return DecoderOutput(sample=dec)
diff --git a/ppdiffusers/optimization.py b/ppdiffusers/optimization.py
new file mode 100644
index 0000000000000000000000000000000000000000..a5d2c1bebf4c0c986c324b16d6b298d4c3fa384d
--- /dev/null
+++ b/ppdiffusers/optimization.py
@@ -0,0 +1,312 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+# Copyright 2022 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""Paddle optimization for diffusion models."""
+
+import math
+from enum import Enum
+from typing import Optional, Union
+
+from paddle.optimizer.lr import LambdaDecay
+
+from .utils import logging
+
+logger = logging.get_logger(__name__)
+
+
+class SchedulerType(Enum):
+ LINEAR = "linear"
+ COSINE = "cosine"
+ COSINE_WITH_RESTARTS = "cosine_with_restarts"
+ POLYNOMIAL = "polynomial"
+ CONSTANT = "constant"
+ CONSTANT_WITH_WARMUP = "constant_with_warmup"
+
+
+def get_constant_schedule(learning_rate: float, last_epoch: int = -1):
+ """
+ Create a schedule with a constant learning rate, using the learning rate set in optimizer.
+
+ Args:
+ learning_rate (`float`):
+ The base learning rate. It is a python float number.
+ last_epoch (`int`, *optional*, defaults to -1):
+ The index of the last epoch when resuming training.
+
+ Return:
+ `paddle.optimizer.lr.LambdaDecay` with the appropriate schedule.
+ """
+ return LambdaDecay(learning_rate, lambda _: 1, last_epoch=last_epoch)
+
+
+def get_constant_schedule_with_warmup(learning_rate: float, num_warmup_steps: int, last_epoch: int = -1):
+ """
+ Create a schedule with a constant learning rate preceded by a warmup period during which the learning rate
+ increases linearly between 0 and the initial lr set in the optimizer.
+
+ Args:
+ learning_rate (`float`):
+ The base learning rate. It is a python float number.
+ num_warmup_steps (`int`):
+ The number of steps for the warmup phase.
+ last_epoch (`int`, *optional*, defaults to -1):
+ The index of the last epoch when resuming training.
+
+ Return:
+ `paddle.optimizer.lr.LambdaDecay` with the appropriate schedule.
+ """
+
+ def lr_lambda(current_step: int):
+ if current_step < num_warmup_steps:
+ return float(current_step) / float(max(1.0, num_warmup_steps))
+ return 1.0
+
+ return LambdaDecay(learning_rate, lr_lambda, last_epoch=last_epoch)
+
+
+def get_linear_schedule_with_warmup(
+ learning_rate: float, num_warmup_steps: int, num_training_steps: int, last_epoch: int = -1
+):
+ """
+ Create a schedule with a learning rate that decreases linearly from the initial lr set in the optimizer to 0, after
+ a warmup period during which it increases linearly from 0 to the initial lr set in the optimizer.
+
+ Args:
+ learning_rate (`float`):
+ The base learning rate. It is a python float number.
+ num_warmup_steps (`int`):
+ The number of steps for the warmup phase.
+ num_training_steps (`int`):
+ The total number of training steps.
+ last_epoch (`int`, *optional*, defaults to -1):
+ The index of the last epoch when resuming training.
+
+ Return:
+ `paddle.optimizer.lr.LambdaDecay` with the appropriate schedule.
+ """
+
+ def lr_lambda(current_step: int):
+ if current_step < num_warmup_steps:
+ return float(current_step) / float(max(1, num_warmup_steps))
+ return max(
+ 0.0, float(num_training_steps - current_step) / float(max(1, num_training_steps - num_warmup_steps))
+ )
+
+ return LambdaDecay(learning_rate, lr_lambda, last_epoch)
+
+
+def get_cosine_schedule_with_warmup(
+ learning_rate: float, num_warmup_steps: int, num_training_steps: int, num_cycles: float = 0.5, last_epoch: int = -1
+):
+ """
+ Create a schedule with a learning rate that decreases following the values of the cosine function between the
+ initial lr set in the optimizer to 0, after a warmup period during which it increases linearly between 0 and the
+ initial lr set in the optimizer.
+
+ Args:
+ learning_rate (`float`):
+ The base learning rate. It is a python float number.
+ num_warmup_steps (`int`):
+ The number of steps for the warmup phase.
+ num_training_steps (`int`):
+ The total number of training steps.
+ num_cycles (`float`, *optional*, defaults to 0.5):
+ The number of waves in the cosine schedule (the defaults is to just decrease from the max value to 0
+ following a half-cosine).
+ last_epoch (`int`, *optional*, defaults to -1):
+ The index of the last epoch when resuming training.
+
+ Return:
+ `paddle.optimizer.lr.LambdaDecay` with the appropriate schedule.
+ """
+
+ def lr_lambda(current_step):
+ if current_step < num_warmup_steps:
+ return float(current_step) / float(max(1, num_warmup_steps))
+ progress = float(current_step - num_warmup_steps) / float(max(1, num_training_steps - num_warmup_steps))
+ return max(0.0, 0.5 * (1.0 + math.cos(math.pi * float(num_cycles) * 2.0 * progress)))
+
+ return LambdaDecay(learning_rate, lr_lambda, last_epoch)
+
+
+def get_cosine_with_hard_restarts_schedule_with_warmup(
+ learning_rate: float, num_warmup_steps: int, num_training_steps: int, num_cycles: int = 1, last_epoch: int = -1
+):
+ """
+ Create a schedule with a learning rate that decreases following the values of the cosine function between the
+ initial lr set in the optimizer to 0, with several hard restarts, after a warmup period during which it increases
+ linearly between 0 and the initial lr set in the optimizer.
+
+ Args:
+ learning_rate (`float`):
+ The base learning rate. It is a python float number.
+ num_warmup_steps (`int`):
+ The number of steps for the warmup phase.
+ num_training_steps (`int`):
+ The total number of training steps.
+ num_cycles (`int`, *optional*, defaults to 1):
+ The number of hard restarts to use.
+ last_epoch (`int`, *optional*, defaults to -1):
+ The index of the last epoch when resuming training.
+
+ Return:
+ `paddle.optimizer.lr.LambdaDecay` with the appropriate schedule.
+ """
+
+ def lr_lambda(current_step):
+ if current_step < num_warmup_steps:
+ return float(current_step) / float(max(1, num_warmup_steps))
+ progress = float(current_step - num_warmup_steps) / float(max(1, num_training_steps - num_warmup_steps))
+ if progress >= 1.0:
+ return 0.0
+ return max(0.0, 0.5 * (1.0 + math.cos(math.pi * ((float(num_cycles) * progress) % 1.0))))
+
+ return LambdaDecay(learning_rate, lr_lambda, last_epoch)
+
+
+def get_polynomial_decay_schedule_with_warmup(
+ learning_rate: float,
+ num_warmup_steps: int,
+ num_training_steps: int,
+ lr_end: float = 1e-7,
+ power: float = 1.0,
+ last_epoch: int = -1,
+):
+ """
+ Create a schedule with a learning rate that decreases as a polynomial decay from the initial lr set in the
+ optimizer to end lr defined by *lr_end*, after a warmup period during which it increases linearly from 0 to the
+ initial lr set in the optimizer.
+
+ Args:
+ learning_rate (`float`):
+ The base learning rate. It is a python float number.
+ num_warmup_steps (`int`):
+ The number of steps for the warmup phase.
+ num_training_steps (`int`):
+ The total number of training steps.
+ lr_end (`float`, *optional*, defaults to 1e-7):
+ The end LR.
+ power (`float`, *optional*, defaults to 1.0):
+ Power factor.
+ last_epoch (`int`, *optional*, defaults to -1):
+ The index of the last epoch when resuming training.
+
+ Note: *power* defaults to 1.0 as in the fairseq implementation, which in turn is based on the original BERT
+ implementation at
+ https://github.com/google-research/bert/blob/f39e881b169b9d53bea03d2d341b31707a6c052b/optimization.py#L37
+
+ Return:
+ `paddle.optimizer.lr.LambdaDecay` with the appropriate schedule.
+
+ """
+
+ lr_init = learning_rate
+ if not (lr_init > lr_end):
+ raise ValueError(f"lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})")
+
+ def lr_lambda(current_step: int):
+ if current_step < num_warmup_steps:
+ return float(current_step) / float(max(1, num_warmup_steps))
+ elif current_step > num_training_steps:
+ return lr_end / lr_init # as LambdaLR multiplies by lr_init
+ else:
+ lr_range = lr_init - lr_end
+ decay_steps = num_training_steps - num_warmup_steps
+ pct_remaining = 1 - (current_step - num_warmup_steps) / decay_steps
+ decay = lr_range * pct_remaining**power + lr_end
+ return decay / lr_init # as LambdaLR multiplies by lr_init
+
+ return LambdaDecay(learning_rate, lr_lambda, last_epoch)
+
+
+TYPE_TO_SCHEDULER_FUNCTION = {
+ SchedulerType.LINEAR: get_linear_schedule_with_warmup,
+ SchedulerType.COSINE: get_cosine_schedule_with_warmup,
+ SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup,
+ SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup,
+ SchedulerType.CONSTANT: get_constant_schedule,
+ SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup,
+}
+
+
+def get_scheduler(
+ name: Union[str, SchedulerType],
+ learning_rate: float = 0.1,
+ num_warmup_steps: Optional[int] = None,
+ num_training_steps: Optional[int] = None,
+ num_cycles: int = 1,
+ power: float = 1.0,
+ last_epoch: int = -1,
+):
+ """
+ Unified API to get any scheduler from its name.
+
+ Args:
+ name (`str` or `SchedulerType`):
+ The name of the scheduler to use.
+ learning_rate (`float`):
+ The base learning rate. It is a python float number.
+ num_warmup_steps (`int`, *optional*):
+ The number of warmup steps to do. This is not required by all schedulers (hence the argument being
+ optional), the function will raise an error if it's unset and the scheduler type requires it.
+ num_training_steps (`int``, *optional*):
+ The number of training steps to do. This is not required by all schedulers (hence the argument being
+ optional), the function will raise an error if it's unset and the scheduler type requires it.
+ num_cycles (`int`, *optional*):
+ The number of hard restarts used in `COSINE_WITH_RESTARTS` scheduler.
+ power (`float`, *optional*, defaults to 1.0):
+ Power factor. See `POLYNOMIAL` scheduler
+ last_epoch (`int`, *optional*, defaults to -1):
+ The index of the last epoch when resuming training.
+ """
+ name = SchedulerType(name)
+ schedule_func = TYPE_TO_SCHEDULER_FUNCTION[name]
+ if name == SchedulerType.CONSTANT:
+ return schedule_func(learning_rate=learning_rate, last_epoch=last_epoch)
+
+ # All other schedulers require `num_warmup_steps`
+ if num_warmup_steps is None:
+ raise ValueError(f"{name} requires `num_warmup_steps`, please provide that argument.")
+
+ if name == SchedulerType.CONSTANT_WITH_WARMUP:
+ return schedule_func(learning_rate=learning_rate, num_warmup_steps=num_warmup_steps, last_epoch=last_epoch)
+
+ # All other schedulers require `num_training_steps`
+ if num_training_steps is None:
+ raise ValueError(f"{name} requires `num_training_steps`, please provide that argument.")
+
+ if name == SchedulerType.COSINE_WITH_RESTARTS:
+ return schedule_func(
+ learning_rate=learning_rate,
+ num_warmup_steps=num_warmup_steps,
+ num_training_steps=num_training_steps,
+ num_cycles=num_cycles,
+ last_epoch=last_epoch,
+ )
+
+ if name == SchedulerType.POLYNOMIAL:
+ return schedule_func(
+ learning_rate=learning_rate,
+ num_warmup_steps=num_warmup_steps,
+ num_training_steps=num_training_steps,
+ power=power,
+ last_epoch=last_epoch,
+ )
+
+ return schedule_func(
+ learning_rate=learning_rate,
+ num_warmup_steps=num_warmup_steps,
+ num_training_steps=num_training_steps,
+ last_epoch=last_epoch,
+ )
diff --git a/ppdiffusers/pipeline_utils.py b/ppdiffusers/pipeline_utils.py
new file mode 100644
index 0000000000000000000000000000000000000000..1be8011bd01833a0a3e472656843124ce1c79aa3
--- /dev/null
+++ b/ppdiffusers/pipeline_utils.py
@@ -0,0 +1,659 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+# Copyright 2022 The HuggingFace Team. All rights reserved.
+# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import importlib
+import inspect
+import os
+import tempfile
+from dataclasses import dataclass
+from typing import Any, Dict, List, Optional, Union
+
+import numpy as np
+import paddle
+import paddle.nn as nn
+import PIL
+from huggingface_hub import (
+ create_repo,
+ get_hf_file_metadata,
+ hf_hub_url,
+ repo_type_and_id_from_hf_id,
+ upload_folder,
+)
+from huggingface_hub.utils import EntryNotFoundError
+from packaging import version
+from PIL import Image
+from tqdm.auto import tqdm
+
+from . import FastDeployRuntimeModel
+from .configuration_utils import ConfigMixin
+from .utils import PPDIFFUSERS_CACHE, BaseOutput, deprecate, logging
+
+INDEX_FILE = "model_state.pdparams"
+CUSTOM_PIPELINE_FILE_NAME = "pipeline.py"
+DUMMY_MODULES_FOLDER = "ppdiffusers.utils"
+PADDLENLP_DUMMY_MODULES_FOLDER = "paddlenlp.transformers.utils"
+
+logger = logging.get_logger(__name__)
+
+LOADABLE_CLASSES = {
+ "ppdiffusers": {
+ "ModelMixin": ["save_pretrained", "from_pretrained"],
+ "SchedulerMixin": ["save_pretrained", "from_pretrained"],
+ "DiffusionPipeline": ["save_pretrained", "from_pretrained"],
+ "FastDeployRuntimeModel": ["save_pretrained", "from_pretrained"],
+ },
+ "paddlenlp.transformers": {
+ "PretrainedTokenizer": ["save_pretrained", "from_pretrained"],
+ "PretrainedModel": ["save_pretrained", "from_pretrained"],
+ "FeatureExtractionMixin": ["save_pretrained", "from_pretrained"],
+ "ProcessorMixin": ["save_pretrained", "from_pretrained"],
+ "ImageProcessingMixin": ["save_pretrained", "from_pretrained"],
+ },
+}
+
+ALL_IMPORTABLE_CLASSES = {}
+for library in LOADABLE_CLASSES:
+ ALL_IMPORTABLE_CLASSES.update(LOADABLE_CLASSES[library])
+
+
+@dataclass
+class ImagePipelineOutput(BaseOutput):
+ """
+ Output class for image pipelines.
+
+ Args:
+ images (`List[PIL.Image.Image]` or `np.ndarray`)
+ List of denoised PIL images of length `batch_size` or numpy array of shape `(batch_size, height, width,
+ num_channels)`. PIL images or numpy array present the denoised images of the diffusion pipeline.
+ """
+
+ images: Union[List[PIL.Image.Image], np.ndarray]
+
+
+@dataclass
+class AudioPipelineOutput(BaseOutput):
+ """
+ Output class for audio pipelines.
+
+ Args:
+ audios (`np.ndarray`)
+ List of denoised samples of shape `(batch_size, num_channels, sample_rate)`. Numpy array present the
+ denoised audio samples of the diffusion pipeline.
+ """
+
+ audios: np.ndarray
+
+
+class DiffusionPipeline(ConfigMixin):
+ r"""
+ Base class for all models.
+
+ [`DiffusionPipeline`] takes care of storing all components (models, schedulers, processors) for diffusion pipelines
+ and handles methods for loading, downloading and saving models as well as a few methods common to all pipelines to:
+
+ - move all Paddle modules to the device of your choice
+ - enabling/disabling the progress bar for the denoising iteration
+
+ Class attributes:
+
+ - **config_name** (`str`) -- name of the config file that will store the class and module names of all
+ - **_optional_components** (List[`str`]) -- list of all components that are optional so they don't have to be
+ passed for the pipeline to function (should be overridden by subclasses).
+ """
+ config_name = "model_index.json"
+ _optional_components = []
+
+ def register_modules(self, **kwargs):
+ # import it here to avoid circular import
+ from . import pipelines
+
+ for name, module in kwargs.items():
+ # retrieve library
+ if module is None:
+ register_dict = {name: (None, None)}
+ else:
+ # TODO (junnyu) support paddlenlp.transformers
+ if "paddlenlp" in module.__module__.split(".") or "ppnlp_patch_utils" in module.__module__.split("."):
+ library = "paddlenlp.transformers"
+ else:
+ library = module.__module__.split(".")[0]
+
+ # check if the module is a pipeline module
+ pipeline_dir = module.__module__.split(".")[-2] if len(module.__module__.split(".")) > 2 else None
+ path = module.__module__.split(".")
+ is_pipeline_module = pipeline_dir in path and hasattr(pipelines, pipeline_dir)
+
+ # if library is not in LOADABLE_CLASSES, then it is a custom module.
+ # Or if it's a pipeline module, then the module is inside the pipeline
+ # folder so we set the library to module name.
+ if library not in LOADABLE_CLASSES or is_pipeline_module:
+ library = pipeline_dir
+
+ # retrieve class_name
+ class_name = module.__class__.__name__
+
+ register_dict = {name: (library, class_name)}
+
+ # save model index config
+ self.register_to_config(**register_dict)
+
+ # set models
+ setattr(self, name, module)
+
+ def save_pretrained(self, save_directory: Union[str, os.PathLike]):
+ """
+ Save all variables of the pipeline that can be saved and loaded as well as the pipelines configuration file to
+ a directory. A pipeline variable can be saved and loaded if its class implements both a save and loading
+ method. The pipeline can easily be re-loaded using the `[`~DiffusionPipeline.from_pretrained`]` class method.
+
+ Arguments:
+ save_directory (`str` or `os.PathLike`):
+ Directory to which to save. Will be created if it doesn't exist.
+ """
+ self.save_config(save_directory)
+
+ model_index_dict = dict(self.config)
+ model_index_dict.pop("_class_name")
+ # TODO (junnyu) support old version
+ model_index_dict.pop("_diffusers_paddle_version", None)
+ model_index_dict.pop("_diffusers_version", None)
+ model_index_dict.pop("_ppdiffusers_version", None)
+ model_index_dict.pop("_module", None)
+
+ expected_modules, optional_kwargs = self._get_signature_keys(self)
+
+ def is_saveable_module(name, value):
+ if name not in expected_modules:
+ return False
+ if name in self._optional_components and value[0] is None:
+ return False
+ return True
+
+ model_index_dict = {k: v for k, v in model_index_dict.items() if is_saveable_module(k, v)}
+
+ for pipeline_component_name in model_index_dict.keys():
+ sub_model = getattr(self, pipeline_component_name)
+
+ model_cls = sub_model.__class__
+
+ save_method_name = None
+ # search for the model's base class in LOADABLE_CLASSES
+ for library_name, library_classes in LOADABLE_CLASSES.items():
+ library = importlib.import_module(library_name)
+ for base_class, save_load_methods in library_classes.items():
+ class_candidate = getattr(library, base_class, None)
+ if class_candidate is not None and issubclass(model_cls, class_candidate):
+ # if we found a suitable base class in LOADABLE_CLASSES then grab its save method
+ save_method_name = save_load_methods[0]
+ break
+ if save_method_name is not None:
+ break
+
+ save_method = getattr(sub_model, save_method_name)
+ save_method(os.path.join(save_directory, pipeline_component_name))
+
+ def save_to_hf_hub(
+ self,
+ repo_id: str,
+ private: Optional[bool] = None,
+ commit_message: Optional[str] = None,
+ revision: Optional[str] = None,
+ create_pr: bool = False,
+ ):
+ """
+ Uploads all elements of this pipeline to a new HuggingFace Hub repository.
+ Args:
+ repo_id (str): Repository name for your model/tokenizer in the Hub.
+ private (bool, optional): Whether the model/tokenizer is set to private
+ commit_message (str, optional) — The summary / title / first line of the generated commit. Defaults to: f"Upload {path_in_repo} with huggingface_hub"
+ revision (str, optional) — The git revision to commit from. Defaults to the head of the "main" branch.
+ create_pr (boolean, optional) — Whether or not to create a Pull Request with that commit. Defaults to False.
+ If revision is not set, PR is opened against the "main" branch. If revision is set and is a branch, PR is opened against this branch.
+ If revision is set and is not a branch name (example: a commit oid), an RevisionNotFoundError is returned by the server.
+
+ Returns: The url of the commit of your model in the given repository.
+ """
+ repo_url = create_repo(repo_id, private=private, exist_ok=True)
+
+ # Infer complete repo_id from repo_url
+ # Can be different from the input `repo_id` if repo_owner was implicit
+ _, repo_owner, repo_name = repo_type_and_id_from_hf_id(repo_url)
+
+ repo_id = f"{repo_owner}/{repo_name}"
+
+ # Check if README file already exist in repo
+ try:
+ get_hf_file_metadata(hf_hub_url(repo_id=repo_id, filename="README.md", revision=revision))
+ has_readme = True
+ except EntryNotFoundError:
+ has_readme = False
+
+ with tempfile.TemporaryDirectory() as tmp_dir:
+ # save model
+ self.save_pretrained(tmp_dir)
+ # Add readme if does not exist
+ logger.info("README.md not found, adding the default README.md")
+ if not has_readme:
+ with open(os.path.join(tmp_dir, "README.md"), "w") as f:
+ f.write(f"---\nlibrary_name: ppdiffusers\n---\n# {repo_id}")
+
+ # Upload model and return
+ logger.info(f"Pushing to the {repo_id}. This might take a while")
+ return upload_folder(
+ repo_id=repo_id,
+ repo_type="model",
+ folder_path=tmp_dir,
+ commit_message=commit_message,
+ revision=revision,
+ create_pr=create_pr,
+ )
+
+ def to(self, paddle_device: Optional[str] = None):
+ if paddle_device is None:
+ return self
+
+ module_names, _, _ = self.extract_init_dict(dict(self.config))
+ for name in module_names.keys():
+ module = getattr(self, name)
+ if isinstance(module, nn.Layer):
+ if module.dtype == paddle.float16 and str(paddle_device) in ["cpu"]:
+ logger.warning(
+ "Pipelines loaded with `paddle_dtype=paddle.float16` cannot run with `cpu` device. It"
+ " is not recommended to move them to `cpu` as running them will fail. Please make"
+ " sure to use an accelerator to run the pipeline in inference, due to the lack of"
+ " support for`float16` operations on this device in Paddle. Please, remove the"
+ " `paddle_dtype=paddle.float16` argument, or use another device for inference."
+ )
+ module.to(paddle_device)
+ return self
+
+ @property
+ def device(self):
+ r"""
+ Returns:
+ `paddle.device`: The paddle device on which the pipeline is located.
+ """
+ module_names, _, _ = self.extract_init_dict(dict(self.config))
+ for name in module_names.keys():
+ module = getattr(self, name)
+ if isinstance(module, nn.Layer):
+ return module.place
+ return "cpu"
+
+ @classmethod
+ def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], **kwargs):
+ r"""
+ Instantiate a Paddle diffusion pipeline from pre-trained pipeline weights.
+
+ The pipeline is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated).
+
+ The warning *Weights from XXX not initialized from pretrained model* means that the weights of XXX do not come
+ pretrained with the rest of the model. It is up to you to train those weights with a downstream fine-tuning
+ task.
+
+ The warning *Weights from XXX not used in YYY* means that the layer XXX is not used by YYY, therefore those
+ weights are discarded.
+
+ Parameters:
+ pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*):
+ Can be either:
+
+ - A string, the *model id* of a pretrained pipeline hosted inside in `https://bj.bcebos.com/paddlenlp/models/community`.
+ like `CompVis/stable-diffusion-v1-4`, `CompVis/ldm-text2im-large-256`.
+ - A path to a *directory* containing pipeline weights saved using
+ [`~DiffusionPipeline.save_pretrained`], e.g., `./my_pipeline_directory/`.
+ paddle_dtype (`str` or `paddle.dtype`, *optional*):
+ Override the default `paddle.dtype` and load the model under this dtype. If `"auto"` is passed the dtype
+ will be automatically derived from the model's weights.
+ output_loading_info(`bool`, *optional*, defaults to `False`):
+ Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages.
+ from_hf_hub (bool, *optional*):
+ Whether to load from Hugging Face Hub. Defaults to False
+ kwargs (remaining dictionary of keyword arguments, *optional*):
+ Can be used to overwrite load - and saveable variables - *i.e.* the pipeline components - of the
+ specific pipeline class. The overwritten components are then directly passed to the pipelines
+ `__init__` method. See example below for more information.
+
+ Examples:
+
+ ```py
+ >>> from ppdiffusers import DiffusionPipeline
+
+ >>> # Download pipeline from bos and cache.
+ >>> pipeline = DiffusionPipeline.from_pretrained("CompVis/ldm-text2im-large-256")
+
+ >>> # Download pipeline that requires an authorization token
+ >>> # For more information on access tokens, please refer to this section
+ >>> # of the documentation](https://huggingface.co/docs/hub/security-tokens)
+ >>> pipeline = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
+
+ >>> # Use a different scheduler
+ >>> from ppdiffusers import LMSDiscreteScheduler
+
+ >>> scheduler = LMSDiscreteScheduler.from_config(pipeline.scheduler.config)
+ >>> pipeline.scheduler = scheduler
+ ```
+ """
+ cache_dir = kwargs.pop("cache_dir", PPDIFFUSERS_CACHE)
+ paddle_dtype = kwargs.pop("paddle_dtype", None)
+ # (TODO junnyu, we donot suuport this.)
+ # custom_pipeline = kwargs.pop("custom_pipeline", None)
+ # for fastdeploy model
+ runtime_options = kwargs.pop("runtime_options", None)
+ from_hf_hub = kwargs.pop("from_hf_hub", False)
+
+ # 1. Download the checkpoints and configs
+ if not os.path.isdir(pretrained_model_name_or_path):
+ config_dict = cls.load_config(
+ pretrained_model_name_or_path,
+ cache_dir=cache_dir,
+ from_hf_hub=from_hf_hub,
+ )
+ else:
+ config_dict = cls.load_config(pretrained_model_name_or_path)
+
+ # 2. Load the pipeline class
+ if cls != DiffusionPipeline:
+ pipeline_class = cls
+ else:
+ diffusers_module = importlib.import_module(cls.__module__.split(".")[0])
+ pipeline_class = getattr(diffusers_module, config_dict["_class_name"])
+
+ # To be removed in 1.0.0
+ # TODO (junnyu) support old version
+ _ppdiffusers_version = (
+ config_dict["_diffusers_paddle_version"]
+ if "_diffusers_paddle_version" in config_dict
+ else config_dict["_ppdiffusers_version"]
+ )
+ if pipeline_class.__name__ == "StableDiffusionInpaintPipeline" and version.parse(
+ version.parse(_ppdiffusers_version).base_version
+ ) <= version.parse("0.5.1"):
+ from . import (
+ StableDiffusionInpaintPipeline,
+ StableDiffusionInpaintPipelineLegacy,
+ )
+
+ pipeline_class = StableDiffusionInpaintPipelineLegacy
+
+ deprecation_message = (
+ "You are using a legacy checkpoint for inpainting with Stable Diffusion, therefore we are loading the"
+ f" {StableDiffusionInpaintPipelineLegacy} class instead of {StableDiffusionInpaintPipeline}. For"
+ " better inpainting results, we strongly suggest using Stable Diffusion's official inpainting"
+ " checkpoint: https://huggingface.co/runwayml/stable-diffusion-inpainting instead or adapting your"
+ f" checkpoint {pretrained_model_name_or_path} to the format of"
+ " https://huggingface.co/runwayml/stable-diffusion-inpainting. Note that we do not actively maintain"
+ " the {StableDiffusionInpaintPipelineLegacy} class and will likely remove it in version 1.0.0."
+ )
+ deprecate("StableDiffusionInpaintPipelineLegacy", "1.0.0", deprecation_message, standard_warn=False)
+
+ # some modules can be passed directly to the init
+ # in this case they are already instantiated in `kwargs`
+ # extract them here
+ expected_modules, optional_kwargs = cls._get_signature_keys(pipeline_class)
+
+ passed_class_obj = {k: kwargs.pop(k) for k in expected_modules if k in kwargs}
+ passed_pipe_kwargs = {k: kwargs.pop(k) for k in optional_kwargs if k in kwargs}
+
+ init_dict, unused_kwargs, _ = pipeline_class.extract_init_dict(config_dict, **kwargs)
+
+ # define init kwargs
+ init_kwargs = {k: init_dict.pop(k) for k in optional_kwargs if k in init_dict}
+ init_kwargs = {**init_kwargs, **passed_pipe_kwargs}
+
+ # remove `null` components
+ def load_module(name, value):
+ if value[0] is None:
+ return False
+ if name in passed_class_obj and passed_class_obj[name] is None:
+ return False
+ return True
+
+ init_dict = {k: v for k, v in init_dict.items() if load_module(k, v)}
+
+ if len(unused_kwargs) > 0:
+ logger.warning(
+ f"Keyword arguments {unused_kwargs} are not expected by {pipeline_class.__name__} and will be ignored."
+ )
+ # import it here to avoid circular import
+ from . import pipelines
+
+ # 3. Load each module in the pipeline
+ for name, (library_name, class_name) in init_dict.items():
+ # TODO (junnyu) support old model_index.json
+ if library_name == "diffusers_paddle":
+ library_name = "ppdiffusers"
+
+ is_pipeline_module = hasattr(pipelines, library_name)
+ loaded_sub_model = None
+
+ # if the model is in a pipeline module, then we load it from the pipeline
+ if name in passed_class_obj:
+ # 1. check that passed_class_obj has correct parent class
+ if not is_pipeline_module:
+ library = importlib.import_module(library_name)
+ class_obj = getattr(library, class_name)
+ importable_classes = LOADABLE_CLASSES[library_name]
+ class_candidates = {c: getattr(library, c, None) for c in importable_classes.keys()}
+
+ expected_class_obj = None
+ for class_name, class_candidate in class_candidates.items():
+ if class_candidate is not None and issubclass(class_obj, class_candidate):
+ expected_class_obj = class_candidate
+
+ if not issubclass(passed_class_obj[name].__class__, expected_class_obj):
+ raise ValueError(
+ f"{passed_class_obj[name]} is of type: {type(passed_class_obj[name])}, but should be"
+ f" {expected_class_obj}"
+ )
+ else:
+ logger.warning(
+ f"You have passed a non-standard module {passed_class_obj[name]}. We cannot verify whether it"
+ " has the correct type"
+ )
+
+ # set passed class object
+ loaded_sub_model = passed_class_obj[name]
+ elif is_pipeline_module:
+ pipeline_module = getattr(pipelines, library_name)
+ class_obj = getattr(pipeline_module, class_name)
+ importable_classes = ALL_IMPORTABLE_CLASSES
+ class_candidates = {c: class_obj for c in importable_classes.keys()}
+ else:
+ # else we just import it from the library.
+ library = importlib.import_module(library_name)
+
+ class_obj = getattr(library, class_name)
+ importable_classes = LOADABLE_CLASSES[library_name]
+ class_candidates = {c: getattr(library, c, None) for c in importable_classes.keys()}
+
+ if loaded_sub_model is None:
+ load_method_name = None
+ for class_name, class_candidate in class_candidates.items():
+ if class_candidate is not None and issubclass(class_obj, class_candidate):
+ load_method_name = importable_classes[class_name][1]
+
+ if load_method_name is None:
+ none_module = class_obj.__module__
+ is_dummy_path = none_module.startswith(DUMMY_MODULES_FOLDER) or none_module.startswith(
+ PADDLENLP_DUMMY_MODULES_FOLDER
+ )
+ if is_dummy_path and "dummy" in none_module:
+ # call class_obj for nice error message of missing requirements
+ class_obj()
+
+ raise ValueError(
+ f"The component {class_obj} of {pipeline_class} cannot be loaded as it does not seem to have"
+ f" any of the loading methods defined in {ALL_IMPORTABLE_CLASSES}."
+ )
+
+ load_method = getattr(class_obj, load_method_name)
+ loading_kwargs = {
+ "from_hf_hub": from_hf_hub,
+ "cache_dir": cache_dir,
+ }
+
+ if issubclass(class_obj, FastDeployRuntimeModel):
+ if isinstance(runtime_options, dict):
+ options = runtime_options.get(name, None)
+ else:
+ options = runtime_options
+ loading_kwargs["runtime_options"] = options
+
+ if os.path.isdir(pretrained_model_name_or_path):
+ model_path_dir = os.path.join(pretrained_model_name_or_path, name)
+ elif from_hf_hub:
+ model_path_dir = pretrained_model_name_or_path
+ loading_kwargs["subfolder"] = name
+ else:
+ # BOS does not require 'subfolder'. We simpy concat the model name with the subfolder
+ model_path_dir = pretrained_model_name_or_path + "/" + name
+
+ loaded_sub_model = load_method(model_path_dir, **loading_kwargs)
+
+ # TODO junnyu find a better way to covert to float16
+ if isinstance(loaded_sub_model, nn.Layer):
+ if paddle_dtype is not None and next(loaded_sub_model.named_parameters())[1].dtype != paddle_dtype:
+ loaded_sub_model = loaded_sub_model.to(dtype=paddle_dtype)
+ # paddlenlp model is training mode not eval mode
+ loaded_sub_model.eval()
+
+ init_kwargs[name] = loaded_sub_model # UNet(...), # DiffusionScheduler(...)
+
+ # 4. Potentially add passed objects if expected
+ missing_modules = set(expected_modules) - set(init_kwargs.keys())
+ passed_modules = list(passed_class_obj.keys())
+ optional_modules = pipeline_class._optional_components
+ if len(missing_modules) > 0 and missing_modules <= set(passed_modules + optional_modules):
+ for module in missing_modules:
+ init_kwargs[module] = passed_class_obj.get(module, None)
+ elif len(missing_modules) > 0:
+ passed_modules = set(list(init_kwargs.keys()) + list(passed_class_obj.keys())) - optional_kwargs
+ raise ValueError(
+ f"Pipeline {pipeline_class} expected {expected_modules}, but only {passed_modules} were passed."
+ )
+
+ # 5. Instantiate the pipeline
+ model = pipeline_class(**init_kwargs)
+ return model
+
+ def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"):
+ r"""
+ Enable sliced attention computation.
+ When this option is enabled, the attention module will split the input tensor in slices, to compute attention
+ in several steps. This is useful to save some memory in exchange for a small speed decrease.
+ Args:
+ slice_size (`str` or `int`, *optional*, defaults to `"auto"`):
+ When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If
+ `"max"`, maxium amount of memory will be saved by running only one slice at a time. If a number is
+ provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
+ must be a multiple of `slice_size`.
+ """
+ self.set_attention_slice(slice_size)
+
+ def disable_attention_slicing(self):
+ r"""
+ Disable sliced attention computation. If `enable_attention_slicing` was previously invoked, this method will go
+ back to computing attention in one step.
+ """
+ # set slice_size = `None` to disable `attention slicing`
+ self.enable_attention_slicing(None)
+
+ def set_attention_slice(self, slice_size: Optional[int]):
+ module_names, _, _ = self.extract_init_dict(dict(self.config))
+ for module_name in module_names:
+ module = getattr(self, module_name)
+ if isinstance(module, nn.Layer) and hasattr(module, "set_attention_slice"):
+ module.set_attention_slice(slice_size)
+
+ @staticmethod
+ def _get_signature_keys(obj):
+ parameters = inspect.signature(obj.__init__).parameters
+ required_parameters = {k: v for k, v in parameters.items() if v.default == inspect._empty}
+ optional_parameters = set({k for k, v in parameters.items() if v.default != inspect._empty})
+ expected_modules = set(required_parameters.keys()) - set(["self"])
+ return expected_modules, optional_parameters
+
+ @property
+ def components(self) -> Dict[str, Any]:
+ r"""
+
+ The `self.components` property can be useful to run different pipelines with the same weights and
+ configurations to not have to re-allocate memory.
+
+ Examples:
+
+ ```py
+ >>> from ppdiffusers import (
+ ... StableDiffusionPipeline,
+ ... StableDiffusionImg2ImgPipeline,
+ ... StableDiffusionInpaintPipeline,
+ ... )
+
+ >>> text2img = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
+ >>> img2img = StableDiffusionImg2ImgPipeline(**text2img.components)
+ >>> inpaint = StableDiffusionInpaintPipeline(**text2img.components)
+ ```
+
+ Returns:
+ A dictionaly containing all the modules needed to initialize the pipeline.
+ """
+ expected_modules, optional_parameters = self._get_signature_keys(self)
+ components = {
+ k: getattr(self, k) for k in self.config.keys() if not k.startswith("_") and k not in optional_parameters
+ }
+
+ if set(components.keys()) != expected_modules:
+ raise ValueError(
+ f"{self} has been incorrectly initialized or {self.__class__} is incorrectly implemented. Expected"
+ f" {expected_modules} to be defined, but {components} are defined."
+ )
+
+ return components
+
+ @staticmethod
+ def numpy_to_pil(images):
+ """
+ Convert a numpy image or a batch of images to a PIL image.
+ """
+ if images.ndim == 3:
+ images = images[None, ...]
+ images = (images * 255).round().astype("uint8")
+ if images.shape[-1] == 1:
+ # special case for grayscale (single channel) images
+ pil_images = [Image.fromarray(image.squeeze(), mode="L") for image in images]
+ else:
+ pil_images = [Image.fromarray(image) for image in images]
+
+ return pil_images
+
+ def progress_bar(self, iterable=None, total=None):
+ if not hasattr(self, "_progress_bar_config"):
+ self._progress_bar_config = {}
+ elif not isinstance(self._progress_bar_config, dict):
+ raise ValueError(
+ f"`self._progress_bar_config` should be of type `dict`, but is {type(self._progress_bar_config)}."
+ )
+
+ if iterable is not None:
+ return tqdm(iterable, **self._progress_bar_config)
+ elif total is not None:
+ return tqdm(total=total, **self._progress_bar_config)
+ else:
+ raise ValueError("Either `total` or `iterable` has to be defined.")
+
+ def set_progress_bar_config(self, **kwargs):
+ self._progress_bar_config = kwargs
diff --git a/ppdiffusers/pipelines/README.md b/ppdiffusers/pipelines/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..faf42f70c681d7fa9a192c691cf51c30da3cafdc
--- /dev/null
+++ b/ppdiffusers/pipelines/README.md
@@ -0,0 +1,380 @@
+# PPDiffusers Pipelines
+
+Pipelines提供了一种对各种SOTA扩散模型进行各种下游任务推理的简单方式。
+大多数扩散模型系统由多个独立训练的模型和高度自适应的调度器(scheduler)组成,通过pipeline我们可以很方便的对这些扩散模型系统进行端到端的推理。
+
+举例来说, Stable Diffusion由以下组件构成:
+- Autoencoder
+- Conditional Unet
+- CLIP text encoder
+- Scheduler
+- CLIPFeatureExtractor
+- Safety checker
+
+这些组件之间是独立训练或创建的,同时在Stable Diffusion的推理运行中也是必需的,我们可以通过pipelines来对整个系统进行封装,从而提供一个简洁的推理接口。
+
+我们通过pipelines在统一的API下提供所有开源且SOTA的扩散模型系统的推理能力。具体来说,我们的pipelines能够提供以下功能:
+1. 可以加载官方发布的权重,并根据相应的论文复现出与原始实现相同的输出
+2. 提供一个简单的用户界面来推理运行扩散模型系统,参见[Pipelines API](#pipelines-api)部分
+3. 提供易于理解的代码实现,可以与官方文档一起阅读,参见[Pipelines汇总](#Pipelines汇总)部分
+4. 支持多种模态下的10+种任务,参见[任务展示](#任务展示)部分
+5. 可以很容易地与社区建立联系
+
+**【注意】** Pipelines不(也不应该)提供任何训练功能。
+如果您正在寻找训练的相关示例,请查看[examples](https://github.com/PaddlePaddle/PaddleNLP/tree/develop/ppdiffusers/examples).
+
+## Pipelines汇总
+
+下表总结了所有支持的Pipelines,以及相应的来源、任务、推理脚本。
+
+| Pipeline | 源链接 | 任务 | 推理脚本
+|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|:---:|:---:|
+| [alt_diffusion](https://github.com/PaddlePaddle/PaddleNLP/tree/develop/ppdiffusers/ppdiffusers/pipelines/alt_diffusion) | [**Alt Diffusion**](https://arxiv.org/abs/2211.06679) | *Text-to-Image Generation* | [link](https://github.com/PaddlePaddle/PaddleNLP/tree/develop/ppdiffusers/examples/inference/text_to_image_generation-alt_diffusion.py)
+| [alt_diffusion](https://github.com/PaddlePaddle/PaddleNLP/tree/develop/ppdiffusers/ppdiffusers/pipelines/alt_diffusion) | [**Alt Diffusion**](https://arxiv.org/abs/2211.06679) | *Image-to-Image Text-Guided Generation* | [link](https://github.com/PaddlePaddle/PaddleNLP/tree/develop/ppdiffusers/examples/inference/image_to_image_text_guided_generation-alt_diffusion.py)
+| [audio_diffusion](https://github.com/PaddlePaddle/PaddleNLP/tree/develop/ppdiffusers/ppdiffusers/pipelines/audio_diffusion) | [**Audio Diffusion**](https://github.com/teticio/audio-diffusion) | *Unconditional Audio Generation* | [link](https://github.com/PaddlePaddle/PaddleNLP/tree/develop/ppdiffusers/examples/inference/unconditional_audio_generation-audio_diffusion.py)
+| [dance_diffusion](https://github.com/PaddlePaddle/PaddleNLP/tree/develop/ppdiffusers/ppdiffusers/pipelines/dance_diffusion) | [**Dance Diffusion**](https://github.com/Harmonai-org/sample-generator) | *Unconditional Audio Generation* | [link](https://github.com/PaddlePaddle/PaddleNLP/tree/develop/ppdiffusers/examples/inference/unconditional_audio_generation-dance_diffusion.py)
+| [ddpm](https://github.com/PaddlePaddle/PaddleNLP/tree/develop/ppdiffusers/ppdiffusers/pipelines/ddpm) | [**Denoising Diffusion Probabilistic Models**](https://arxiv.org/abs/2006.11239) | *Unconditional Image Generation* | [link](https://github.com/PaddlePaddle/PaddleNLP/tree/develop/ppdiffusers/examples/inference/unconditional_image_generation-ddpm.py)
+| [ddim](https://github.com/PaddlePaddle/PaddleNLP/tree/develop/ppdiffusers/ppdiffusers/pipelines/ddim) | [**Denoising Diffusion Implicit Models**](https://arxiv.org/abs/2010.02502) | *Unconditional Image Generation* | [link](https://github.com/PaddlePaddle/PaddleNLP/tree/develop/ppdiffusers/examples/inference/unconditional_image_generation-ddim.py)
+| [latent_diffusion](https://github.com/PaddlePaddle/PaddleNLP/tree/develop/ppdiffusers/ppdiffusers/pipelines/latent_diffusion) | [**High-Resolution Image Synthesis with Latent Diffusion Models**](https://arxiv.org/abs/2112.10752) | *Text-to-Image Generation* | [link](https://github.com/PaddlePaddle/PaddleNLP/tree/develop/ppdiffusers/examples/inference/text_to_image_generation-latent_diffusion.py)
+| [latent_diffusion](https://github.com/PaddlePaddle/PaddleNLP/tree/develop/ppdiffusers/ppdiffusers/pipelines/latent_diffusion) | [**High-Resolution Image Synthesis with Latent Diffusion Models**](https://arxiv.org/abs/2112.10752) | *Super Superresolution* | [link](https://github.com/PaddlePaddle/PaddleNLP/tree/develop/ppdiffusers/examples/inference/super_resolution-latent_diffusion.py)
+| [latent_diffusion_uncond](https://github.com/PaddlePaddle/PaddleNLP/tree/develop/ppdiffusers/ppdiffusers/pipelines/latent_diffusion_uncond) | [**High-Resolution Image Synthesis with Latent Diffusion Models**](https://arxiv.org/abs/2112.10752) | *Unconditional Image Generation* | [link](https://github.com/PaddlePaddle/PaddleNLP/tree/develop/ppdiffusers/examples/inference/unconditional_image_generation-latent_diffusion_uncond.py)
+| [paint_by_example](https://github.com/PaddlePaddle/PaddleNLP/tree/develop/ppdiffusers/ppdiffusers/pipelines/paint_by_example) | [**Paint by Example: Exemplar-based Image Editing with Diffusion Models**](https://arxiv.org/abs/2211.13227) | *Image-Guided Image Inpainting* | [link](https://github.com/PaddlePaddle/PaddleNLP/tree/develop/ppdiffusers/examples/inference/image_guided_image_inpainting-paint_by_example.py)
+| [pndm](https://github.com/PaddlePaddle/PaddleNLP/tree/develop/ppdiffusers/ppdiffusers/pipelines/pndm) | [**Pseudo Numerical Methods for Diffusion Models on Manifolds**](https://arxiv.org/abs/2202.09778) | *Unconditional Image Generation* | [link](https://github.com/PaddlePaddle/PaddleNLP/tree/develop/ppdiffusers/examples/inference/unconditional_image_generation-pndm.py)
+| [repaint](https://github.com/PaddlePaddle/PaddleNLP/tree/develop/ppdiffusers/ppdiffusers/pipelines/repaint) | [**Repaint**](https://arxiv.org/abs/2201.09865) | *Image Inpainting* | [link](https://github.com/PaddlePaddle/PaddleNLP/tree/develop/ppdiffusers/examples/inference/image_inpainting-repaint.py)
+| [score_sde_ve](https://github.com/PaddlePaddle/PaddleNLP/tree/develop/ppdiffusers/ppdiffusers/pipelines/score_sde_ve) | [**Score-Based Generative Modeling through Stochastic Differential Equations**](https://openreview.net/forum?id=PxTIG12RRHS) | *Unconditional Image Generation* | [link](https://github.com/PaddlePaddle/PaddleNLP/tree/develop/ppdiffusers/examples/inference/unconditional_image_generation-score_sde_ve.py)
+| [stable_diffusion](https://github.com/PaddlePaddle/PaddleNLP/tree/develop/ppdiffusers/ppdiffusers/pipelines/stable_diffusion) | [**Stable Diffusion**](https://stability.ai/blog/stable-diffusion-public-release) | *Text-to-Image Generation* | [link](https://github.com/PaddlePaddle/PaddleNLP/tree/develop/ppdiffusers/examples/inference/text_to_image_generation-stable_diffusion.py)
+| [stable_diffusion](https://github.com/PaddlePaddle/PaddleNLP/tree/develop/ppdiffusers/ppdiffusers/pipelines/stable_diffusion) | [**Stable Diffusion**](https://stability.ai/blog/stable-diffusion-public-release) | *Image-to-Image Text-Guided Generation* | [link](https://github.com/PaddlePaddle/PaddleNLP/tree/develop/ppdiffusers/examples/inference/image_to_image_text_guided_generation-stable_diffusion.py)
+| [stable_diffusion](https://github.com/PaddlePaddle/PaddleNLP/tree/develop/ppdiffusers/ppdiffusers/pipelines/stable_diffusion) | [**Stable Diffusion**](https://stability.ai/blog/stable-diffusion-public-release) | *Text-Guided Image Inpainting* | [link](https://github.com/PaddlePaddle/PaddleNLP/tree/develop/ppdiffusers/examples/inference/text_guided_image_inpainting-stable_diffusion.py)
+| [stable_diffusion_2](https://github.com/PaddlePaddle/PaddleNLP/tree/develop/ppdiffusers/ppdiffusers/pipelines/stable_diffusion) | [**Stable Diffusion 2**](https://stability.ai/blog/stable-diffusion-v2-release) | *Text-to-Image Generation* | [link](https://github.com/PaddlePaddle/PaddleNLP/tree/develop/ppdiffusers/examples/inference/text_to_image_generation-stable_diffusion_2.py)
+| [stable_diffusion_2](https://github.com/PaddlePaddle/PaddleNLP/tree/develop/ppdiffusers/ppdiffusers/pipelines/stable_diffusion) | [**Stable Diffusion 2**](https://stability.ai/blog/stable-diffusion-v2-release) | *Image-to-Image Text-Guided Generation* | [link](https://github.com/PaddlePaddle/PaddleNLP/tree/develop/ppdiffusers/examples/inference/image_to_image_text_guided_generation-stable_diffusion_2.py)
+| [stable_diffusion_2](https://github.com/PaddlePaddle/PaddleNLP/tree/develop/ppdiffusers/ppdiffusers/pipelines/stable_diffusion) | [**Stable Diffusion 2**](https://stability.ai/blog/stable-diffusion-v2-release) | *Text-Guided Image Inpainting* | [link](https://github.com/PaddlePaddle/PaddleNLP/tree/develop/ppdiffusers/examples/inference/text_guided_image_inpainting-stable_diffusion_2.py)
+| [stable_diffusion_2](https://github.com/PaddlePaddle/PaddleNLP/tree/develop/ppdiffusers/ppdiffusers/pipelines/stable_diffusion) | [**Stable Diffusion 2**](https://stability.ai/blog/stable-diffusion-v2-release) | *Text-Guided Image Upscaling* | [link](https://github.com/PaddlePaddle/PaddleNLP/tree/develop/ppdiffusers/examples/inference/text_guided_image_upscaling-stable_diffusion_2.py)
+| [stable_diffusion_2](https://github.com/PaddlePaddle/PaddleNLP/tree/develop/ppdiffusers/ppdiffusers/pipelines/stable_diffusion) | [**Stable Diffusion 2**](https://stability.ai/blog/stable-diffusion-v2-release) | *Text-Guided Image Upscaling* | [link](https://github.com/PaddlePaddle/PaddleNLP/tree/develop/ppdiffusers/examples/inference/text_guided_image_upscaling-stable_diffusion_2.py)
+| [stable_diffusion_safe](https://github.com/PaddlePaddle/PaddleNLP/tree/develop/ppdiffusers/ppdiffusers/pipelines/stable_diffusion_safe) | [**Safe Stable Diffusion**](https://arxiv.org/abs/2211.05105) | *Text-to-Image Generation* | [link](https://github.com/PaddlePaddle/PaddleNLP/tree/develop/ppdiffusers/examples/inference/text_to_image_generation-stable_diffusion_safe.py)
+| [stochastic_karras_ve](https://github.com/PaddlePaddle/PaddleNLP/tree/develop/ppdiffusers/ppdiffusers/pipelines/stochastic_karras_ve) | [**Elucidating the Design Space of Diffusion-Based Generative Models**](https://arxiv.org/abs/2206.00364) | *Unconditional Image Generation* | [link](https://github.com/PaddlePaddle/PaddleNLP/tree/develop/ppdiffusers/examples/inference/unconditional_image_generation-stochastic_karras_ve.py)
+| [unclip](https://github.com/PaddlePaddle/PaddleNLP/tree/develop/ppdiffusers/ppdiffusers/pipelines/unclip) | [**UnCLIP**](https://arxiv.org/abs/2204.06125) | *Text-to-Image Generation* | [link](https://github.com/PaddlePaddle/PaddleNLP/tree/develop/ppdiffusers/examples/inference/text_to_image_generation-unclip.py)
+| [versatile_diffusion](https://github.com/PaddlePaddle/PaddleNLP/tree/develop/ppdiffusers/ppdiffusers/pipelines/versatile_diffusion) | [**Versatile Diffusion**](https://arxiv.org/abs/2211.08332) | *Text-to-Image Generation* | [link](https://github.com/PaddlePaddle/PaddleNLP/tree/develop/ppdiffusers/examples/inference/text_to_image_generation-versatile_diffusion.py)
+| [versatile_diffusion](https://github.com/PaddlePaddle/PaddleNLP/tree/develop/ppdiffusers/ppdiffusers/pipelines/versatile_diffusion) | [**Versatile Diffusion**](https://arxiv.org/abs/2211.08332) | *Image Variation* | [link](https://github.com/PaddlePaddle/PaddleNLP/tree/develop/ppdiffusers/examples/inference/image_variation-versatile_diffusion.py)
+| [versatile_diffusion](https://github.com/PaddlePaddle/PaddleNLP/tree/develop/ppdiffusers/ppdiffusers/pipelines/versatile_diffusion) | [**Versatile Diffusion**](https://arxiv.org/abs/2211.08332) | *Dual Text and Image Guided Generation* | [link](https://github.com/PaddlePaddle/PaddleNLP/tree/develop/ppdiffusers/examples/inference/dual_text_and_image_guided_generation-versatile_diffusion.py)
+| [vq_diffusion](https://github.com/PaddlePaddle/PaddleNLP/tree/develop/ppdiffusers/ppdiffusers/pipelines/vq_diffusion) | [**VQ Diffusion**](https://arxiv.org/abs/2111.14822) | *Text-to-Image Generation* | [link](https://github.com/PaddlePaddle/PaddleNLP/tree/develop/ppdiffusers/examples/inference/text_to_image_generation-vq_diffusion.py)
+
+
+**【注意】** Pipelines可以端到端的展示相应论文中描述的扩散模型系统。然而,大多数Pipelines可以使用不同的调度器组件,甚至不同的模型组件。
+
+## Pipelines API
+
+扩散模型系统通常由多个独立训练的模型以及调度器等其他组件构成。
+其中每个模型都是在不同的任务上独立训练的,调度器可以很容易地进行替换。
+然而,在推理过程中,我们希望能够轻松地加载所有组件并在推理中使用它们,即使某个组件来自不同的库, 为此,所有pipeline都提供以下功能:
+
+
+- `from_pretrained` 该方法接收PaddleNLP模型库id(例如`runwayml/stable-diffusion-v1-5`)或本地目录路径。为了能够准确加载相应的模型和组件,相应目录下必须提供`model_index.json`文件。
+
+- `save_pretrained` 该方法接受一个本地目录路径,Pipelines的所有模型或组件都将被保存到该目录下。对于每个模型或组件,都会在给定目录下创建一个子文件夹。同时`model_index.json`文件将会创建在本地目录路径的根目录下,以便可以再次从本地路径实例化整个Pipelines。
+
+- `__call__` Pipelines在推理时将调用该方法。该方法定义了Pipelines的推理逻辑,它应该包括预处理、张量在不同模型之间的前向传播、后处理等整个推理流程。
+
+
+## 任务展示
+### 文本图像多模态
+ 文图生成(Text-to-Image Generation)
+
+- stable_diffusion
+
+```python
+from ppdiffusers import StableDiffusionPipeline
+
+# 加载模型和scheduler
+pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
+
+# 执行pipeline进行推理
+prompt = "a photo of an astronaut riding a horse on mars"
+image = pipe(prompt).images[0]
+
+# 保存图片
+image.save("astronaut_rides_horse_sd.png")
+```
+
+
diff --git a/ppdiffusers/pipelines/__init__.py b/ppdiffusers/pipelines/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..4cba94ff838813eaab5ba8ba0de2a592beb8df1a
--- /dev/null
+++ b/ppdiffusers/pipelines/__init__.py
@@ -0,0 +1,109 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+# Copyright 2022 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+# flake8: noqa
+
+from ..utils import (
+ OptionalDependencyNotAvailable,
+ is_fastdeploy_available,
+ is_k_diffusion_available,
+ is_librosa_available,
+ is_paddle_available,
+ is_paddlenlp_available,
+)
+
+try:
+ if not is_paddle_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ from ..utils.dummy_paddle_objects import * # noqa F403
+else:
+ from .dance_diffusion import DanceDiffusionPipeline
+ from .ddim import DDIMPipeline
+ from .ddpm import DDPMPipeline
+ from .latent_diffusion import LDMSuperResolutionPipeline
+ from .latent_diffusion_uncond import LDMPipeline
+ from .pndm import PNDMPipeline
+ from .repaint import RePaintPipeline
+ from .score_sde_ve import ScoreSdeVePipeline
+ from .stochastic_karras_ve import KarrasVePipeline
+
+
+try:
+ if not (is_paddle_available() and is_librosa_available()):
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ from ..utils.dummy_paddle_and_librosa_objects import * # noqa F403
+else:
+ from .audio_diffusion import AudioDiffusionPipeline, Mel
+
+try:
+ if not (is_paddle_available() and is_paddlenlp_available()):
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ from ..utils.dummy_paddle_and_paddlenlp_objects import * # noqa F403
+else:
+ from .alt_diffusion import (
+ AltDiffusionImg2ImgPipeline,
+ AltDiffusionPipeline,
+ RobertaSeriesModelWithTransformation,
+ )
+ from .latent_diffusion import (
+ LDMBertModel,
+ LDMSuperResolutionPipeline,
+ LDMTextToImagePipeline,
+ )
+ from .paint_by_example import PaintByExamplePipeline
+ from .stable_diffusion import (
+ CycleDiffusionPipeline,
+ StableDiffusionDepth2ImgPipeline,
+ StableDiffusionImageVariationPipeline,
+ StableDiffusionImg2ImgPipeline,
+ StableDiffusionInpaintPipeline,
+ StableDiffusionInpaintPipelineLegacy,
+ StableDiffusionMegaPipeline,
+ StableDiffusionPipeline,
+ StableDiffusionPipelineAllinOne,
+ StableDiffusionUpscalePipeline,
+ )
+ from .stable_diffusion_safe import StableDiffusionPipelineSafe
+ from .unclip import UnCLIPPipeline
+ from .versatile_diffusion import (
+ VersatileDiffusionDualGuidedPipeline,
+ VersatileDiffusionImageVariationPipeline,
+ VersatileDiffusionPipeline,
+ VersatileDiffusionTextToImagePipeline,
+ )
+ from .vq_diffusion import VQDiffusionPipeline
+
+try:
+ if not (is_paddle_available() and is_paddlenlp_available() and is_fastdeploy_available()):
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ from ..utils.dummy_paddle_and_paddlenlp_and_fastdeploy_objects import * # noqa F403
+else:
+ from .stable_diffusion import (
+ FastDeployStableDiffusionImg2ImgPipeline,
+ FastDeployStableDiffusionInpaintPipeline,
+ FastDeployStableDiffusionInpaintPipelineLegacy,
+ FastDeployStableDiffusionMegaPipeline,
+ FastDeployStableDiffusionPipeline,
+ )
+try:
+ if not (is_paddle_available() and is_paddlenlp_available() and is_k_diffusion_available()):
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ from ..utils.dummy_paddle_and_paddlenlp_and_k_diffusion_objects import * # noqa F403
+else:
+ from .stable_diffusion import StableDiffusionKDiffusionPipeline
diff --git a/ppdiffusers/pipelines/__pycache__/__init__.cpython-37.pyc b/ppdiffusers/pipelines/__pycache__/__init__.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..2061f181f3c550af96bf01f72e2e3e15d238fe77
Binary files /dev/null and b/ppdiffusers/pipelines/__pycache__/__init__.cpython-37.pyc differ
diff --git a/ppdiffusers/pipelines/alt_diffusion/__init__.py b/ppdiffusers/pipelines/alt_diffusion/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..2d01604130d546566de087f4c72d690921fa429e
--- /dev/null
+++ b/ppdiffusers/pipelines/alt_diffusion/__init__.py
@@ -0,0 +1,48 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+# Copyright 2022 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+# flake8: noqa
+
+from dataclasses import dataclass
+from typing import List, Optional, Union
+
+import numpy as np
+import PIL
+
+from ...utils import BaseOutput, is_paddle_available, is_paddlenlp_available
+
+
+@dataclass
+# Copied from diffusers.pipelines.stable_diffusion.__init__.StableDiffusionPipelineOutput with Stable->Alt
+class AltDiffusionPipelineOutput(BaseOutput):
+ """
+ Output class for Alt Diffusion pipelines.
+
+ Args:
+ images (`List[PIL.Image.Image]` or `np.ndarray`)
+ List of denoised PIL images of length `batch_size` or numpy array of shape `(batch_size, height, width,
+ num_channels)`. PIL images or numpy array present the denoised images of the diffusion pipeline.
+ nsfw_content_detected (`List[bool]`)
+ List of flags denoting whether the corresponding generated image likely represents "not-safe-for-work"
+ (nsfw) content, or `None` if safety checking could not be performed.
+ """
+
+ images: Union[List[PIL.Image.Image], np.ndarray]
+ nsfw_content_detected: Optional[List[bool]]
+
+
+if is_paddlenlp_available() and is_paddle_available():
+ from .modeling_roberta_series import RobertaSeriesModelWithTransformation
+ from .pipeline_alt_diffusion import AltDiffusionPipeline
+ from .pipeline_alt_diffusion_img2img import AltDiffusionImg2ImgPipeline
diff --git a/ppdiffusers/pipelines/alt_diffusion/__pycache__/__init__.cpython-37.pyc b/ppdiffusers/pipelines/alt_diffusion/__pycache__/__init__.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..2376ffead5a81a18797f6fec65c2ed4a570016e2
Binary files /dev/null and b/ppdiffusers/pipelines/alt_diffusion/__pycache__/__init__.cpython-37.pyc differ
diff --git a/ppdiffusers/pipelines/alt_diffusion/__pycache__/modeling_roberta_series.cpython-37.pyc b/ppdiffusers/pipelines/alt_diffusion/__pycache__/modeling_roberta_series.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..89659e017b3e9b836dfce26a4fd065b2006b3b66
Binary files /dev/null and b/ppdiffusers/pipelines/alt_diffusion/__pycache__/modeling_roberta_series.cpython-37.pyc differ
diff --git a/ppdiffusers/pipelines/alt_diffusion/__pycache__/pipeline_alt_diffusion.cpython-37.pyc b/ppdiffusers/pipelines/alt_diffusion/__pycache__/pipeline_alt_diffusion.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..fc73fb7f5172e81dca43add8996b64404ffeec1a
Binary files /dev/null and b/ppdiffusers/pipelines/alt_diffusion/__pycache__/pipeline_alt_diffusion.cpython-37.pyc differ
diff --git a/ppdiffusers/pipelines/alt_diffusion/__pycache__/pipeline_alt_diffusion_img2img.cpython-37.pyc b/ppdiffusers/pipelines/alt_diffusion/__pycache__/pipeline_alt_diffusion_img2img.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..86cd9df806e1be6b92ae811fe013866f273ec9e8
Binary files /dev/null and b/ppdiffusers/pipelines/alt_diffusion/__pycache__/pipeline_alt_diffusion_img2img.cpython-37.pyc differ
diff --git a/ppdiffusers/pipelines/alt_diffusion/modeling_roberta_series.py b/ppdiffusers/pipelines/alt_diffusion/modeling_roberta_series.py
new file mode 100644
index 0000000000000000000000000000000000000000..01b8dba3b8562b788af25d262a441e649bfbc463
--- /dev/null
+++ b/ppdiffusers/pipelines/alt_diffusion/modeling_roberta_series.py
@@ -0,0 +1,134 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+# Copyright 2022 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from dataclasses import dataclass
+from typing import Optional, Tuple
+
+import paddle
+from paddle import nn
+
+from paddlenlp.transformers import RobertaConfig as XLMRobertaConfig
+from paddlenlp.transformers import RobertaModel as XLMRobertaModel
+from paddlenlp.transformers import RobertaPretrainedModel
+from paddlenlp.transformers.model_outputs import ModelOutput
+
+
+def create_position_ids_from_input_ids(input_ids, padding_idx, past_key_values_length=0):
+ """
+ Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols
+ are ignored. This is modified from fairseq's `utils.make_positions`.
+
+ Args:
+ x: paddle.Tensor x:
+ Returns: paddle.Tensor
+
+ """
+ # The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA.
+ mask = (input_ids != padding_idx).cast("int64")
+ incremental_indices = (paddle.cumsum(mask, axis=1) + past_key_values_length) * mask
+ return incremental_indices + padding_idx
+
+
+@dataclass
+class TransformationModelOutput(ModelOutput):
+ """
+ Base class for text model's outputs that also contains a pooling of the last hidden states.
+ Args:
+ text_embeds (`paddle.Tensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`):
+ The text embeddings obtained by applying the projection layer to the pooler_output.
+ last_hidden_state (`paddle.Tensor` of shape `(batch_size, sequence_length, hidden_size)`):
+ Sequence of hidden-states at the output of the last layer of the model.
+ hidden_states (`tuple(paddle.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
+ Tuple of `paddle.Tensor` (one for the output of the embeddings, if the model has an embedding layer, +
+ one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
+ Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
+ attentions (`tuple(paddle.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ Tuple of `paddle.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
+ sequence_length)`.
+ Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
+ heads.
+ """
+
+ projection_state: Optional[paddle.Tensor] = None
+ last_hidden_state: paddle.Tensor = None
+ hidden_states: Optional[Tuple[paddle.Tensor]] = None
+ attentions: Optional[Tuple[paddle.Tensor]] = None
+
+
+class RobertaSeriesConfig(XLMRobertaConfig):
+ model_type = "roberta"
+
+ def __init__(
+ self,
+ pad_token_id=1,
+ bos_token_id=0,
+ eos_token_id=2,
+ project_dim=512,
+ pooler_fn="cls",
+ learn_encoder=False,
+ use_attention_mask=True,
+ **kwargs,
+ ):
+ super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
+ self.project_dim = project_dim
+ self.pooler_fn = pooler_fn
+ self.learn_encoder = learn_encoder
+ self.use_attention_mask = use_attention_mask
+
+
+class RobertaSeriesModelWithTransformation(RobertaPretrainedModel):
+ _keys_to_ignore_on_load_unexpected = [r"pooler"]
+ _keys_to_ignore_on_load_missing = [r"position_ids", r"predictions.decoder.bias"]
+ base_model_prefix = "roberta"
+ config_class = RobertaSeriesConfig
+
+ def __init__(self, config: RobertaSeriesConfig):
+ super().__init__(config)
+ self.roberta = XLMRobertaModel(config)
+ self.transformation = nn.Linear(config.hidden_size, config.project_dim)
+ self.apply(self.init_weights)
+
+ def forward(
+ self,
+ input_ids: Optional[paddle.Tensor] = None,
+ attention_mask: Optional[paddle.Tensor] = None,
+ token_type_ids: Optional[paddle.Tensor] = None,
+ position_ids: Optional[paddle.Tensor] = None,
+ output_attentions: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ ):
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ if position_ids is None:
+ position_ids = create_position_ids_from_input_ids(input_ids, self.config.pad_token_id)
+ outputs = self.base_model(
+ input_ids=input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ position_ids=position_ids,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ projection_state = self.transformation(outputs.last_hidden_state)
+
+ return TransformationModelOutput(
+ projection_state=projection_state,
+ last_hidden_state=outputs.last_hidden_state,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
diff --git a/ppdiffusers/pipelines/alt_diffusion/pipeline_alt_diffusion.py b/ppdiffusers/pipelines/alt_diffusion/pipeline_alt_diffusion.py
new file mode 100644
index 0000000000000000000000000000000000000000..fd6e838750faa7eabc7e1b4b388e391621705678
--- /dev/null
+++ b/ppdiffusers/pipelines/alt_diffusion/pipeline_alt_diffusion.py
@@ -0,0 +1,496 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+# Copyright 2022 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import inspect
+from typing import Callable, List, Optional, Union
+
+import paddle
+from packaging import version
+
+from paddlenlp.transformers import CLIPFeatureExtractor, XLMRobertaTokenizer
+
+from ...configuration_utils import FrozenDict
+from ...models import AutoencoderKL, UNet2DConditionModel
+from ...pipeline_utils import DiffusionPipeline
+from ...schedulers import (
+ DDIMScheduler,
+ DPMSolverMultistepScheduler,
+ EulerAncestralDiscreteScheduler,
+ LMSDiscreteScheduler,
+ PNDMScheduler,
+)
+from ...utils import deprecate, logging
+from ..stable_diffusion.safety_checker import StableDiffusionSafetyChecker
+from . import AltDiffusionPipelineOutput, RobertaSeriesModelWithTransformation
+
+logger = logging.get_logger(__name__) # pylint: disable=invalid-name
+
+
+class AltDiffusionPipeline(DiffusionPipeline):
+ r"""
+ Pipeline for text-to-image generation using Alt Diffusion.
+
+ This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
+ library implements for all the pipelines (such as downloading or saving etc.)
+
+ Args:
+ vae ([`AutoencoderKL`]):
+ Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
+ text_encoder ([`RobertaSeriesModelWithTransformation`]):
+ Frozen text-encoder. Alt Diffusion uses the text portion of
+ [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.RobertaSeriesModelWithTransformation),
+ specifically the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
+ tokenizer (`XLMRobertaTokenizer`):
+ Tokenizer of class
+ [XLMRobertaTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.XLMRobertaTokenizer).
+ unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
+ scheduler ([`SchedulerMixin`]):
+ A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
+ [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
+ safety_checker ([`StableDiffusionSafetyChecker`]):
+ Classification module that estimates whether generated images could be considered offensive or harmful.
+ Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
+ feature_extractor ([`CLIPFeatureExtractor`]):
+ Model that extracts features from generated images to be used as inputs for the `safety_checker`.
+ """
+ _optional_components = ["safety_checker", "feature_extractor"]
+
+ def __init__(
+ self,
+ vae: AutoencoderKL,
+ text_encoder: RobertaSeriesModelWithTransformation,
+ tokenizer: XLMRobertaTokenizer,
+ unet: UNet2DConditionModel,
+ scheduler: Union[
+ DDIMScheduler,
+ PNDMScheduler,
+ LMSDiscreteScheduler,
+ EulerAncestralDiscreteScheduler,
+ DPMSolverMultistepScheduler,
+ ],
+ safety_checker: StableDiffusionSafetyChecker,
+ feature_extractor: CLIPFeatureExtractor,
+ requires_safety_checker: bool = True,
+ ):
+ super().__init__()
+
+ if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
+ deprecation_message = (
+ f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
+ f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
+ "to update the config accordingly as leaving `steps_offset` might led to incorrect results"
+ " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
+ " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
+ " file"
+ )
+ deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False)
+ new_config = dict(scheduler.config)
+ new_config["steps_offset"] = 1
+ scheduler._internal_dict = FrozenDict(new_config)
+
+ if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True:
+ deprecation_message = (
+ f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`."
+ " `clip_sample` should be set to False in the configuration file. Please make sure to update the"
+ " config accordingly as not setting `clip_sample` in the config might lead to incorrect results in"
+ " future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very"
+ " nice if you could open a Pull request for the `scheduler/scheduler_config.json` file"
+ )
+ deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False)
+ new_config = dict(scheduler.config)
+ new_config["clip_sample"] = False
+ scheduler._internal_dict = FrozenDict(new_config)
+
+ if safety_checker is None and requires_safety_checker:
+ logger.warning(
+ f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
+ " that you abide to the conditions of the Alt Diffusion license and do not expose unfiltered"
+ " results in services or applications open to the public. PaddleNLP team, diffusers team and Hugging Face"
+ " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
+ " it only for use-cases that involve analyzing network behavior or auditing its results. For more"
+ " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
+ )
+ if safety_checker is not None and feature_extractor is None:
+ raise ValueError(
+ "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
+ " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
+ )
+
+ is_unet_version_less_0_9_0 = hasattr(unet.config, "_ppdiffusers_version") and version.parse(
+ version.parse(unet.config._ppdiffusers_version).base_version
+ ) < version.parse("0.9.0.dev0")
+ is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64
+ if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64:
+ deprecation_message = (
+ "The configuration file of the unet has set the default `sample_size` to smaller than"
+ " 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the"
+ " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
+ " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
+ " \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
+ " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
+ " in the config might lead to incorrect results in future versions. If you have downloaded this"
+ " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
+ " the `unet/config.json` file"
+ )
+ deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False)
+ new_config = dict(unet.config)
+ new_config["sample_size"] = 64
+ unet._internal_dict = FrozenDict(new_config)
+
+ self.register_modules(
+ vae=vae,
+ text_encoder=text_encoder,
+ tokenizer=tokenizer,
+ unet=unet,
+ scheduler=scheduler,
+ safety_checker=safety_checker,
+ feature_extractor=feature_extractor,
+ )
+ self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
+ self.register_to_config(requires_safety_checker=requires_safety_checker)
+
+ def _encode_prompt(self, prompt, num_images_per_prompt, do_classifier_free_guidance, negative_prompt):
+ r"""
+ Encodes the prompt into text encoder hidden states.
+
+ Args:
+ prompt (`str` or `list(int)`):
+ prompt to be encoded
+ num_images_per_prompt (`int`):
+ number of images that should be generated per prompt
+ do_classifier_free_guidance (`bool`):
+ whether to use classifier free guidance or not
+ negative_prompt (`str` or `List[str]`):
+ The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
+ if `guidance_scale` is less than `1`).
+ """
+ batch_size = len(prompt) if isinstance(prompt, list) else 1
+
+ text_inputs = self.tokenizer(
+ prompt,
+ padding="max_length",
+ max_length=self.tokenizer.model_max_length,
+ truncation=True,
+ return_tensors="pd",
+ )
+ text_input_ids = text_inputs.input_ids
+ untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pd").input_ids
+
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not paddle.equal_all(
+ text_input_ids, untruncated_ids
+ ):
+ removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1])
+ logger.warning(
+ "The following part of your input was truncated because XLM-Roberta can only handle sequences up to"
+ f" {self.tokenizer.model_max_length} tokens: {removed_text}"
+ )
+
+ config = (
+ self.text_encoder.config
+ if isinstance(self.text_encoder.config, dict)
+ else self.text_encoder.config.to_dict()
+ )
+ if config.get("use_attention_mask", None) is not None and config["use_attention_mask"]:
+ attention_mask = text_inputs.attention_mask
+ else:
+ attention_mask = None
+
+ text_embeddings = self.text_encoder(
+ text_input_ids,
+ attention_mask=attention_mask,
+ )
+ text_embeddings = text_embeddings[0]
+
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
+ bs_embed, seq_len, _ = text_embeddings.shape
+ text_embeddings = text_embeddings.tile([1, num_images_per_prompt, 1])
+ text_embeddings = text_embeddings.reshape([bs_embed * num_images_per_prompt, seq_len, -1])
+
+ # get unconditional embeddings for classifier free guidance
+ if do_classifier_free_guidance:
+ uncond_tokens: List[str]
+ if negative_prompt is None:
+ uncond_tokens = [""] * batch_size
+ elif type(prompt) is not type(negative_prompt):
+ raise TypeError(
+ f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
+ f" {type(prompt)}."
+ )
+ elif isinstance(negative_prompt, str):
+ uncond_tokens = [negative_prompt]
+ elif batch_size != len(negative_prompt):
+ raise ValueError(
+ f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
+ f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
+ " the batch size of `prompt`."
+ )
+ else:
+ uncond_tokens = negative_prompt
+
+ max_length = text_input_ids.shape[-1]
+ uncond_input = self.tokenizer(
+ uncond_tokens,
+ padding="max_length",
+ max_length=max_length,
+ truncation=True,
+ return_tensors="pd",
+ )
+
+ if config.get("use_attention_mask", None) is not None and config["use_attention_mask"]:
+ attention_mask = uncond_input.attention_mask
+ else:
+ attention_mask = None
+
+ uncond_embeddings = self.text_encoder(
+ uncond_input.input_ids,
+ attention_mask=attention_mask,
+ )
+ uncond_embeddings = uncond_embeddings[0]
+
+ # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
+ seq_len = uncond_embeddings.shape[1]
+ uncond_embeddings = uncond_embeddings.tile([1, num_images_per_prompt, 1])
+ uncond_embeddings = uncond_embeddings.reshape([batch_size * num_images_per_prompt, seq_len, -1])
+
+ # For classifier free guidance, we need to do two forward passes.
+ # Here we concatenate the unconditional and text embeddings into a single batch
+ # to avoid doing two forward passes
+ text_embeddings = paddle.concat([uncond_embeddings, text_embeddings])
+
+ return text_embeddings
+
+ def run_safety_checker(self, image, dtype):
+ if self.safety_checker is not None:
+ safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pd")
+ image, has_nsfw_concept = self.safety_checker(
+ images=image, clip_input=safety_checker_input.pixel_values.cast(dtype)
+ )
+ else:
+ has_nsfw_concept = None
+ return image, has_nsfw_concept
+
+ def decode_latents(self, latents):
+ latents = 1 / 0.18215 * latents
+ image = self.vae.decode(latents).sample
+ image = (image / 2 + 0.5).clip(0, 1)
+ # we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
+ image = image.transpose([0, 2, 3, 1]).cast("float32").numpy()
+ return image
+
+ def prepare_extra_step_kwargs(self, generator, eta):
+ # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
+ # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
+ # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
+ # and should be between [0, 1]
+
+ accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
+ extra_step_kwargs = {}
+ if accepts_eta:
+ extra_step_kwargs["eta"] = eta
+
+ # check if the scheduler accepts generator
+ accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
+ if accepts_generator:
+ extra_step_kwargs["generator"] = generator
+ return extra_step_kwargs
+
+ def check_inputs(self, prompt, height, width, callback_steps):
+ if not isinstance(prompt, str) and not isinstance(prompt, list):
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
+
+ if height % 8 != 0 or width % 8 != 0:
+ raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
+
+ if (callback_steps is None) or (
+ callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
+ ):
+ raise ValueError(
+ f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
+ f" {type(callback_steps)}."
+ )
+
+ def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, generator, latents=None):
+ shape = [batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor]
+ if isinstance(generator, list) and len(generator) != batch_size:
+ raise ValueError(
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
+ )
+
+ if latents is None:
+ if isinstance(generator, list):
+ shape = [
+ 1,
+ ] + shape[1:]
+ latents = [paddle.randn(shape, generator=generator[i], dtype=dtype) for i in range(batch_size)]
+ latents = paddle.concat(latents, axis=0)
+ else:
+ latents = paddle.randn(shape, generator=generator, dtype=dtype)
+ else:
+ if latents.shape != shape:
+ raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}")
+
+ # scale the initial noise by the standard deviation required by the scheduler
+ latents = latents * self.scheduler.init_noise_sigma
+ return latents
+
+ @paddle.no_grad()
+ def __call__(
+ self,
+ prompt: Union[str, List[str]],
+ height: Optional[int] = None,
+ width: Optional[int] = None,
+ num_inference_steps: int = 50,
+ guidance_scale: float = 7.5,
+ negative_prompt: Optional[Union[str, List[str]]] = None,
+ num_images_per_prompt: Optional[int] = 1,
+ eta: float = 0.0,
+ generator: Optional[Union[paddle.Generator, List[paddle.Generator]]] = None,
+ latents: Optional[paddle.Tensor] = None,
+ output_type: Optional[str] = "pil",
+ return_dict: bool = True,
+ callback: Optional[Callable[[int, int, paddle.Tensor], None]] = None,
+ callback_steps: Optional[int] = 1,
+ ):
+ r"""
+ Function invoked when calling the pipeline for generation.
+
+ Args:
+ prompt (`str` or `List[str]`):
+ The prompt or prompts to guide the image generation.
+ height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
+ The height in pixels of the generated image.
+ width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
+ The width in pixels of the generated image.
+ num_inference_steps (`int`, *optional*, defaults to 50):
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
+ expense of slower inference.
+ guidance_scale (`float`, *optional*, defaults to 7.5):
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
+ usually at the expense of lower image quality.
+ negative_prompt (`str` or `List[str]`, *optional*):
+ The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
+ if `guidance_scale` is less than `1`).
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
+ The number of images to generate per prompt.
+ eta (`float`, *optional*, defaults to 0.0):
+ Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
+ [`schedulers.DDIMScheduler`], will be ignored for others.
+ generator (`paddle.Generator`, *optional*):
+ One or a list of paddle generator(s) to make generation deterministic.
+ latents (`paddle.Tensor`, *optional*):
+ Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
+ tensor will ge generated by sampling using the supplied random `generator`.
+ output_type (`str`, *optional*, defaults to `"pil"`):
+ The output format of the generate image. Choose between
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
+ return_dict (`bool`, *optional*, defaults to `True`):
+ Whether or not to return a [`~pipelines.stable_diffusion.AltDiffusionPipelineOutput`] instead of a
+ plain tuple.
+ callback (`Callable`, *optional*):
+ A function that will be called every `callback_steps` steps during inference. The function will be
+ called with the following arguments: `callback(step: int, timestep: int, latents: paddle.Tensor)`.
+ callback_steps (`int`, *optional*, defaults to 1):
+ The frequency at which the `callback` function will be called. If not specified, the callback will be
+ called at every step.
+
+ Returns:
+ [`~pipelines.stable_diffusion.AltDiffusionPipelineOutput`] or `tuple`:
+ [`~pipelines.stable_diffusion.AltDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
+ When returning a tuple, the first element is a list with the generated images, and the second element is a
+ list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
+ (nsfw) content, according to the `safety_checker`.
+ """
+ # 0. Default height and width to unet
+ height = height or self.unet.config.sample_size * self.vae_scale_factor
+ width = width or self.unet.config.sample_size * self.vae_scale_factor
+
+ # 1. Check inputs. Raise error if not correct
+ self.check_inputs(prompt, height, width, callback_steps)
+
+ # 2. Define call parameters
+ batch_size = 1 if isinstance(prompt, str) else len(prompt)
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
+ # corresponds to doing no classifier free guidance.
+ do_classifier_free_guidance = guidance_scale > 1.0
+
+ # 3. Encode input prompt
+ text_embeddings = self._encode_prompt(
+ prompt, num_images_per_prompt, do_classifier_free_guidance, negative_prompt
+ )
+
+ # 4. Prepare timesteps
+ self.scheduler.set_timesteps(num_inference_steps)
+ timesteps = self.scheduler.timesteps
+
+ # 5. Prepare latent variables
+ num_channels_latents = self.unet.in_channels
+ latents = self.prepare_latents(
+ batch_size * num_images_per_prompt,
+ num_channels_latents,
+ height,
+ width,
+ text_embeddings.dtype,
+ generator,
+ latents,
+ )
+
+ # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
+ extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
+
+ # 7. Denoising loop
+ num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
+ for i, t in enumerate(timesteps):
+ # expand the latents if we are doing classifier free guidance
+ latent_model_input = paddle.concat([latents] * 2) if do_classifier_free_guidance else latents
+ latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
+
+ # predict the noise residual
+ noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample
+
+ # perform guidance
+ if do_classifier_free_guidance:
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
+ noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
+
+ # compute the previous noisy sample x_t -> x_t-1
+ latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
+
+ # call the callback, if provided
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
+ progress_bar.update()
+ if callback is not None and i % callback_steps == 0:
+ callback(i, t, latents)
+
+ # 8. Post-processing
+ image = self.decode_latents(latents)
+
+ # 9. Run safety checker
+ image, has_nsfw_concept = self.run_safety_checker(image, text_embeddings.dtype)
+
+ # 10. Convert to PIL
+ if output_type == "pil":
+ image = self.numpy_to_pil(image)
+
+ if not return_dict:
+ return (image, has_nsfw_concept)
+
+ return AltDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
diff --git a/ppdiffusers/pipelines/alt_diffusion/pipeline_alt_diffusion_img2img.py b/ppdiffusers/pipelines/alt_diffusion/pipeline_alt_diffusion_img2img.py
new file mode 100644
index 0000000000000000000000000000000000000000..0a21dd3557faf946765d1953add66ceb7ff3736e
--- /dev/null
+++ b/ppdiffusers/pipelines/alt_diffusion/pipeline_alt_diffusion_img2img.py
@@ -0,0 +1,548 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+# Copyright 2022 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import inspect
+from typing import Callable, List, Optional, Union
+
+import numpy as np
+import paddle
+import PIL
+from packaging import version
+
+from paddlenlp.transformers import CLIPFeatureExtractor, XLMRobertaTokenizer
+
+from ...configuration_utils import FrozenDict
+from ...models import AutoencoderKL, UNet2DConditionModel
+from ...pipeline_utils import DiffusionPipeline
+from ...schedulers import (
+ DDIMScheduler,
+ DPMSolverMultistepScheduler,
+ EulerAncestralDiscreteScheduler,
+ EulerDiscreteScheduler,
+ LMSDiscreteScheduler,
+ PNDMScheduler,
+)
+from ...utils import PIL_INTERPOLATION, deprecate, logging
+from ..stable_diffusion.safety_checker import StableDiffusionSafetyChecker
+from . import AltDiffusionPipelineOutput, RobertaSeriesModelWithTransformation
+
+logger = logging.get_logger(__name__) # pylint: disable=invalid-name
+
+
+# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.preprocess
+def preprocess(image):
+ if isinstance(image, paddle.Tensor):
+ return image
+ elif isinstance(image, PIL.Image.Image):
+ image = [image]
+
+ if isinstance(image[0], PIL.Image.Image):
+ w, h = image[0].size
+ w, h = map(lambda x: x - x % 32, (w, h)) # resize to integer multiple of 32
+
+ image = [np.array(i.resize((w, h), resample=PIL_INTERPOLATION["lanczos"]))[None, :] for i in image]
+ image = np.concatenate(image, axis=0)
+ image = np.array(image).astype(np.float32) / 255.0
+ image = image.transpose(0, 3, 1, 2)
+ image = 2.0 * image - 1.0
+ image = paddle.to_tensor(image)
+ elif isinstance(image[0], paddle.Tensor):
+ image = paddle.concat(image, axis=0)
+ return image
+
+
+class AltDiffusionImg2ImgPipeline(DiffusionPipeline):
+ r"""
+ Pipeline for text-guided image to image generation using Alt Diffusion.
+
+ This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
+ library implements for all the pipelines (such as downloading or saving etc.)
+
+ Args:
+ vae ([`AutoencoderKL`]):
+ Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
+ text_encoder ([`RobertaSeriesModelWithTransformation`]):
+ Frozen text-encoder. Alt Diffusion uses the text portion of
+ [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.RobertaSeriesModelWithTransformation),
+ specifically the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
+ tokenizer (`XLMRobertaTokenizer`):
+ Tokenizer of class
+ [XLMRobertaTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.XLMRobertaTokenizer).
+ unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
+ scheduler ([`SchedulerMixin`]):
+ A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
+ [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
+ safety_checker ([`StableDiffusionSafetyChecker`]):
+ Classification module that estimates whether generated images could be considered offensive or harmful.
+ Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
+ feature_extractor ([`CLIPFeatureExtractor`]):
+ Model that extracts features from generated images to be used as inputs for the `safety_checker`.
+ """
+ _optional_components = ["safety_checker", "feature_extractor"]
+
+ def __init__(
+ self,
+ vae: AutoencoderKL,
+ text_encoder: RobertaSeriesModelWithTransformation,
+ tokenizer: XLMRobertaTokenizer,
+ unet: UNet2DConditionModel,
+ scheduler: Union[
+ DDIMScheduler,
+ PNDMScheduler,
+ LMSDiscreteScheduler,
+ EulerDiscreteScheduler,
+ EulerAncestralDiscreteScheduler,
+ DPMSolverMultistepScheduler,
+ ],
+ safety_checker: StableDiffusionSafetyChecker,
+ feature_extractor: CLIPFeatureExtractor,
+ requires_safety_checker: bool = True,
+ ):
+ super().__init__()
+
+ if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
+ deprecation_message = (
+ f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
+ f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
+ "to update the config accordingly as leaving `steps_offset` might led to incorrect results"
+ " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
+ " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
+ " file"
+ )
+ deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False)
+ new_config = dict(scheduler.config)
+ new_config["steps_offset"] = 1
+ scheduler._internal_dict = FrozenDict(new_config)
+
+ if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True:
+ deprecation_message = (
+ f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`."
+ " `clip_sample` should be set to False in the configuration file. Please make sure to update the"
+ " config accordingly as not setting `clip_sample` in the config might lead to incorrect results in"
+ " future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very"
+ " nice if you could open a Pull request for the `scheduler/scheduler_config.json` file"
+ )
+ deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False)
+ new_config = dict(scheduler.config)
+ new_config["clip_sample"] = False
+ scheduler._internal_dict = FrozenDict(new_config)
+
+ if safety_checker is None and requires_safety_checker:
+ logger.warning(
+ f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
+ " that you abide to the conditions of the Alt Diffusion license and do not expose unfiltered"
+ " results in services or applications open to the public. PaddleNLP team, diffusers team and Hugging Face"
+ " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
+ " it only for use-cases that involve analyzing network behavior or auditing its results. For more"
+ " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
+ )
+ if safety_checker is not None and feature_extractor is None:
+ raise ValueError(
+ "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
+ " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
+ )
+
+ is_unet_version_less_0_9_0 = hasattr(unet.config, "_ppdiffusers_version") and version.parse(
+ version.parse(unet.config._ppdiffusers_version).base_version
+ ) < version.parse("0.9.0.dev0")
+ is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64
+ if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64:
+ deprecation_message = (
+ "The configuration file of the unet has set the default `sample_size` to smaller than"
+ " 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the"
+ " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
+ " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
+ " \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
+ " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
+ " in the config might lead to incorrect results in future versions. If you have downloaded this"
+ " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
+ " the `unet/config.json` file"
+ )
+ deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False)
+ new_config = dict(unet.config)
+ new_config["sample_size"] = 64
+ unet._internal_dict = FrozenDict(new_config)
+
+ self.register_modules(
+ vae=vae,
+ text_encoder=text_encoder,
+ tokenizer=tokenizer,
+ unet=unet,
+ scheduler=scheduler,
+ safety_checker=safety_checker,
+ feature_extractor=feature_extractor,
+ )
+ self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
+ self.register_to_config(requires_safety_checker=requires_safety_checker)
+
+ def _encode_prompt(self, prompt, num_images_per_prompt, do_classifier_free_guidance, negative_prompt):
+ r"""
+ Encodes the prompt into text encoder hidden states.
+
+ Args:
+ prompt (`str` or `list(int)`):
+ prompt to be encoded
+ num_images_per_prompt (`int`):
+ number of images that should be generated per prompt
+ do_classifier_free_guidance (`bool`):
+ whether to use classifier free guidance or not
+ negative_prompt (`str` or `List[str]`):
+ The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
+ if `guidance_scale` is less than `1`).
+ """
+ batch_size = len(prompt) if isinstance(prompt, list) else 1
+
+ text_inputs = self.tokenizer(
+ prompt,
+ padding="max_length",
+ max_length=self.tokenizer.model_max_length,
+ truncation=True,
+ return_tensors="pd",
+ )
+ text_input_ids = text_inputs.input_ids
+ untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pd").input_ids
+
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not paddle.equal_all(
+ text_input_ids, untruncated_ids
+ ):
+ removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1])
+ logger.warning(
+ "The following part of your input was truncated because XLM-Roberta can only handle sequences up to"
+ f" {self.tokenizer.model_max_length} tokens: {removed_text}"
+ )
+
+ if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
+ attention_mask = text_inputs.attention_mask
+ else:
+ attention_mask = None
+
+ text_embeddings = self.text_encoder(
+ text_input_ids,
+ attention_mask=attention_mask,
+ )
+ text_embeddings = text_embeddings[0]
+
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
+ bs_embed, seq_len, _ = text_embeddings.shape
+ text_embeddings = text_embeddings.tile([1, num_images_per_prompt, 1])
+ text_embeddings = text_embeddings.reshape([bs_embed * num_images_per_prompt, seq_len, -1])
+
+ # get unconditional embeddings for classifier free guidance
+ if do_classifier_free_guidance:
+ uncond_tokens: List[str]
+ if negative_prompt is None:
+ uncond_tokens = [""] * batch_size
+ elif type(prompt) is not type(negative_prompt):
+ raise TypeError(
+ f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
+ f" {type(prompt)}."
+ )
+ elif isinstance(negative_prompt, str):
+ uncond_tokens = [negative_prompt]
+ elif batch_size != len(negative_prompt):
+ raise ValueError(
+ f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
+ f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
+ " the batch size of `prompt`."
+ )
+ else:
+ uncond_tokens = negative_prompt
+
+ max_length = text_input_ids.shape[-1]
+ uncond_input = self.tokenizer(
+ uncond_tokens,
+ padding="max_length",
+ max_length=max_length,
+ truncation=True,
+ return_tensors="pd",
+ )
+
+ if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
+ attention_mask = uncond_input.attention_mask
+ else:
+ attention_mask = None
+
+ uncond_embeddings = self.text_encoder(
+ uncond_input.input_ids,
+ attention_mask=attention_mask,
+ )
+ uncond_embeddings = uncond_embeddings[0]
+
+ # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
+ seq_len = uncond_embeddings.shape[1]
+ uncond_embeddings = uncond_embeddings.tile([1, num_images_per_prompt, 1])
+ uncond_embeddings = uncond_embeddings.reshape([batch_size * num_images_per_prompt, seq_len, -1])
+
+ # For classifier free guidance, we need to do two forward passes.
+ # Here we concatenate the unconditional and text embeddings into a single batch
+ # to avoid doing two forward passes
+ text_embeddings = paddle.concat([uncond_embeddings, text_embeddings])
+
+ return text_embeddings
+
+ def run_safety_checker(self, image, dtype):
+ if self.safety_checker is not None:
+ safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pd")
+ image, has_nsfw_concept = self.safety_checker(
+ images=image, clip_input=safety_checker_input.pixel_values.cast(dtype)
+ )
+ else:
+ has_nsfw_concept = None
+ return image, has_nsfw_concept
+
+ def decode_latents(self, latents):
+ latents = 1 / 0.18215 * latents
+ image = self.vae.decode(latents).sample
+ image = (image / 2 + 0.5).clip(0, 1)
+ # we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
+ image = image.transpose([0, 2, 3, 1]).cast("float32").numpy()
+ return image
+
+ def prepare_extra_step_kwargs(self, generator, eta):
+ # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
+ # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
+ # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
+ # and should be between [0, 1]
+
+ accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
+ extra_step_kwargs = {}
+ if accepts_eta:
+ extra_step_kwargs["eta"] = eta
+
+ # check if the scheduler accepts generator
+ accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
+ if accepts_generator:
+ extra_step_kwargs["generator"] = generator
+ return extra_step_kwargs
+
+ def check_inputs(self, prompt, strength, callback_steps):
+ if not isinstance(prompt, str) and not isinstance(prompt, list):
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
+
+ if strength < 0 or strength > 1:
+ raise ValueError(f"The value of strength should in [1.0, 1.0] but is {strength}")
+
+ if (callback_steps is None) or (
+ callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
+ ):
+ raise ValueError(
+ f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
+ f" {type(callback_steps)}."
+ )
+
+ def get_timesteps(self, num_inference_steps, strength):
+ # get the original timestep using init_timestep
+ init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
+
+ t_start = max(num_inference_steps - init_timestep, 0)
+ timesteps = self.scheduler.timesteps[t_start:]
+
+ return timesteps, num_inference_steps - t_start
+
+ def prepare_latents(self, image, timestep, batch_size, num_images_per_prompt, dtype, generator=None):
+ image = image.cast(dtype=dtype)
+ batch_size = batch_size * num_images_per_prompt
+ if isinstance(generator, list) and len(generator) != batch_size:
+ raise ValueError(
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
+ )
+
+ if isinstance(generator, list):
+ init_latents = [
+ self.vae.encode(image[i : i + 1]).latent_dist.sample(generator[i]) for i in range(batch_size)
+ ]
+ init_latents = paddle.concat(init_latents, axis=0)
+ else:
+ init_latents = self.vae.encode(image).latent_dist.sample(generator)
+
+ init_latents = 0.18215 * init_latents
+
+ if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] == 0:
+ # expand init_latents for batch_size
+ deprecation_message = (
+ f"You have passed {batch_size} text prompts (`prompt`), but only {init_latents.shape[0]} initial"
+ " images (`image`). Initial images are now duplicating to match the number of text prompts. Note"
+ " that this behavior is deprecated and will be removed in a version 1.0.0. Please make sure to update"
+ " your script to pass as many initial images as text prompts to suppress this warning."
+ )
+ deprecate("len(prompt) != len(image)", "1.0.0", deprecation_message, standard_warn=False)
+ additional_image_per_prompt = batch_size // init_latents.shape[0]
+ init_latents = paddle.concat([init_latents] * additional_image_per_prompt, axis=0)
+ elif batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] != 0:
+ raise ValueError(
+ f"Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts."
+ )
+ else:
+ init_latents = paddle.concat([init_latents], axis=0)
+
+ shape = init_latents.shape
+ if isinstance(generator, list):
+ shape = [
+ 1,
+ ] + shape[1:]
+ noise = [paddle.randn(shape, generator=generator[i], dtype=dtype) for i in range(batch_size)]
+ noise = paddle.concat(noise, axis=0)
+ else:
+ noise = paddle.randn(shape, generator=generator, dtype=dtype)
+
+ # get latents
+ init_latents = self.scheduler.add_noise(init_latents, noise, timestep)
+ latents = init_latents
+
+ return latents
+
+ @paddle.no_grad()
+ def __call__(
+ self,
+ prompt: Union[str, List[str]],
+ image: Union[paddle.Tensor, PIL.Image.Image] = None,
+ strength: float = 0.8,
+ num_inference_steps: Optional[int] = 50,
+ guidance_scale: Optional[float] = 7.5,
+ negative_prompt: Optional[Union[str, List[str]]] = None,
+ num_images_per_prompt: Optional[int] = 1,
+ eta: Optional[float] = 0.0,
+ generator: Optional[Union[paddle.Generator, List[paddle.Generator]]] = None,
+ output_type: Optional[str] = "pil",
+ return_dict: bool = True,
+ callback: Optional[Callable[[int, int, paddle.Tensor], None]] = None,
+ callback_steps: Optional[int] = 1,
+ ):
+ r"""
+ Function invoked when calling the pipeline for generation.
+
+ Args:
+ prompt (`str` or `List[str]`):
+ The prompt or prompts to guide the image generation.
+ image (`paddle.Tensor` or `PIL.Image.Image`):
+ `Image`, or tensor representing an image batch, that will be used as the starting point for the
+ process.
+ strength (`float`, *optional*, defaults to 0.8):
+ Conceptually, indicates how much to transform the reference `image`. Must be between 0 and 1.
+ `image` will be used as a starting point, adding more noise to it the larger the `strength`. The
+ number of denoising steps depends on the amount of noise initially added. When `strength` is 1, added
+ noise will be maximum and the denoising process will run for the full number of iterations specified in
+ `num_inference_steps`. A value of 1, therefore, essentially ignores `image`.
+ num_inference_steps (`int`, *optional*, defaults to 50):
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
+ expense of slower inference. This parameter will be modulated by `strength`.
+ guidance_scale (`float`, *optional*, defaults to 7.5):
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
+ usually at the expense of lower image quality.
+ negative_prompt (`str` or `List[str]`, *optional*):
+ The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
+ if `guidance_scale` is less than `1`).
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
+ The number of images to generate per prompt.
+ eta (`float`, *optional*, defaults to 0.0):
+ Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
+ [`schedulers.DDIMScheduler`], will be ignored for others.
+ generator (`paddle.Generator`, *optional*):
+ One or a list of paddle generator(s) to make generation deterministic.
+ output_type (`str`, *optional*, defaults to `"pil"`):
+ The output format of the generate image. Choose between
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
+ return_dict (`bool`, *optional*, defaults to `True`):
+ Whether or not to return a [`~pipelines.stable_diffusion.AltDiffusionPipelineOutput`] instead of a
+ plain tuple.
+ callback (`Callable`, *optional*):
+ A function that will be called every `callback_steps` steps during inference. The function will be
+ called with the following arguments: `callback(step: int, timestep: int, latents: paddle.Tensor)`.
+ callback_steps (`int`, *optional*, defaults to 1):
+ The frequency at which the `callback` function will be called. If not specified, the callback will be
+ called at every step.
+
+ Returns:
+ [`~pipelines.stable_diffusion.AltDiffusionPipelineOutput`] or `tuple`:
+ [`~pipelines.stable_diffusion.AltDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
+ When returning a tuple, the first element is a list with the generated images, and the second element is a
+ list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
+ (nsfw) content, according to the `safety_checker`.
+ """
+ # 1. Check inputs
+ self.check_inputs(prompt, strength, callback_steps)
+
+ # 2. Define call parameters
+ batch_size = 1 if isinstance(prompt, str) else len(prompt)
+
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
+ # corresponds to doing no classifier free guidance.
+ do_classifier_free_guidance = guidance_scale > 1.0
+
+ # 3. Encode input prompt
+ text_embeddings = self._encode_prompt(
+ prompt, num_images_per_prompt, do_classifier_free_guidance, negative_prompt
+ )
+
+ # 4. Preprocess image
+ image = preprocess(image)
+
+ # 5. set timesteps
+ self.scheduler.set_timesteps(num_inference_steps)
+ timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength)
+ latent_timestep = timesteps[:1].tile([batch_size * num_images_per_prompt])
+
+ # 6. Prepare latent variables
+ latents = self.prepare_latents(
+ image, latent_timestep, batch_size, num_images_per_prompt, text_embeddings.dtype, generator
+ )
+
+ # 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
+ extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
+
+ # 8. Denoising loop
+ num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
+ for i, t in enumerate(timesteps):
+ # expand the latents if we are doing classifier free guidance
+ latent_model_input = paddle.concat([latents] * 2) if do_classifier_free_guidance else latents
+ latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
+
+ # predict the noise residual
+ noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample
+
+ # perform guidance
+ if do_classifier_free_guidance:
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
+ noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
+
+ # compute the previous noisy sample x_t -> x_t-1
+ latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
+
+ # call the callback, if provided
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
+ progress_bar.update()
+ if callback is not None and i % callback_steps == 0:
+ callback(i, t, latents)
+
+ # 9. Post-processing
+ image = self.decode_latents(latents)
+
+ # 10. Run safety checker
+ image, has_nsfw_concept = self.run_safety_checker(image, text_embeddings.dtype)
+
+ # 11. Convert to PIL
+ if output_type == "pil":
+ image = self.numpy_to_pil(image)
+
+ if not return_dict:
+ return (image, has_nsfw_concept)
+
+ return AltDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
diff --git a/ppdiffusers/pipelines/audio_diffusion/__init__.py b/ppdiffusers/pipelines/audio_diffusion/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..339e58b44b7dcd16e732e3dd1ecd9d84d6c2dd9d
--- /dev/null
+++ b/ppdiffusers/pipelines/audio_diffusion/__init__.py
@@ -0,0 +1,17 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+# flake8: noqa
+from .mel import Mel
+from .pipeline_audio_diffusion import AudioDiffusionPipeline
diff --git a/ppdiffusers/pipelines/audio_diffusion/__pycache__/__init__.cpython-37.pyc b/ppdiffusers/pipelines/audio_diffusion/__pycache__/__init__.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..a45aecef4b2fc3d5aae204e8a463a26eafc64eac
Binary files /dev/null and b/ppdiffusers/pipelines/audio_diffusion/__pycache__/__init__.cpython-37.pyc differ
diff --git a/ppdiffusers/pipelines/audio_diffusion/__pycache__/mel.cpython-37.pyc b/ppdiffusers/pipelines/audio_diffusion/__pycache__/mel.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..c774dc801ec837deeeac554113c67418a0c11f75
Binary files /dev/null and b/ppdiffusers/pipelines/audio_diffusion/__pycache__/mel.cpython-37.pyc differ
diff --git a/ppdiffusers/pipelines/audio_diffusion/__pycache__/pipeline_audio_diffusion.cpython-37.pyc b/ppdiffusers/pipelines/audio_diffusion/__pycache__/pipeline_audio_diffusion.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..6a6f46183b17e7098e6f3394793c0364f200a570
Binary files /dev/null and b/ppdiffusers/pipelines/audio_diffusion/__pycache__/pipeline_audio_diffusion.cpython-37.pyc differ
diff --git a/ppdiffusers/pipelines/audio_diffusion/mel.py b/ppdiffusers/pipelines/audio_diffusion/mel.py
new file mode 100644
index 0000000000000000000000000000000000000000..bb2e4eadf467bf7f012622e3bc9bd5a2c9b8b586
--- /dev/null
+++ b/ppdiffusers/pipelines/audio_diffusion/mel.py
@@ -0,0 +1,163 @@
+# Copyright 2022 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+
+import warnings
+
+from ...configuration_utils import ConfigMixin, register_to_config
+from ...schedulers.scheduling_utils import SchedulerMixin
+
+warnings.filterwarnings("ignore")
+
+import numpy as np # noqa: E402
+
+try:
+ import librosa # noqa: E402
+
+ _librosa_can_be_imported = True
+ _import_error = ""
+except Exception as e:
+ _librosa_can_be_imported = False
+ _import_error = (
+ f"Cannot import librosa because {e}. Make sure to correctly install librosa to be able to install it."
+ )
+
+
+from PIL import Image # noqa: E402
+
+
+class Mel(ConfigMixin, SchedulerMixin):
+ """
+ Parameters:
+ x_res (`int`): x resolution of spectrogram (time)
+ y_res (`int`): y resolution of spectrogram (frequency bins)
+ sample_rate (`int`): sample rate of audio
+ n_fft (`int`): number of Fast Fourier Transforms
+ hop_length (`int`): hop length (a higher number is recommended for lower than 256 y_res)
+ top_db (`int`): loudest in decibels
+ n_iter (`int`): number of iterations for Griffin Linn mel inversion
+ """
+
+ config_name = "mel_config.json"
+
+ @register_to_config
+ def __init__(
+ self,
+ x_res: int = 256,
+ y_res: int = 256,
+ sample_rate: int = 22050,
+ n_fft: int = 2048,
+ hop_length: int = 512,
+ top_db: int = 80,
+ n_iter: int = 32,
+ ):
+ self.hop_length = hop_length
+ self.sr = sample_rate
+ self.n_fft = n_fft
+ self.top_db = top_db
+ self.n_iter = n_iter
+ self.set_resolution(x_res, y_res)
+ self.audio = None
+
+ if not _librosa_can_be_imported:
+ raise ValueError(_import_error)
+
+ def set_resolution(self, x_res: int, y_res: int):
+ """Set resolution.
+
+ Args:
+ x_res (`int`): x resolution of spectrogram (time)
+ y_res (`int`): y resolution of spectrogram (frequency bins)
+ """
+ self.x_res = x_res
+ self.y_res = y_res
+ self.n_mels = self.y_res
+ self.slice_size = self.x_res * self.hop_length - 1
+
+ def load_audio(self, audio_file: str = None, raw_audio: np.ndarray = None):
+ """Load audio.
+
+ Args:
+ audio_file (`str`): must be a file on disk due to Librosa limitation or
+ raw_audio (`np.ndarray`): audio as numpy array
+ """
+ if audio_file is not None:
+ self.audio, _ = librosa.load(audio_file, mono=True, sr=self.sr)
+ else:
+ self.audio = raw_audio
+
+ # Pad with silence if necessary.
+ if len(self.audio) < self.x_res * self.hop_length:
+ self.audio = np.concatenate([self.audio, np.zeros((self.x_res * self.hop_length - len(self.audio),))])
+
+ def get_number_of_slices(self) -> int:
+ """Get number of slices in audio.
+
+ Returns:
+ `int`: number of spectograms audio can be sliced into
+ """
+ return len(self.audio) // self.slice_size
+
+ def get_audio_slice(self, slice: int = 0) -> np.ndarray:
+ """Get slice of audio.
+
+ Args:
+ slice (`int`): slice number of audio (out of get_number_of_slices())
+
+ Returns:
+ `np.ndarray`: audio as numpy array
+ """
+ return self.audio[self.slice_size * slice : self.slice_size * (slice + 1)]
+
+ def get_sample_rate(self) -> int:
+ """Get sample rate:
+
+ Returns:
+ `int`: sample rate of audio
+ """
+ return self.sr
+
+ def audio_slice_to_image(self, slice: int) -> Image.Image:
+ """Convert slice of audio to spectrogram.
+
+ Args:
+ slice (`int`): slice number of audio to convert (out of get_number_of_slices())
+
+ Returns:
+ `PIL Image`: grayscale image of x_res x y_res
+ """
+ S = librosa.feature.melspectrogram(
+ y=self.get_audio_slice(slice), sr=self.sr, n_fft=self.n_fft, hop_length=self.hop_length, n_mels=self.n_mels
+ )
+ log_S = librosa.power_to_db(S, ref=np.max, top_db=self.top_db)
+ bytedata = (((log_S + self.top_db) * 255 / self.top_db).clip(0, 255) + 0.5).astype(np.uint8)
+ image = Image.fromarray(bytedata)
+ return image
+
+ def image_to_audio(self, image: Image.Image) -> np.ndarray:
+ """Converts spectrogram to audio.
+
+ Args:
+ image (`PIL Image`): x_res x y_res grayscale image
+
+ Returns:
+ audio (`np.ndarray`): raw audio
+ """
+ bytedata = np.frombuffer(image.tobytes(), dtype="uint8").reshape((image.height, image.width))
+ log_S = bytedata.astype("float") * self.top_db / 255 - self.top_db
+ S = librosa.db_to_power(log_S)
+ audio = librosa.feature.inverse.mel_to_audio(
+ S, sr=self.sr, n_fft=self.n_fft, hop_length=self.hop_length, n_iter=self.n_iter
+ )
+ return audio
diff --git a/ppdiffusers/pipelines/audio_diffusion/pipeline_audio_diffusion.py b/ppdiffusers/pipelines/audio_diffusion/pipeline_audio_diffusion.py
new file mode 100644
index 0000000000000000000000000000000000000000..6159ae89f5251a647afdd42d99132914a33e891f
--- /dev/null
+++ b/ppdiffusers/pipelines/audio_diffusion/pipeline_audio_diffusion.py
@@ -0,0 +1,253 @@
+# Copyright 2022 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+
+from math import acos, sin
+from typing import List, Tuple, Union
+
+import numpy as np
+import paddle
+from PIL import Image
+
+from ...models import AutoencoderKL, UNet2DConditionModel
+from ...pipeline_utils import (
+ AudioPipelineOutput,
+ BaseOutput,
+ DiffusionPipeline,
+ ImagePipelineOutput,
+)
+from ...schedulers import DDIMScheduler, DDPMScheduler
+from .mel import Mel
+
+
+class AudioDiffusionPipeline(DiffusionPipeline):
+ """
+ This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
+ library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
+
+ Parameters:
+ vqae ([`AutoencoderKL`]): Variational AutoEncoder for Latent Audio Diffusion or None
+ unet ([`UNet2DConditionModel`]): UNET model
+ mel ([`Mel`]): transform audio <-> spectrogram
+ scheduler ([`DDIMScheduler` or `DDPMScheduler`]): de-noising scheduler
+ """
+
+ _optional_components = ["vqvae"]
+
+ def __init__(
+ self,
+ vqvae: AutoencoderKL,
+ unet: UNet2DConditionModel,
+ mel: Mel,
+ scheduler: Union[DDIMScheduler, DDPMScheduler],
+ ):
+ super().__init__()
+ self.register_modules(unet=unet, scheduler=scheduler, mel=mel, vqvae=vqvae)
+
+ def get_input_dims(self) -> Tuple:
+ """Returns dimension of input image
+
+ Returns:
+ `Tuple`: (height, width)
+ """
+ input_module = self.vqvae if self.vqvae is not None else self.unet
+ # For backwards compatibility
+ sample_size = (
+ (input_module.sample_size, input_module.sample_size)
+ if type(input_module.sample_size) == int
+ else input_module.sample_size
+ )
+ return sample_size
+
+ def get_default_steps(self) -> int:
+ """Returns default number of steps recommended for inference
+
+ Returns:
+ `int`: number of steps
+ """
+ return 50 if isinstance(self.scheduler, DDIMScheduler) else 1000
+
+ @paddle.no_grad()
+ def __call__(
+ self,
+ batch_size: int = 1,
+ audio_file: str = None,
+ raw_audio: np.ndarray = None,
+ slice: int = 0,
+ start_step: int = 0,
+ steps: int = None,
+ generator: paddle.Generator = None,
+ mask_start_secs: float = 0,
+ mask_end_secs: float = 0,
+ step_generator: paddle.Generator = None,
+ eta: float = 0,
+ noise: paddle.Tensor = None,
+ return_dict=True,
+ ) -> Union[
+ Union[AudioPipelineOutput, ImagePipelineOutput], Tuple[List[Image.Image], Tuple[int, List[np.ndarray]]]
+ ]:
+ """Generate random mel spectrogram from audio input and convert to audio.
+
+ Args:
+ batch_size (`int`): number of samples to generate
+ audio_file (`str`): must be a file on disk due to Librosa limitation or
+ raw_audio (`np.ndarray`): audio as numpy array
+ slice (`int`): slice number of audio to convert
+ start_step (int): step to start from
+ steps (`int`): number of de-noising steps (defaults to 50 for DDIM, 1000 for DDPM)
+ generator (`paddle.Generator`): random number generator or None
+ mask_start_secs (`float`): number of seconds of audio to mask (not generate) at start
+ mask_end_secs (`float`): number of seconds of audio to mask (not generate) at end
+ step_generator (`paddle.Generator`): random number generator used to de-noise or None
+ eta (`float`): parameter between 0 and 1 used with DDIM scheduler
+ noise (`paddle.Tensor`): noise tensor of shape (batch_size, 1, height, width) or None
+ return_dict (`bool`): if True return AudioPipelineOutput, ImagePipelineOutput else Tuple
+
+ Returns:
+ `List[PIL Image]`: mel spectrograms (`float`, `List[np.ndarray]`): sample rate and raw audios
+ """
+
+ steps = steps or self.get_default_steps()
+ self.scheduler.set_timesteps(steps)
+ step_generator = step_generator or generator
+ # For backwards compatibility
+ if type(self.unet.sample_size) == int:
+ self.unet.sample_size = (self.unet.sample_size, self.unet.sample_size)
+ input_dims = self.get_input_dims()
+ self.mel.set_resolution(x_res=input_dims[1], y_res=input_dims[0])
+ if noise is None:
+ noise = paddle.randn(
+ (batch_size, self.unet.in_channels, self.unet.sample_size[0], self.unet.sample_size[1]),
+ generator=generator,
+ )
+ images = noise
+ mask = None
+
+ if audio_file is not None or raw_audio is not None:
+ self.mel.load_audio(audio_file, raw_audio)
+ input_image = self.mel.audio_slice_to_image(slice)
+ input_image = np.frombuffer(input_image.tobytes(), dtype="uint8").reshape(
+ (input_image.height, input_image.width)
+ )
+ input_image = (input_image / 255) * 2 - 1
+ input_images = paddle.to_tensor(input_image[np.newaxis, :, :], dtype=paddle.float32)
+
+ if self.vqvae is not None:
+ input_images = self.vqvae.encode(paddle.unsqueeze(input_images, 0)).latent_dist.sample(
+ generator=generator
+ )[0]
+ input_images = 0.18215 * input_images
+
+ if start_step > 0:
+ images[0, 0] = self.scheduler.add_noise(input_images, noise, self.scheduler.timesteps[start_step - 1])
+
+ pixels_per_second = (
+ self.unet.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length
+ )
+ mask_start = int(mask_start_secs * pixels_per_second)
+ mask_end = int(mask_end_secs * pixels_per_second)
+ mask = self.scheduler.add_noise(
+ input_images, noise, paddle.to_tensor(self.scheduler.timesteps[start_step:])
+ )
+
+ for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:])):
+ model_output = self.unet(images, t)["sample"]
+
+ if isinstance(self.scheduler, DDIMScheduler):
+ images = self.scheduler.step(
+ model_output=model_output, timestep=t, sample=images, eta=eta, generator=step_generator
+ )["prev_sample"]
+ else:
+ images = self.scheduler.step(
+ model_output=model_output, timestep=t, sample=images, generator=step_generator
+ )["prev_sample"]
+
+ if mask is not None:
+ if mask_start > 0:
+ images[:, :, :, :mask_start] = mask[:, step, :, :mask_start]
+ if mask_end > 0:
+ images[:, :, :, -mask_end:] = mask[:, step, :, -mask_end:]
+
+ if self.vqvae is not None:
+ # 0.18215 was scaling factor used in training to ensure unit variance
+ images = 1 / 0.18215 * images
+ images = self.vqvae.decode(images)["sample"]
+
+ images = (images / 2 + 0.5).clip(0, 1)
+ images = images.transpose([0, 2, 3, 1]).cast("float32").numpy()
+ images = (images * 255).round().astype("uint8")
+ images = list(
+ map(lambda _: Image.fromarray(_[:, :, 0]), images)
+ if images.shape[3] == 1
+ else map(lambda _: Image.fromarray(_, mode="RGB").convert("L"), images)
+ )
+
+ audios = list(map(lambda _: self.mel.image_to_audio(_), images))
+ if not return_dict:
+ return images, (self.mel.get_sample_rate(), audios)
+
+ return BaseOutput(**AudioPipelineOutput(np.array(audios)[:, np.newaxis, :]), **ImagePipelineOutput(images))
+
+ @paddle.no_grad()
+ def encode(self, images: List[Image.Image], steps: int = 50) -> np.ndarray:
+ """Reverse step process: recover noisy image from generated image.
+
+ Args:
+ images (`List[PIL Image]`): list of images to encode
+ steps (`int`): number of encoding steps to perform (defaults to 50)
+
+ Returns:
+ `np.ndarray`: noise tensor of shape (batch_size, 1, height, width)
+ """
+
+ # Only works with DDIM as this method is deterministic
+ assert isinstance(self.scheduler, DDIMScheduler)
+ self.scheduler.set_timesteps(steps)
+ sample = np.array(
+ [np.frombuffer(image.tobytes(), dtype="uint8").reshape((1, image.height, image.width)) for image in images]
+ )
+ sample = (sample / 255) * 2 - 1
+ sample = paddle.to_tensor(sample)
+
+ for t in self.progress_bar(paddle.flip(self.scheduler.timesteps, (0,))):
+ prev_timestep = t - self.scheduler.num_train_timesteps // self.scheduler.num_inference_steps
+ alpha_prod_t = self.scheduler.alphas_cumprod[t]
+ alpha_prod_t_prev = (
+ self.scheduler.alphas_cumprod[prev_timestep]
+ if prev_timestep >= 0
+ else self.scheduler.final_alpha_cumprod
+ )
+ beta_prod_t = 1 - alpha_prod_t
+ model_output = self.unet(sample, t)["sample"]
+ pred_sample_direction = (1 - alpha_prod_t_prev) ** (0.5) * model_output
+ sample = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5)
+ sample = sample * alpha_prod_t ** (0.5) + beta_prod_t ** (0.5) * model_output
+
+ return sample
+
+ @staticmethod
+ def slerp(x0: paddle.Tensor, x1: paddle.Tensor, alpha: float) -> paddle.Tensor:
+ """Spherical Linear intERPolation
+
+ Args:
+ x0 (`paddle.Tensor`): first tensor to interpolate between
+ x1 (`paddle.Tensor`): seconds tensor to interpolate between
+ alpha (`float`): interpolation between 0 and 1
+
+ Returns:
+ `paddle.Tensor`: interpolated tensor
+ """
+
+ theta = acos(paddle.dot(paddle.flatten(x0), paddle.flatten(x1)) / paddle.norm(x0) / paddle.norm(x1))
+ return sin((1 - alpha) * theta) * x0 / sin(theta) + sin(alpha * theta) * x1 / sin(theta)
diff --git a/ppdiffusers/pipelines/dance_diffusion/__init__.py b/ppdiffusers/pipelines/dance_diffusion/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..18e52631ed469b7aaf9048860d6c11f000bfe695
--- /dev/null
+++ b/ppdiffusers/pipelines/dance_diffusion/__init__.py
@@ -0,0 +1,17 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+# Copyright 2022 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+# flake8: noqa
+from .pipeline_dance_diffusion import DanceDiffusionPipeline
diff --git a/ppdiffusers/pipelines/dance_diffusion/__pycache__/__init__.cpython-37.pyc b/ppdiffusers/pipelines/dance_diffusion/__pycache__/__init__.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..ecb760d8307052d86bb3dd23bd36a313c0705812
Binary files /dev/null and b/ppdiffusers/pipelines/dance_diffusion/__pycache__/__init__.cpython-37.pyc differ
diff --git a/ppdiffusers/pipelines/dance_diffusion/__pycache__/pipeline_dance_diffusion.cpython-37.pyc b/ppdiffusers/pipelines/dance_diffusion/__pycache__/pipeline_dance_diffusion.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..6c2d00ff8312abdb19f52c0ca5a3bcfd22c3cb5b
Binary files /dev/null and b/ppdiffusers/pipelines/dance_diffusion/__pycache__/pipeline_dance_diffusion.cpython-37.pyc differ
diff --git a/ppdiffusers/pipelines/dance_diffusion/pipeline_dance_diffusion.py b/ppdiffusers/pipelines/dance_diffusion/pipeline_dance_diffusion.py
new file mode 100644
index 0000000000000000000000000000000000000000..c05ecd20c9334813d855d08b61147c626cb71918
--- /dev/null
+++ b/ppdiffusers/pipelines/dance_diffusion/pipeline_dance_diffusion.py
@@ -0,0 +1,128 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+# Copyright 2022 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from typing import List, Optional, Tuple, Union
+
+import paddle
+
+from ...pipeline_utils import AudioPipelineOutput, DiffusionPipeline
+from ...utils import logging
+
+logger = logging.get_logger(__name__) # pylint: disable=invalid-name
+
+
+class DanceDiffusionPipeline(DiffusionPipeline):
+ r"""
+ This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
+ library implements for all the pipelines (such as downloading or saving, running on a particular xxxx, etc.)
+
+ Parameters:
+ unet ([`UNet1DModel`]): U-Net architecture to denoise the encoded image.
+ scheduler ([`SchedulerMixin`]):
+ A scheduler to be used in combination with `unet` to denoise the encoded image. Can be one of
+ [`IPNDMScheduler`].
+ """
+
+ def __init__(self, unet, scheduler):
+ super().__init__()
+ self.register_modules(unet=unet, scheduler=scheduler)
+
+ @paddle.no_grad()
+ def __call__(
+ self,
+ batch_size: int = 1,
+ num_inference_steps: int = 100,
+ generator: Optional[Union[paddle.Generator, List[paddle.Generator]]] = None,
+ audio_length_in_s: Optional[float] = None,
+ return_dict: bool = True,
+ ) -> Union[AudioPipelineOutput, Tuple]:
+ r"""
+ Args:
+ batch_size (`int`, *optional*, defaults to 1):
+ The number of audio samples to generate.
+ num_inference_steps (`int`, *optional*, defaults to 50):
+ The number of denoising steps. More denoising steps usually lead to a higher quality audio sample at
+ the expense of slower inference.
+ generator (`paddle.Generator`, *optional*):
+ One or a list of paddle generator(s) to make generation deterministic.
+ audio_length_in_s (`float`, *optional*, defaults to `self.unet.config.sample_size/self.unet.config.sample_rate`):
+ The length of the generated audio sample in seconds. Note that the output of the pipeline, *i.e.*
+ `sample_size`, will be `audio_length_in_s` * `self.unet.sample_rate`.
+ return_dict (`bool`, *optional*, defaults to `True`):
+ Whether or not to return a [`~pipeline_utils.AudioPipelineOutput`] instead of a plain tuple.
+
+ Returns:
+ [`~pipeline_utils.AudioPipelineOutput`] or `tuple`: [`~pipelines.utils.AudioPipelineOutput`] if
+ `return_dict` is True, otherwise a `tuple. When returning a tuple, the first element is a list with the
+ generated images.
+ """
+
+ if audio_length_in_s is None:
+ audio_length_in_s = self.unet.config.sample_size / self.unet.config.sample_rate
+
+ sample_size = audio_length_in_s * self.unet.sample_rate
+
+ down_scale_factor = 2 ** len(self.unet.up_blocks)
+ if sample_size < 3 * down_scale_factor:
+ raise ValueError(
+ f"{audio_length_in_s} is too small. Make sure it's bigger or equal to"
+ f" {3 * down_scale_factor / self.unet.sample_rate}."
+ )
+
+ original_sample_size = int(sample_size)
+ if sample_size % down_scale_factor != 0:
+ sample_size = ((audio_length_in_s * self.unet.sample_rate) // down_scale_factor + 1) * down_scale_factor
+ logger.info(
+ f"{audio_length_in_s} is increased to {sample_size / self.unet.sample_rate} so that it can be handled"
+ f" by the model. It will be cut to {original_sample_size / self.unet.sample_rate} after the denoising"
+ " process."
+ )
+ sample_size = int(sample_size)
+
+ dtype = self.unet.dtype
+ shape = [batch_size, self.unet.in_channels, sample_size]
+ if isinstance(generator, list) and len(generator) != batch_size:
+ raise ValueError(
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
+ )
+
+ if isinstance(generator, list):
+ shape = [
+ 1,
+ ] + shape[1:]
+ audio = [paddle.randn(shape, generator=generator[i], dtype=self.unet.dtype) for i in range(batch_size)]
+ audio = paddle.concat(audio, axis=0)
+ else:
+ audio = paddle.randn(shape, generator=generator, dtype=dtype)
+ # set step values
+ self.scheduler.set_timesteps(num_inference_steps)
+ self.scheduler.timesteps = self.scheduler.timesteps.cast(dtype)
+
+ for t in self.progress_bar(self.scheduler.timesteps):
+ # 1. predict noise model_output
+ model_output = self.unet(audio, t).sample
+
+ # 2. compute previous image: x_t -> t_t-1
+ audio = self.scheduler.step(model_output, t, audio).prev_sample
+
+ audio = audio.clip(-1, 1).cast("float32").cpu().numpy()
+
+ audio = audio[:, :, :original_sample_size]
+
+ if not return_dict:
+ return (audio,)
+
+ return AudioPipelineOutput(audios=audio)
diff --git a/ppdiffusers/pipelines/ddim/__init__.py b/ppdiffusers/pipelines/ddim/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..9b445f1ee8d15d4c6048a8d1ab4fae5d0c21d571
--- /dev/null
+++ b/ppdiffusers/pipelines/ddim/__init__.py
@@ -0,0 +1,17 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+# Copyright 2022 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+# flake8: noqa
+from .pipeline_ddim import DDIMPipeline
diff --git a/ppdiffusers/pipelines/ddim/__pycache__/__init__.cpython-37.pyc b/ppdiffusers/pipelines/ddim/__pycache__/__init__.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..9459135781e45642351123bf841ab29efc156e49
Binary files /dev/null and b/ppdiffusers/pipelines/ddim/__pycache__/__init__.cpython-37.pyc differ
diff --git a/ppdiffusers/pipelines/ddim/__pycache__/pipeline_ddim.cpython-37.pyc b/ppdiffusers/pipelines/ddim/__pycache__/pipeline_ddim.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..4b76646da8259e795cfd741680e831593cbf6613
Binary files /dev/null and b/ppdiffusers/pipelines/ddim/__pycache__/pipeline_ddim.cpython-37.pyc differ
diff --git a/ppdiffusers/pipelines/ddim/pipeline_ddim.py b/ppdiffusers/pipelines/ddim/pipeline_ddim.py
new file mode 100644
index 0000000000000000000000000000000000000000..e797a45141adb41b65124aaa0da99c00980d7f99
--- /dev/null
+++ b/ppdiffusers/pipelines/ddim/pipeline_ddim.py
@@ -0,0 +1,116 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+# Copyright 2022 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from typing import List, Optional, Tuple, Union
+
+import paddle
+
+from ...pipeline_utils import DiffusionPipeline, ImagePipelineOutput
+
+
+class DDIMPipeline(DiffusionPipeline):
+ r"""
+ This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
+ library implements for all the pipelines (such as downloading or saving, running on a particular xxxx, etc.)
+
+ Parameters:
+ unet ([`UNet2DModel`]): U-Net architecture to denoise the encoded image.
+ scheduler ([`SchedulerMixin`]):
+ A scheduler to be used in combination with `unet` to denoise the encoded image. Can be one of
+ [`DDPMScheduler`], or [`DDIMScheduler`].
+ """
+
+ def __init__(self, unet, scheduler):
+ super().__init__()
+ self.register_modules(unet=unet, scheduler=scheduler)
+
+ @paddle.no_grad()
+ def __call__(
+ self,
+ batch_size: int = 1,
+ generator: Optional[Union[paddle.Generator, List[paddle.Generator]]] = None,
+ eta: float = 0.0,
+ num_inference_steps: int = 50,
+ use_clipped_model_output: Optional[bool] = None,
+ output_type: Optional[str] = "pil",
+ return_dict: bool = True,
+ ) -> Union[ImagePipelineOutput, Tuple]:
+ r"""
+ Args:
+ batch_size (`int`, *optional*, defaults to 1):
+ The number of images to generate.
+ generator (`paddle.Generator`, *optional*):
+ One or a list of paddle generator(s) to make generation deterministic.
+ eta (`float`, *optional*, defaults to 0.0):
+ The eta parameter which controls the scale of the variance (0 is DDIM and 1 is one type of DDPM).
+ num_inference_steps (`int`, *optional*, defaults to 50):
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
+ expense of slower inference.
+ use_clipped_model_output (`bool`, *optional*, defaults to `None`):
+ if `True` or `False`, see documentation for `DDIMScheduler.step`. If `None`, nothing is passed
+ downstream to the scheduler. So use `None` for schedulers which don't support this argument.
+ output_type (`str`, *optional*, defaults to `"pil"`):
+ The output format of the generate image. Choose between
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
+ return_dict (`bool`, *optional*, defaults to `True`):
+ Whether or not to return a [`~pipeline_utils.ImagePipelineOutput`] instead of a plain tuple.
+
+ Returns:
+ [`~pipeline_utils.ImagePipelineOutput`] or `tuple`: [`~pipelines.utils.ImagePipelineOutput`] if
+ `return_dict` is True, otherwise a `tuple. When returning a tuple, the first element is a list with the
+ generated images.
+ """
+ # Sample gaussian noise to begin loop
+ if isinstance(self.unet.sample_size, int):
+ image_shape = (batch_size, self.unet.in_channels, self.unet.sample_size, self.unet.sample_size)
+ else:
+ image_shape = (batch_size, self.unet.in_channels, *self.unet.sample_size)
+
+ if isinstance(generator, list) and len(generator) != batch_size:
+ raise ValueError(
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
+ )
+
+ if isinstance(generator, list):
+ shape = (1,) + image_shape[1:]
+ image = [paddle.randn(shape, generator=generator[i], dtype=self.unet.dtype) for i in range(batch_size)]
+ image = paddle.concat(image, axis=0)
+ else:
+ image = paddle.randn(image_shape, generator=generator, dtype=self.unet.dtype)
+
+ # set step values
+ self.scheduler.set_timesteps(num_inference_steps)
+
+ for t in self.progress_bar(self.scheduler.timesteps):
+ # 1. predict noise model_output
+ model_output = self.unet(image, t).sample
+
+ # 2. predict previous mean of image x_t-1 and add variance depending on eta
+ # eta corresponds to η in paper and should be between [0, 1]
+ # do x_t -> x_t-1
+ image = self.scheduler.step(
+ model_output, t, image, eta=eta, use_clipped_model_output=use_clipped_model_output, generator=generator
+ ).prev_sample
+
+ image = (image / 2 + 0.5).clip(0, 1)
+ image = image.transpose([0, 2, 3, 1]).cast("float32").numpy()
+ if output_type == "pil":
+ image = self.numpy_to_pil(image)
+
+ if not return_dict:
+ return (image,)
+
+ return ImagePipelineOutput(images=image)
diff --git a/ppdiffusers/pipelines/ddpm/__init__.py b/ppdiffusers/pipelines/ddpm/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..19f629ea8ffb6f3af770b737c947ff73ea78514c
--- /dev/null
+++ b/ppdiffusers/pipelines/ddpm/__init__.py
@@ -0,0 +1,17 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+# Copyright 2022 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+# flake8: noqa
+from .pipeline_ddpm import DDPMPipeline
diff --git a/ppdiffusers/pipelines/ddpm/__pycache__/__init__.cpython-37.pyc b/ppdiffusers/pipelines/ddpm/__pycache__/__init__.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..cd237ba5957587d7ec1146118ea2890ed6f11ca3
Binary files /dev/null and b/ppdiffusers/pipelines/ddpm/__pycache__/__init__.cpython-37.pyc differ
diff --git a/ppdiffusers/pipelines/ddpm/__pycache__/pipeline_ddpm.cpython-37.pyc b/ppdiffusers/pipelines/ddpm/__pycache__/pipeline_ddpm.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..5c232def073d16c5178b1556702892020c4b56d0
Binary files /dev/null and b/ppdiffusers/pipelines/ddpm/__pycache__/pipeline_ddpm.cpython-37.pyc differ
diff --git a/ppdiffusers/pipelines/ddpm/pipeline_ddpm.py b/ppdiffusers/pipelines/ddpm/pipeline_ddpm.py
new file mode 100644
index 0000000000000000000000000000000000000000..e2c09ed55c5bfa9868a231420ff8d180fd555b00
--- /dev/null
+++ b/ppdiffusers/pipelines/ddpm/pipeline_ddpm.py
@@ -0,0 +1,108 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+# Copyright 2022 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from typing import List, Optional, Tuple, Union
+
+import paddle
+
+from ...configuration_utils import FrozenDict
+from ...pipeline_utils import DiffusionPipeline, ImagePipelineOutput
+from ...utils import deprecate
+
+
+class DDPMPipeline(DiffusionPipeline):
+ r"""
+ This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
+ library implements for all the pipelines (such as downloading or saving, running on a particular xxxx, etc.)
+
+ Parameters:
+ unet ([`UNet2DModel`]): U-Net architecture to denoise the encoded image.
+ scheduler ([`SchedulerMixin`]):
+ A scheduler to be used in combination with `unet` to denoise the encoded image. Can be one of
+ [`DDPMScheduler`], or [`DDIMScheduler`].
+ """
+
+ def __init__(self, unet, scheduler):
+ super().__init__()
+ self.register_modules(unet=unet, scheduler=scheduler)
+
+ @paddle.no_grad()
+ def __call__(
+ self,
+ batch_size: int = 1,
+ generator: Optional[Union[paddle.Generator, List[paddle.Generator]]] = None,
+ num_inference_steps: int = 1000,
+ output_type: Optional[str] = "pil",
+ return_dict: bool = True,
+ **kwargs,
+ ) -> Union[ImagePipelineOutput, Tuple]:
+ r"""
+ Args:
+ batch_size (`int`, *optional*, defaults to 1):
+ The number of images to generate.
+ generator (`paddle.Generator`, *optional*):
+ One or a list of paddle generator(s) to make generation deterministic.
+ num_inference_steps (`int`, *optional*, defaults to 1000):
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
+ expense of slower inference.
+ output_type (`str`, *optional*, defaults to `"pil"`):
+ The output format of the generate image. Choose between
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
+ return_dict (`bool`, *optional*, defaults to `True`):
+ Whether or not to return a [`~pipeline_utils.ImagePipelineOutput`] instead of a plain tuple.
+
+ Returns:
+ [`~pipeline_utils.ImagePipelineOutput`] or `tuple`: [`~pipelines.utils.ImagePipelineOutput`] if
+ `return_dict` is True, otherwise a `tuple. When returning a tuple, the first element is a list with the
+ generated images.
+ """
+ message = (
+ "Please make sure to instantiate your scheduler with `prediction_type` instead. E.g. `scheduler ="
+ " DDPMScheduler.from_pretrained(, prediction_type='epsilon')`."
+ )
+ predict_epsilon = deprecate("predict_epsilon", "0.13.0", message, take_from=kwargs)
+
+ if predict_epsilon is not None:
+ new_config = dict(self.scheduler.config)
+ new_config["prediction_type"] = "epsilon" if predict_epsilon else "sample"
+ self.scheduler._internal_dict = FrozenDict(new_config)
+
+ # Sample gaussian noise to begin loop
+ if isinstance(self.unet.sample_size, int):
+ image_shape = (batch_size, self.unet.in_channels, self.unet.sample_size, self.unet.sample_size)
+ else:
+ image_shape = (batch_size, self.unet.in_channels, *self.unet.sample_size)
+
+ image = paddle.randn(image_shape, generator=generator)
+
+ # set step values
+ self.scheduler.set_timesteps(num_inference_steps)
+
+ for t in self.progress_bar(self.scheduler.timesteps):
+ # 1. predict noise model_output
+ model_output = self.unet(image, t).sample
+
+ # 2. compute previous image: x_t -> x_t-1
+ image = self.scheduler.step(model_output, t, image, generator=generator).prev_sample
+
+ image = (image / 2 + 0.5).clip(0, 1)
+ image = image.transpose([0, 2, 3, 1]).cast("float32").numpy()
+ if output_type == "pil":
+ image = self.numpy_to_pil(image)
+
+ if not return_dict:
+ return (image,)
+
+ return ImagePipelineOutput(images=image)
diff --git a/ppdiffusers/pipelines/latent_diffusion/__init__.py b/ppdiffusers/pipelines/latent_diffusion/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e6e4a891496e25361f955133275f4a1443494fce
--- /dev/null
+++ b/ppdiffusers/pipelines/latent_diffusion/__init__.py
@@ -0,0 +1,21 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+# Copyright 2022 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+# flake8: noqa
+from ...utils import is_paddlenlp_available
+from .pipeline_latent_diffusion_superresolution import LDMSuperResolutionPipeline
+
+if is_paddlenlp_available():
+ from .pipeline_latent_diffusion import LDMBertModel, LDMTextToImagePipeline
diff --git a/ppdiffusers/pipelines/latent_diffusion/__pycache__/__init__.cpython-37.pyc b/ppdiffusers/pipelines/latent_diffusion/__pycache__/__init__.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..c283421af3ebc7e841c2ec74f8a87bfe179459d2
Binary files /dev/null and b/ppdiffusers/pipelines/latent_diffusion/__pycache__/__init__.cpython-37.pyc differ
diff --git a/ppdiffusers/pipelines/latent_diffusion/__pycache__/pipeline_latent_diffusion.cpython-37.pyc b/ppdiffusers/pipelines/latent_diffusion/__pycache__/pipeline_latent_diffusion.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..b38c642ca48316f1ff7a40d5a768bac2f2aa3815
Binary files /dev/null and b/ppdiffusers/pipelines/latent_diffusion/__pycache__/pipeline_latent_diffusion.cpython-37.pyc differ
diff --git a/ppdiffusers/pipelines/latent_diffusion/__pycache__/pipeline_latent_diffusion_superresolution.cpython-37.pyc b/ppdiffusers/pipelines/latent_diffusion/__pycache__/pipeline_latent_diffusion_superresolution.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..dafae69ec44fab20951a9be49c152cd5ca0c3df5
Binary files /dev/null and b/ppdiffusers/pipelines/latent_diffusion/__pycache__/pipeline_latent_diffusion_superresolution.cpython-37.pyc differ
diff --git a/ppdiffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py b/ppdiffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py
new file mode 100644
index 0000000000000000000000000000000000000000..28e47d2f4169bf2b7bbde296ed8ba08594873872
--- /dev/null
+++ b/ppdiffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py
@@ -0,0 +1,631 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+# Copyright 2022 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import inspect
+from typing import Callable, List, Optional, Union
+
+import paddle
+import paddle.nn as nn
+
+################################################################################
+# Code for the text transformer model
+################################################################################
+from paddlenlp.transformers import (
+ PretrainedModel,
+ PretrainedTokenizer,
+ register_base_model,
+)
+from paddlenlp.transformers.model_outputs import (
+ BaseModelOutputWithPoolingAndCrossAttentions,
+)
+
+from ...configuration_utils import FrozenDict
+from ...models import AutoencoderKL, UNet2DConditionModel, UNet2DModel, VQModel
+from ...pipeline_utils import DiffusionPipeline, ImagePipelineOutput
+from ...schedulers import (
+ DDIMScheduler,
+ DPMSolverMultistepScheduler,
+ EulerAncestralDiscreteScheduler,
+ EulerDiscreteScheduler,
+ LMSDiscreteScheduler,
+ PNDMScheduler,
+)
+from ...utils import deprecate, logging
+
+logger = logging.get_logger(__name__) # pylint: disable=invalid-name
+
+
+class LDMBertPretrainedModel(PretrainedModel):
+ pretrained_init_configuration = {}
+ pretrained_resource_files_map = {}
+ base_model_prefix = "ldmbert"
+
+ def init_weights(self, layer):
+ if isinstance(layer, (nn.Linear, nn.Embedding)):
+ layer.weight.set_value(
+ paddle.normal(
+ mean=0.0,
+ std=self.initializer_range
+ if hasattr(self, "initializer_range")
+ else self.ldmbert.config["initializer_range"],
+ shape=layer.weight.shape,
+ )
+ )
+
+
+class LDMBertEmbeddings(nn.Layer):
+ def __init__(self, vocab_size, hidden_size=768, hidden_dropout_prob=0.0, max_position_embeddings=512):
+ super().__init__()
+ self.word_embeddings = nn.Embedding(vocab_size, hidden_size)
+ self.position_embeddings = nn.Embedding(max_position_embeddings, hidden_size)
+ self.dropout = nn.Dropout(hidden_dropout_prob)
+
+ def forward(self, input_ids, position_ids=None):
+ if position_ids is None:
+ ones = paddle.ones_like(input_ids, dtype="int64")
+ seq_length = paddle.cumsum(ones, axis=-1)
+ position_ids = seq_length - ones
+ position_ids.stop_gradient = True
+
+ input_embedings = self.word_embeddings(input_ids)
+ position_embeddings = self.position_embeddings(position_ids)
+
+ embeddings = input_embedings + position_embeddings
+ embeddings = self.dropout(embeddings)
+ return embeddings
+
+
+class TransformerEncoderLayer(nn.TransformerEncoderLayer):
+ def __init__(
+ self,
+ d_model,
+ nhead,
+ dim_feedforward,
+ dropout=0.1,
+ activation="gelu",
+ attn_dropout=None,
+ act_dropout=None,
+ normalize_before=False,
+ weight_attr=None,
+ bias_attr=None,
+ head_dim=64,
+ ):
+ super().__init__(
+ d_model,
+ nhead,
+ dim_feedforward,
+ dropout,
+ activation,
+ attn_dropout,
+ act_dropout,
+ normalize_before,
+ weight_attr,
+ bias_attr,
+ )
+ # update self attn
+ self.self_attn = LDMBertAttention(
+ d_model, head_dim, nhead, dropout=attn_dropout, weight_attr=weight_attr, bias_attr=False
+ )
+
+
+@register_base_model
+class LDMBertModel(LDMBertPretrainedModel):
+ _no_split_modules = []
+
+ def __init__(
+ self,
+ vocab_size=30522,
+ max_position_embeddings=77,
+ encoder_layers=32,
+ encoder_ffn_dim=5120,
+ encoder_attention_heads=8,
+ head_dim=64,
+ activation_function="gelu",
+ d_model=1280,
+ dropout=0.0,
+ attention_dropout=0.0,
+ activation_dropout=0.0,
+ init_std=0.02,
+ pad_token_id=0,
+ **kwargs
+ ):
+ super().__init__()
+ self.pad_token_id = pad_token_id
+ self.initializer_range = init_std
+ self.embeddings = LDMBertEmbeddings(vocab_size, d_model, dropout, max_position_embeddings)
+ encoder_layer = TransformerEncoderLayer(
+ d_model,
+ encoder_attention_heads,
+ encoder_ffn_dim,
+ dropout=dropout,
+ activation=activation_function,
+ attn_dropout=attention_dropout,
+ act_dropout=activation_dropout,
+ normalize_before=True,
+ head_dim=head_dim,
+ )
+
+ self.encoder = nn.TransformerEncoder(encoder_layer, encoder_layers)
+ self.final_layer_norm = nn.LayerNorm(d_model)
+ self.apply(self.init_weights)
+
+ def get_input_embeddings(self):
+ return self.embeddings.word_embeddings
+
+ def set_input_embeddings(self, value):
+ self.embeddings.word_embeddings = value
+
+ def forward(
+ self,
+ input_ids,
+ position_ids=None,
+ attention_mask=None,
+ output_hidden_states=False,
+ output_attentions=False,
+ return_dict=False,
+ ):
+
+ if attention_mask is not None and attention_mask.ndim == 2:
+ # attention_mask [batch_size, sequence_length] -> [batch_size, 1, 1, sequence_length]
+ attention_mask = attention_mask.unsqueeze(axis=[1, 2]).astype(paddle.get_default_dtype())
+ attention_mask = (1.0 - attention_mask) * -1e4
+
+ embedding_output = self.embeddings(input_ids=input_ids, position_ids=position_ids)
+
+ encoder_outputs = self.encoder(
+ embedding_output,
+ src_mask=attention_mask,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ if isinstance(encoder_outputs, type(embedding_output)):
+ sequence_output = self.final_layer_norm(encoder_outputs)
+ return (sequence_output,)
+ else:
+ sequence_output = encoder_outputs[0]
+ sequence_output = self.final_layer_norm(sequence_output)
+ if not return_dict:
+ return (sequence_output,) + encoder_outputs[1:]
+ return BaseModelOutputWithPoolingAndCrossAttentions(
+ last_hidden_state=sequence_output,
+ hidden_states=encoder_outputs.hidden_states,
+ attentions=encoder_outputs.attentions,
+ )
+
+
+class LDMBertAttention(nn.MultiHeadAttention):
+ def __init__(
+ self,
+ embed_dim,
+ head_dim,
+ num_heads,
+ dropout=0.0,
+ kdim=None,
+ vdim=None,
+ need_weights=False,
+ weight_attr=None,
+ bias_attr=None,
+ ):
+ super().__init__(embed_dim, num_heads, dropout, kdim, vdim, need_weights, weight_attr, bias_attr)
+ assert embed_dim > 0, "Expected embed_dim to be greater than 0, " "but recieved {}".format(embed_dim)
+ assert num_heads > 0, "Expected num_heads to be greater than 0, " "but recieved {}".format(num_heads)
+
+ self.embed_dim = embed_dim
+ self.kdim = kdim if kdim is not None else embed_dim
+ self.vdim = vdim if vdim is not None else embed_dim
+ self.num_heads = num_heads
+ self.dropout = dropout
+ self.need_weights = need_weights
+
+ self.head_dim = head_dim
+ self.inner_dim = head_dim * num_heads
+ self.scaling = self.head_dim**-0.5
+
+ self.q_proj = nn.Linear(embed_dim, self.inner_dim, weight_attr, bias_attr=bias_attr)
+ self.k_proj = nn.Linear(self.kdim, self.inner_dim, weight_attr, bias_attr=bias_attr)
+ self.v_proj = nn.Linear(self.vdim, self.inner_dim, weight_attr, bias_attr=bias_attr)
+ self.out_proj = nn.Linear(self.inner_dim, embed_dim, weight_attr)
+
+
+class LDMBertModelForMaskedLM(LDMBertPretrainedModel):
+ def __init__(self, ldmbert):
+ super().__init__()
+ self.ldmbert = ldmbert
+ self.to_logits = nn.Linear(ldmbert.config["hidden_size"], ldmbert.config["vocab_size"])
+ self.apply(self.init_weights)
+
+ def forward(
+ self,
+ input_ids=None,
+ attention_mask=None,
+ position_ids=None,
+ output_attentions=None,
+ output_hidden_states=None,
+ return_dict=None,
+ ):
+ outputs = self.ldmbert(
+ input_ids,
+ attention_mask=attention_mask,
+ position_ids=position_ids,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+ return outputs
+
+
+class LDMTextToImagePipeline(DiffusionPipeline):
+ r"""
+ This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
+ library implements for all the pipelines (such as downloading or saving, running on a particular xxxx, etc.)
+
+ Parameters:
+ vqvae ([`VQModel`]):
+ Vector-quantized (VQ) Model to encode and decode images to and from latent representations.
+ bert ([`LDMBertModel`]):
+ Text-encoder model based on [BERT](https://paddlenlp.readthedocs.io/zh/latest/source/paddlenlp.transformers.bert.modeling.html#paddlenlp.transformers.bert.modeling.BertModel) architecture.
+ tokenizer (`paddlenlp.transformers.BertTokenizer`):
+ Tokenizer of class
+ [BertTokenizer](https://paddlenlp.readthedocs.io/zh/latest/source/paddlenlp.transformers.bert.tokenizer.html#paddlenlp.transformers.bert.tokenizer.BertTokenizer).
+ unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
+ scheduler ([`SchedulerMixin`]):
+ A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
+ [`DDIMScheduler`], [`LMSDiscreteScheduler`], [`PNDMScheduler`], [`EulerDiscreteScheduler`], [`EulerAncestralDiscreteScheduler`]
+ or [`DPMSolverMultistepScheduler`].
+ """
+
+ def __init__(
+ self,
+ vqvae: Union[VQModel, AutoencoderKL],
+ bert: PretrainedModel,
+ tokenizer: PretrainedTokenizer,
+ unet: Union[UNet2DModel, UNet2DConditionModel],
+ scheduler: Union[
+ DDIMScheduler,
+ PNDMScheduler,
+ LMSDiscreteScheduler,
+ EulerDiscreteScheduler,
+ EulerAncestralDiscreteScheduler,
+ DPMSolverMultistepScheduler,
+ ],
+ ):
+ super().__init__()
+ if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
+ deprecation_message = (
+ f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
+ f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
+ "to update the config accordingly as leaving `steps_offset` might led to incorrect results"
+ " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
+ " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
+ " file"
+ )
+ deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False)
+ new_config = dict(scheduler.config)
+ new_config["steps_offset"] = 1
+ scheduler._internal_dict = FrozenDict(new_config)
+
+ if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True:
+ deprecation_message = (
+ f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`."
+ " `clip_sample` should be set to False in the configuration file. Please make sure to update the"
+ " config accordingly as not setting `clip_sample` in the config might lead to incorrect results in"
+ " future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very"
+ " nice if you could open a Pull request for the `scheduler/scheduler_config.json` file"
+ )
+ deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False)
+ new_config = dict(scheduler.config)
+ new_config["clip_sample"] = False
+ scheduler._internal_dict = FrozenDict(new_config)
+
+ self.register_modules(vqvae=vqvae, bert=bert, tokenizer=tokenizer, unet=unet, scheduler=scheduler)
+ self.vae_scale_factor = 2 ** (len(self.vqvae.config.block_out_channels) - 1)
+
+ def _encode_prompt(self, prompt, num_images_per_prompt, do_classifier_free_guidance, negative_prompt):
+ r"""
+ Encodes the prompt into text encoder hidden states.
+
+ Args:
+ prompt (`str` or `list(int)`):
+ prompt to be encoded
+ num_images_per_prompt (`int`):
+ number of images that should be generated per prompt
+ do_classifier_free_guidance (`bool`):
+ whether to use classifier free guidance or not
+ negative_prompt (`str` or `List[str]`):
+ The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
+ if `guidance_scale` is less than `1`).
+ """
+ batch_size = len(prompt) if isinstance(prompt, list) else 1
+
+ text_inputs = self.tokenizer(
+ prompt,
+ padding="max_length",
+ max_length=self.tokenizer.model_max_length,
+ truncation=True,
+ return_tensors="pd",
+ )
+ text_input_ids = text_inputs.input_ids
+ untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pd").input_ids
+
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not paddle.equal_all(
+ text_input_ids, untruncated_ids
+ ):
+ removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1])
+ logger.warning(
+ "The following part of your input was truncated because LDMBert can only handle sequences up to"
+ f" {self.tokenizer.model_max_length} tokens: {removed_text}"
+ )
+
+ text_embeddings = self.bert(text_input_ids)
+ text_embeddings = text_embeddings[0]
+
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
+ bs_embed, seq_len, _ = text_embeddings.shape
+ text_embeddings = text_embeddings.tile([1, num_images_per_prompt, 1])
+ text_embeddings = text_embeddings.reshape([bs_embed * num_images_per_prompt, seq_len, -1])
+
+ # get unconditional embeddings for classifier free guidance
+ if do_classifier_free_guidance:
+ uncond_tokens: List[str]
+ if negative_prompt is None:
+ uncond_tokens = [""] * batch_size
+ elif type(prompt) is not type(negative_prompt):
+ raise TypeError(
+ f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
+ f" {type(prompt)}."
+ )
+ elif isinstance(negative_prompt, str):
+ uncond_tokens = [negative_prompt]
+ elif batch_size != len(negative_prompt):
+ raise ValueError(
+ f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
+ f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
+ " the batch size of `prompt`."
+ )
+ else:
+ uncond_tokens = negative_prompt
+
+ max_length = text_input_ids.shape[-1]
+ uncond_input = self.tokenizer(
+ uncond_tokens,
+ padding="max_length",
+ max_length=max_length,
+ truncation=True,
+ return_tensors="pd",
+ )
+
+ uncond_embeddings = self.bert(uncond_input.input_ids)
+ uncond_embeddings = uncond_embeddings[0]
+
+ # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
+ seq_len = uncond_embeddings.shape[1]
+ uncond_embeddings = uncond_embeddings.tile([1, num_images_per_prompt, 1])
+ uncond_embeddings = uncond_embeddings.reshape([batch_size * num_images_per_prompt, seq_len, -1])
+
+ # For classifier free guidance, we need to do two forward passes.
+ # Here we concatenate the unconditional and text embeddings into a single batch
+ # to avoid doing two forward passes
+ text_embeddings = paddle.concat([uncond_embeddings, text_embeddings])
+
+ return text_embeddings
+
+ def decode_latents(self, latents):
+ latents = 1 / 0.18215 * latents
+ image = self.vqvae.decode(latents).sample
+ image = (image / 2 + 0.5).clip(0, 1)
+ # we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
+ image = image.transpose([0, 2, 3, 1]).cast("float32").numpy()
+ return image
+
+ def prepare_extra_step_kwargs(self, generator, eta):
+ # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
+ # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
+ # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
+ # and should be between [0, 1]
+
+ accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
+ extra_step_kwargs = {}
+ if accepts_eta:
+ extra_step_kwargs["eta"] = eta
+
+ # check if the scheduler accepts generator
+ accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
+ if accepts_generator:
+ extra_step_kwargs["generator"] = generator
+ return extra_step_kwargs
+
+ def check_inputs(self, prompt, height, width, callback_steps):
+ if not isinstance(prompt, str) and not isinstance(prompt, list):
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
+
+ if height % 8 != 0 or width % 8 != 0:
+ raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
+
+ if (callback_steps is None) or (
+ callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
+ ):
+ raise ValueError(
+ f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
+ f" {type(callback_steps)}."
+ )
+
+ def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, generator, latents=None):
+ shape = [batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor]
+ if isinstance(generator, list) and len(generator) != batch_size:
+ raise ValueError(
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
+ )
+
+ if latents is None:
+ if isinstance(generator, list):
+ shape = [
+ 1,
+ ] + shape[1:]
+ latents = [paddle.randn(shape, generator=generator[i], dtype=dtype) for i in range(batch_size)]
+ latents = paddle.concat(latents, axis=0)
+ else:
+ latents = paddle.randn(shape, generator=generator, dtype=dtype)
+ else:
+ if latents.shape != shape:
+ raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}")
+
+ # scale the initial noise by the standard deviation required by the scheduler
+ latents = latents * self.scheduler.init_noise_sigma
+ return latents
+
+ @paddle.no_grad()
+ def __call__(
+ self,
+ prompt: Union[str, List[str]],
+ height: int = 256,
+ width: int = 256,
+ num_inference_steps: int = 50,
+ guidance_scale: float = 1.0,
+ negative_prompt: Optional[Union[str, List[str]]] = None,
+ num_images_per_prompt: Optional[int] = 1,
+ eta: float = 0.0,
+ generator: Optional[Union[paddle.Generator, List[paddle.Generator]]] = None,
+ latents: Optional[paddle.Tensor] = None,
+ output_type: Optional[str] = "pil",
+ return_dict: bool = True,
+ callback: Optional[Callable[[int, int, paddle.Tensor], None]] = None,
+ callback_steps: Optional[int] = 1,
+ ):
+ r"""
+ Function invoked when calling the pipeline for generation.
+
+ Args:
+ prompt (`str` or `List[str]`):
+ The prompt or prompts to guide the image generation.
+ height (`int`, *optional*, defaults to 256:
+ The height in pixels of the generated image.
+ width (`int`, *optional*, defaults to 256:
+ The width in pixels of the generated image.
+ num_inference_steps (`int`, *optional*, defaults to 50):
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
+ expense of slower inference.
+ guidance_scale (`float`, *optional*, defaults to 1.0):
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
+ usually at the expense of lower image quality.
+ negative_prompt (`str` or `List[str]`, *optional*):
+ The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
+ if `guidance_scale` is less than `1`).
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
+ The number of images to generate per prompt.
+ eta (`float`, *optional*, defaults to 0.0):
+ Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
+ [`schedulers.DDIMScheduler`], will be ignored for others.
+ generator (`paddle.Generator`, *optional*):
+ One or a list of paddle generator(s) to make generation deterministic.
+ latents (`paddle.Tensor`, *optional*):
+ Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
+ tensor will ge generated by sampling using the supplied random `generator`.
+ output_type (`str`, *optional*, defaults to `"pil"`):
+ The output format of the generate image. Choose between
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
+ return_dict (`bool`, *optional*, defaults to `True`):
+ Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
+ plain tuple.
+ callback (`Callable`, *optional*):
+ A function that will be called every `callback_steps` steps during inference. The function will be
+ called with the following arguments: `callback(step: int, timestep: int, latents: paddle.Tensor)`.
+ callback_steps (`int`, *optional*, defaults to 1):
+ The frequency at which the `callback` function will be called. If not specified, the callback will be
+ called at every step.
+
+ Returns:
+ [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
+ [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
+ When returning a tuple, the first element is a list with the generated images, and the second element is a
+ list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
+ (nsfw) content, according to the `safety_checker`.
+ """
+ # 1. Check inputs. Raise error if not correct
+ self.check_inputs(prompt, height, width, callback_steps)
+
+ # 2. Define call parameters
+ batch_size = 1 if isinstance(prompt, str) else len(prompt)
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
+ # corresponds to doing no classifier free guidance.
+ do_classifier_free_guidance = guidance_scale > 1.0
+
+ # 3. Encode input prompt
+ text_embeddings = self._encode_prompt(
+ prompt, num_images_per_prompt, do_classifier_free_guidance, negative_prompt
+ )
+
+ # 4. Prepare timesteps
+ self.scheduler.set_timesteps(num_inference_steps)
+ timesteps = self.scheduler.timesteps
+
+ # 5. Prepare latent variables
+ num_channels_latents = self.unet.in_channels
+ latents = self.prepare_latents(
+ batch_size * num_images_per_prompt,
+ num_channels_latents,
+ height,
+ width,
+ text_embeddings.dtype,
+ generator,
+ latents,
+ )
+
+ # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
+ extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
+
+ # 7. Denoising loop
+ num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
+ for i, t in enumerate(timesteps):
+ # expand the latents if we are doing classifier free guidance
+ latent_model_input = paddle.concat([latents] * 2) if do_classifier_free_guidance else latents
+ latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
+
+ # predict the noise residual
+ noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample
+
+ # perform guidance
+ if do_classifier_free_guidance:
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
+ noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
+
+ # compute the previous noisy sample x_t -> x_t-1
+ latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
+
+ # call the callback, if provided
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
+ progress_bar.update()
+ if callback is not None and i % callback_steps == 0:
+ callback(i, t, latents)
+
+ # 8. Post-processing
+ image = self.decode_latents(latents)
+
+ # 9. Convert to PIL
+ if output_type == "pil":
+ image = self.numpy_to_pil(image)
+
+ if not return_dict:
+ return (image,)
+
+ return ImagePipelineOutput(images=image)
diff --git a/ppdiffusers/pipelines/latent_diffusion/pipeline_latent_diffusion_superresolution.py b/ppdiffusers/pipelines/latent_diffusion/pipeline_latent_diffusion_superresolution.py
new file mode 100644
index 0000000000000000000000000000000000000000..ded1ddc59edaa6c42e360335ad5feecada3c337e
--- /dev/null
+++ b/ppdiffusers/pipelines/latent_diffusion/pipeline_latent_diffusion_superresolution.py
@@ -0,0 +1,174 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+# Copyright 2022 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import inspect
+from typing import List, Optional, Tuple, Union
+
+import numpy as np
+import paddle
+import PIL
+
+from ...models import UNet2DModel, VQModel
+from ...pipeline_utils import DiffusionPipeline, ImagePipelineOutput
+from ...schedulers import (
+ DDIMScheduler,
+ DPMSolverMultistepScheduler,
+ EulerAncestralDiscreteScheduler,
+ EulerDiscreteScheduler,
+ LMSDiscreteScheduler,
+ PNDMScheduler,
+)
+from ...utils import PIL_INTERPOLATION
+
+
+def preprocess(image):
+ w, h = image.size
+ w, h = map(lambda x: x - x % 32, (w, h)) # resize to integer multiple of 32
+ image = image.resize((w, h), resample=PIL_INTERPOLATION["lanczos"])
+ image = np.array(image).astype(np.float32) / 255.0
+ image = image[None].transpose(0, 3, 1, 2)
+ image = paddle.to_tensor(image)
+ return 2.0 * image - 1.0
+
+
+class LDMSuperResolutionPipeline(DiffusionPipeline):
+ r"""
+ A pipeline for image super-resolution using Latent
+
+ This class inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
+ library implements for all the pipelines (such as downloading or saving, running on a particular xxxx, etc.)
+
+ Parameters:
+ vqvae ([`VQModel`]):
+ Vector-quantized (VQ) VAE Model to encode and decode images to and from latent representations.
+ unet ([`UNet2DModel`]): U-Net architecture to denoise the encoded image.
+ scheduler ([`SchedulerMixin`]):
+ A scheduler to be used in combination with `unet` to denoise the encoded image latens. Can be one of
+ [`DDIMScheduler`], [`LMSDiscreteScheduler`], [`EulerDiscreteScheduler`],
+ [`EulerAncestralDiscreteScheduler`], [`DPMSolverMultistepScheduler`], or [`PNDMScheduler`].
+ """
+
+ def __init__(
+ self,
+ vqvae: VQModel,
+ unet: UNet2DModel,
+ scheduler: Union[
+ DDIMScheduler,
+ PNDMScheduler,
+ LMSDiscreteScheduler,
+ EulerDiscreteScheduler,
+ EulerAncestralDiscreteScheduler,
+ DPMSolverMultistepScheduler,
+ ],
+ ):
+ super().__init__()
+ self.register_modules(vqvae=vqvae, unet=unet, scheduler=scheduler)
+
+ @paddle.no_grad()
+ def __call__(
+ self,
+ image: Union[paddle.Tensor, PIL.Image.Image],
+ batch_size: Optional[int] = 1,
+ num_inference_steps: Optional[int] = 100,
+ eta: Optional[float] = 0.0,
+ generator: Optional[Union[paddle.Generator, List[paddle.Generator]]] = None,
+ output_type: Optional[str] = "pil",
+ return_dict: bool = True,
+ **kwargs,
+ ) -> Union[Tuple, ImagePipelineOutput]:
+ r"""
+ Args:
+ image (`paddle.Tensor` or `PIL.Image.Image`):
+ `Image`, or tensor representing an image batch, that will be used as the starting point for the
+ process.
+ batch_size (`int`, *optional*, defaults to 1):
+ Number of images to generate.
+ num_inference_steps (`int`, *optional*, defaults to 100):
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
+ expense of slower inference.
+ eta (`float`, *optional*, defaults to 0.0):
+ Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
+ [`schedulers.DDIMScheduler`], will be ignored for others.
+ generator (`paddle.Generator`, *optional*):
+ One or a list of paddle generator(s) to make generation deterministic.
+ output_type (`str`, *optional*, defaults to `"pil"`):
+ The output format of the generate image. Choose between
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~pipeline_utils.ImagePipelineOutput`] instead of a plain tuple.
+
+ Returns:
+ [`~pipeline_utils.ImagePipelineOutput`] or `tuple`: [`~pipelines.utils.ImagePipelineOutput`] if
+ `return_dict` is True, otherwise a `tuple. When returning a tuple, the first element is a list with the
+ generated images.
+ """
+
+ if isinstance(image, PIL.Image.Image):
+ batch_size = 1
+ elif isinstance(image, paddle.Tensor):
+ batch_size = image.shape[0]
+ else:
+ raise ValueError(f"`image` has to be of type `PIL.Image.Image` or `paddle.Tensor` but is {type(image)}")
+
+ if isinstance(image, PIL.Image.Image):
+ image = preprocess(image)
+
+ height, width = image.shape[-2:]
+
+ # in_channels should be 6: 3 for latents, 3 for low resolution image
+ latents_shape = (batch_size, self.unet.in_channels // 2, height, width)
+ latents_dtype = next(self.unet.named_parameters())[1].dtype
+
+ latents = paddle.randn(latents_shape, generator=generator, dtype=latents_dtype)
+
+ image = image.cast(latents_dtype)
+
+ self.scheduler.set_timesteps(num_inference_steps)
+ timesteps_tensor = self.scheduler.timesteps
+
+ # scale the initial noise by the standard deviation required by the scheduler
+ latents = latents * self.scheduler.init_noise_sigma
+
+ # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature.
+ # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
+ # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
+ # and should be between [0, 1]
+ accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
+ extra_kwargs = {}
+ if accepts_eta:
+ extra_kwargs["eta"] = eta
+
+ for t in self.progress_bar(timesteps_tensor):
+ # concat latents and low resolution image in the channel dimension.
+ latents_input = paddle.concat([latents, image], axis=1)
+ latents_input = self.scheduler.scale_model_input(latents_input, t)
+ # predict the noise residual
+ noise_pred = self.unet(latents_input, t).sample
+ # compute the previous noisy sample x_t -> x_t-1
+ latents = self.scheduler.step(noise_pred, t, latents, **extra_kwargs).prev_sample
+
+ # decode the image latents with the VQVAE
+ image = self.vqvae.decode(latents).sample
+ image = paddle.clip(image, -1.0, 1.0)
+ image = image / 2 + 0.5
+ image = image.transpose([0, 2, 3, 1]).cast("float32").numpy()
+
+ if output_type == "pil":
+ image = self.numpy_to_pil(image)
+
+ if not return_dict:
+ return (image,)
+
+ return ImagePipelineOutput(images=image)
diff --git a/ppdiffusers/pipelines/latent_diffusion_uncond/__init__.py b/ppdiffusers/pipelines/latent_diffusion_uncond/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..3286d84f41f239bbd3662100aaa85257c47cbab5
--- /dev/null
+++ b/ppdiffusers/pipelines/latent_diffusion_uncond/__init__.py
@@ -0,0 +1,17 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+# Copyright 2022 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+# flake8: noqa
+from .pipeline_latent_diffusion_uncond import LDMPipeline
diff --git a/ppdiffusers/pipelines/latent_diffusion_uncond/__pycache__/__init__.cpython-37.pyc b/ppdiffusers/pipelines/latent_diffusion_uncond/__pycache__/__init__.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..44b0fe33801e62837a988429cda3f463b7d25569
Binary files /dev/null and b/ppdiffusers/pipelines/latent_diffusion_uncond/__pycache__/__init__.cpython-37.pyc differ
diff --git a/ppdiffusers/pipelines/latent_diffusion_uncond/__pycache__/pipeline_latent_diffusion_uncond.cpython-37.pyc b/ppdiffusers/pipelines/latent_diffusion_uncond/__pycache__/pipeline_latent_diffusion_uncond.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..02b262bdc2130e1189497eb7978b45a4b66cd9ff
Binary files /dev/null and b/ppdiffusers/pipelines/latent_diffusion_uncond/__pycache__/pipeline_latent_diffusion_uncond.cpython-37.pyc differ
diff --git a/ppdiffusers/pipelines/latent_diffusion_uncond/pipeline_latent_diffusion_uncond.py b/ppdiffusers/pipelines/latent_diffusion_uncond/pipeline_latent_diffusion_uncond.py
new file mode 100644
index 0000000000000000000000000000000000000000..22480b446c355c338389acbe97710f675b624263
--- /dev/null
+++ b/ppdiffusers/pipelines/latent_diffusion_uncond/pipeline_latent_diffusion_uncond.py
@@ -0,0 +1,110 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+# Copyright 2022 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import inspect
+from typing import List, Optional, Tuple, Union
+
+import paddle
+
+from ...models import UNet2DModel, VQModel
+from ...pipeline_utils import DiffusionPipeline, ImagePipelineOutput
+from ...schedulers import DDIMScheduler
+
+
+class LDMPipeline(DiffusionPipeline):
+ r"""
+ This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
+ library implements for all the pipelines (such as downloading or saving, running on a particular xxxx, etc.)
+
+ Parameters:
+ vqvae ([`VQModel`]):
+ Vector-quantized (VQ) Model to encode and decode images to and from latent representations.
+ unet ([`UNet2DModel`]): U-Net architecture to denoise the encoded image latents.
+ scheduler ([`SchedulerMixin`]):
+ [`DDIMScheduler`] is to be used in combination with `unet` to denoise the encoded image latents.
+ """
+
+ def __init__(self, vqvae: VQModel, unet: UNet2DModel, scheduler: DDIMScheduler):
+ super().__init__()
+ self.register_modules(vqvae=vqvae, unet=unet, scheduler=scheduler)
+
+ @paddle.no_grad()
+ def __call__(
+ self,
+ batch_size: int = 1,
+ generator: Optional[Union[paddle.Generator, List[paddle.Generator]]] = None,
+ eta: float = 0.0,
+ num_inference_steps: int = 50,
+ output_type: Optional[str] = "pil",
+ return_dict: bool = True,
+ **kwargs,
+ ) -> Union[Tuple, ImagePipelineOutput]:
+ r"""
+ Args:
+ batch_size (`int`, *optional*, defaults to 1):
+ Number of images to generate.
+ generator (`paddle.Generator`, *optional*):
+ One or a list of paddle generator(s) to make generation deterministic.
+ num_inference_steps (`int`, *optional*, defaults to 50):
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
+ expense of slower inference.
+ output_type (`str`, *optional*, defaults to `"pil"`):
+ The output format of the generate image. Choose between
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
+ return_dict (`bool`, *optional*, defaults to `True`):
+ Whether or not to return a [`~pipeline_utils.ImagePipelineOutput`] instead of a plain tuple.
+
+ Returns:
+ [`~pipeline_utils.ImagePipelineOutput`] or `tuple`: [`~pipelines.utils.ImagePipelineOutput`] if
+ `return_dict` is True, otherwise a `tuple. When returning a tuple, the first element is a list with the
+ generated images.
+ """
+
+ latents = paddle.randn(
+ (batch_size, self.unet.in_channels, self.unet.sample_size, self.unet.sample_size),
+ generator=generator,
+ )
+
+ # scale the initial noise by the standard deviation required by the scheduler
+ latents = latents * self.scheduler.init_noise_sigma
+
+ self.scheduler.set_timesteps(num_inference_steps)
+
+ # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
+ accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
+
+ extra_kwargs = {}
+ if accepts_eta:
+ extra_kwargs["eta"] = eta
+
+ for t in self.progress_bar(self.scheduler.timesteps):
+ latent_model_input = self.scheduler.scale_model_input(latents, t)
+ # predict the noise residual
+ noise_prediction = self.unet(latent_model_input, t).sample
+ # compute the previous noisy sample x_t -> x_t-1
+ latents = self.scheduler.step(noise_prediction, t, latents, **extra_kwargs).prev_sample
+
+ # decode the image latents with the VAE
+ image = self.vqvae.decode(latents).sample
+
+ image = (image / 2 + 0.5).clip(0, 1)
+ image = image.transpose([0, 2, 3, 1]).cast("float32").numpy()
+ if output_type == "pil":
+ image = self.numpy_to_pil(image)
+
+ if not return_dict:
+ return (image,)
+
+ return ImagePipelineOutput(images=image)
diff --git a/ppdiffusers/pipelines/paint_by_example/__init__.py b/ppdiffusers/pipelines/paint_by_example/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..d59a0762e24976d31ee6ea77fa54b66963aa9709
--- /dev/null
+++ b/ppdiffusers/pipelines/paint_by_example/__init__.py
@@ -0,0 +1,26 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from dataclasses import dataclass
+from typing import List, Optional, Union
+
+import numpy as np
+import PIL
+from PIL import Image
+
+from ...utils import is_paddle_available, is_paddlenlp_available
+
+if is_paddlenlp_available() and is_paddle_available():
+ from .image_encoder import PaintByExampleImageEncoder
+ from .pipeline_paint_by_example import PaintByExamplePipeline
diff --git a/ppdiffusers/pipelines/paint_by_example/__pycache__/__init__.cpython-37.pyc b/ppdiffusers/pipelines/paint_by_example/__pycache__/__init__.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..6797a504caabf189593e81d4858d483e967391cc
Binary files /dev/null and b/ppdiffusers/pipelines/paint_by_example/__pycache__/__init__.cpython-37.pyc differ
diff --git a/ppdiffusers/pipelines/paint_by_example/__pycache__/image_encoder.cpython-37.pyc b/ppdiffusers/pipelines/paint_by_example/__pycache__/image_encoder.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..e278138a96467bd69d87cd47c57b9453ae4b177e
Binary files /dev/null and b/ppdiffusers/pipelines/paint_by_example/__pycache__/image_encoder.cpython-37.pyc differ
diff --git a/ppdiffusers/pipelines/paint_by_example/__pycache__/pipeline_paint_by_example.cpython-37.pyc b/ppdiffusers/pipelines/paint_by_example/__pycache__/pipeline_paint_by_example.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..4bd56d7d43da9e06def498f50bf2227b6a015b51
Binary files /dev/null and b/ppdiffusers/pipelines/paint_by_example/__pycache__/pipeline_paint_by_example.cpython-37.pyc differ
diff --git a/ppdiffusers/pipelines/paint_by_example/image_encoder.py b/ppdiffusers/pipelines/paint_by_example/image_encoder.py
new file mode 100644
index 0000000000000000000000000000000000000000..d1e8a75d08af45542e27869668c27e922c0c41e6
--- /dev/null
+++ b/ppdiffusers/pipelines/paint_by_example/image_encoder.py
@@ -0,0 +1,75 @@
+# Copyright 2022 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+import paddle
+from paddle import nn
+
+from paddlenlp.transformers import (
+ CLIPPretrainedModel,
+ CLIPVisionConfig,
+ CLIPVisionModel,
+)
+
+from ...models.attention import BasicTransformerBlock
+from ...utils import logging
+
+logger = logging.get_logger(__name__) # pylint: disable=invalid-name
+
+
+class PaintByExampleImageEncoder(CLIPPretrainedModel):
+ config_class = CLIPVisionConfig
+
+ def __init__(self, config: CLIPVisionConfig):
+ super().__init__(config)
+ self.projection_dim = config.projection_dim
+
+ self.model = CLIPVisionModel(config)
+
+ self.mapper = PaintByExampleMapper(config)
+ self.final_layer_norm = nn.LayerNorm(config.hidden_size)
+ self.proj_out = nn.Linear(config.hidden_size, self.projection_dim)
+
+ # uncondition for scaling
+ self.uncond_vector = self.create_parameter(
+ [1, 1, self.projection_dim],
+ dtype=paddle.get_default_dtype(),
+ default_initializer=nn.initializer.Assign(paddle.rand((1, 1, self.projection_dim))),
+ )
+
+ def forward(self, pixel_values):
+ clip_output = self.model(pixel_values=pixel_values)
+ latent_states = clip_output.pooler_output
+ latent_states = self.mapper(latent_states[:, None])
+ latent_states = self.final_layer_norm(latent_states)
+ latent_states = self.proj_out(latent_states)
+ return latent_states
+
+
+class PaintByExampleMapper(nn.Layer):
+ def __init__(self, config):
+ super().__init__()
+ num_layers = (config.num_hidden_layers + 1) // 5
+ hid_size = config.hidden_size
+ num_heads = 1
+ self.blocks = nn.LayerList(
+ [
+ BasicTransformerBlock(hid_size, num_heads, hid_size, activation_fn="gelu", attention_bias=True)
+ for _ in range(num_layers)
+ ]
+ )
+
+ def forward(self, hidden_states):
+ for block in self.blocks:
+ hidden_states = block(hidden_states)
+
+ return hidden_states
diff --git a/ppdiffusers/pipelines/paint_by_example/pipeline_paint_by_example.py b/ppdiffusers/pipelines/paint_by_example/pipeline_paint_by_example.py
new file mode 100644
index 0000000000000000000000000000000000000000..390011bd816ce8616090968b43d07299cf939505
--- /dev/null
+++ b/ppdiffusers/pipelines/paint_by_example/pipeline_paint_by_example.py
@@ -0,0 +1,536 @@
+# Copyright 2022 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import inspect
+from typing import Callable, List, Optional, Union
+
+import numpy as np
+import paddle
+import PIL
+
+from paddlenlp.transformers import CLIPFeatureExtractor
+
+from ...models import AutoencoderKL, UNet2DConditionModel
+from ...pipeline_utils import DiffusionPipeline
+from ...schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler
+from ...utils import logging
+from ..stable_diffusion import StableDiffusionPipelineOutput
+from ..stable_diffusion.safety_checker import StableDiffusionSafetyChecker
+from .image_encoder import PaintByExampleImageEncoder
+
+logger = logging.get_logger(__name__) # pylint: disable=invalid-name
+
+
+def prepare_mask_and_masked_image(image, mask):
+ """
+ Prepares a pair (image, mask) to be consumed by the Paint by Example pipeline. This means that those inputs will be
+ converted to ``paddle.Tensor`` with shapes ``batch x channels x height x width`` where ``channels`` is ``3`` for the
+ ``image`` and ``1`` for the ``mask``.
+
+ The ``image`` will be converted to ``torch.float32`` and normalized to be in ``[-1, 1]``. The ``mask`` will be
+ binarized (``mask > 0.5``) and cast to ``torch.float32`` too.
+
+ Args:
+ image (Union[np.array, PIL.Image, paddle.Tensor]): The image to inpaint.
+ It can be a ``PIL.Image``, or a ``height x width x 3`` ``np.array`` or a ``channels x height x width``
+ ``paddle.Tensor`` or a ``batch x channels x height x width`` ``paddle.Tensor``.
+ mask (_type_): The mask to apply to the image, i.e. regions to inpaint.
+ It can be a ``PIL.Image``, or a ``height x width`` ``np.array`` or a ``1 x height x width``
+ ``paddle.Tensor`` or a ``batch x 1 x height x width`` ``paddle.Tensor``.
+
+
+ Raises:
+ ValueError: ``paddle.Tensor`` images should be in the ``[-1, 1]`` range. ValueError: ``paddle.Tensor`` mask
+ should be in the ``[0, 1]`` range. ValueError: ``mask`` and ``image`` should have the same spatial dimensions.
+ TypeError: ``mask`` is a ``paddle.Tensor`` but ``image`` is not
+ (ot the other way around).
+
+ Returns:
+ tuple[paddle.Tensor]: The pair (mask, masked_image) as ``paddle.Tensor`` with 4
+ dimensions: ``batch x channels x height x width``.
+ """
+ if isinstance(image, paddle.Tensor):
+ if not isinstance(mask, paddle.Tensor):
+ raise TypeError(f"`image` is a paddle.Tensor but `mask` (type: {type(mask)} is not")
+
+ # Batch single image
+ if image.ndim == 3:
+ assert image.shape[0] == 3, "Image outside a batch should be of shape (3, H, W)"
+ image = image.unsqueeze(0)
+
+ # Batch and add channel dim for single mask
+ if mask.ndim == 2:
+ mask = mask.unsqueeze(0).unsqueeze(0)
+
+ # Batch single mask or add channel dim
+ if mask.ndim == 3:
+ # Batched mask
+ if mask.shape[0] == image.shape[0]:
+ mask = mask.unsqueeze(1)
+ else:
+ mask = mask.unsqueeze(0)
+
+ assert image.ndim == 4 and mask.ndim == 4, "Image and Mask must have 4 dimensions"
+ assert image.shape[-2:] == mask.shape[-2:], "Image and Mask must have the same spatial dimensions"
+ assert image.shape[0] == mask.shape[0], "Image and Mask must have the same batch size"
+ assert mask.shape[1] == 1, "Mask image must have a single channel"
+
+ # Check image is in [-1, 1]
+ if image.min() < -1 or image.max() > 1:
+ raise ValueError("Image should be in [-1, 1] range")
+
+ # Check mask is in [0, 1]
+ if mask.min() < 0 or mask.max() > 1:
+ raise ValueError("Mask should be in [0, 1] range")
+
+ # paint-by-example inverses the mask
+ mask = 1 - mask
+
+ # Binarize mask
+ mask[mask < 0.5] = 0
+ mask[mask >= 0.5] = 1
+
+ # Image as float32
+ image = image.cast(paddle.float32)
+ elif isinstance(mask, paddle.Tensor):
+ raise TypeError(f"`mask` is a paddle.Tensor but `image` (type: {type(image)} is not")
+ else:
+ if isinstance(image, PIL.Image.Image):
+ image = [image]
+
+ image = np.concatenate([np.array(i.convert("RGB"))[None, :] for i in image], axis=0)
+ image = image.transpose(0, 3, 1, 2)
+ image = paddle.to_tensor(image).cast(paddle.float32) / 127.5 - 1.0
+
+ # preprocess mask
+ if isinstance(mask, PIL.Image.Image):
+ mask = [mask]
+
+ mask = np.concatenate([np.array(m.convert("L"))[None, None, :] for m in mask], axis=0)
+ mask = mask.astype(np.float32) / 255.0
+
+ # paint-by-example inverses the mask
+ mask = 1 - mask
+
+ mask[mask < 0.5] = 0
+ mask[mask >= 0.5] = 1
+ mask = paddle.to_tensor(mask)
+
+ masked_image = image * mask
+
+ return mask, masked_image
+
+
+class PaintByExamplePipeline(DiffusionPipeline):
+ r"""
+ Pipeline for text-guided image inpainting using Stable Diffusion. *This is an experimental feature*.
+
+ This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
+ library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
+
+ Args:
+ vae ([`AutoencoderKL`]):
+ Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
+ text_encoder ([`CLIPTextModel`]):
+ Frozen text-encoder. Stable Diffusion uses the text portion of
+ [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
+ the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
+ tokenizer (`CLIPTokenizer`):
+ Tokenizer of class
+ [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
+ unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
+ scheduler ([`SchedulerMixin`]):
+ A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
+ [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
+ safety_checker ([`StableDiffusionSafetyChecker`]):
+ Classification module that estimates whether generated images could be considered offensive or harmful.
+ Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
+ feature_extractor ([`CLIPFeatureExtractor`]):
+ Model that extracts features from generated images to be used as inputs for the `safety_checker`.
+ """
+ _optional_components = ["safety_checker"]
+
+ def __init__(
+ self,
+ vae: AutoencoderKL,
+ image_encoder: PaintByExampleImageEncoder,
+ unet: UNet2DConditionModel,
+ scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler],
+ safety_checker: StableDiffusionSafetyChecker,
+ feature_extractor: CLIPFeatureExtractor,
+ requires_safety_checker: bool = False,
+ ):
+ super().__init__()
+
+ self.register_modules(
+ vae=vae,
+ image_encoder=image_encoder,
+ unet=unet,
+ scheduler=scheduler,
+ safety_checker=safety_checker,
+ feature_extractor=feature_extractor,
+ )
+ self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
+ self.register_to_config(requires_safety_checker=requires_safety_checker)
+
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker
+ def run_safety_checker(self, image, dtype):
+ if self.safety_checker is not None:
+ safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pd")
+ image, has_nsfw_concept = self.safety_checker(
+ images=image, clip_input=safety_checker_input.pixel_values.cast(dtype)
+ )
+ else:
+ has_nsfw_concept = None
+ return image, has_nsfw_concept
+
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
+ def prepare_extra_step_kwargs(self, generator, eta):
+ # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
+ # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
+ # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
+ # and should be between [0, 1]
+
+ accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
+ extra_step_kwargs = {}
+ if accepts_eta:
+ extra_step_kwargs["eta"] = eta
+
+ # check if the scheduler accepts generator
+ accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
+ if accepts_generator:
+ extra_step_kwargs["generator"] = generator
+ return extra_step_kwargs
+
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents
+ def decode_latents(self, latents):
+ latents = 1 / 0.18215 * latents
+ image = self.vae.decode(latents).sample
+ image = (image / 2 + 0.5).clip(0, 1)
+ # we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
+ image = image.transpose([0, 2, 3, 1]).cast("float32").numpy()
+ return image
+
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_image_variation.StableDiffusionImageVariationPipeline.check_inputs
+ def check_inputs(self, image, height, width, callback_steps):
+ if (
+ not isinstance(image, paddle.Tensor)
+ and not isinstance(image, PIL.Image.Image)
+ and not isinstance(image, list)
+ ):
+ raise ValueError(
+ "`image` has to be of type `paddle.Tensor` or `PIL.Image.Image` or `List[PIL.Image.Image]` but is"
+ f" {type(image)}"
+ )
+
+ if height % 8 != 0 or width % 8 != 0:
+ raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
+
+ if (callback_steps is None) or (
+ callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
+ ):
+ raise ValueError(
+ f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
+ f" {type(callback_steps)}."
+ )
+
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
+ def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, generator, latents=None):
+ shape = [batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor]
+ if isinstance(generator, list) and len(generator) != batch_size:
+ raise ValueError(
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
+ )
+
+ if latents is None:
+ if isinstance(generator, list):
+ shape = [
+ 1,
+ ] + shape[1:]
+ latents = [paddle.randn(shape, generator=generator[i], dtype=dtype) for i in range(batch_size)]
+ latents = paddle.concat(latents, axis=0)
+ else:
+ latents = paddle.randn(shape, generator=generator, dtype=dtype)
+ else:
+ if latents.shape != shape:
+ raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}")
+
+ # scale the initial noise by the standard deviation required by the scheduler
+ latents = latents * self.scheduler.init_noise_sigma
+ return latents
+
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_inpaint.StableDiffusionInpaintPipeline.prepare_mask_latents
+ def prepare_mask_latents(
+ self, mask, masked_image, batch_size, height, width, dtype, generator, do_classifier_free_guidance
+ ):
+ # resize the mask to latents shape as we concatenate the mask to the latents
+ # we do that before converting to dtype to avoid breaking in case we're using cpu_offload
+ # and half precision
+ mask = paddle.nn.functional.interpolate(
+ mask, size=(height // self.vae_scale_factor, width // self.vae_scale_factor)
+ )
+ mask = mask.cast(dtype)
+
+ masked_image = masked_image.cast(dtype)
+
+ # encode the mask image into latents space so we can concatenate it to the latents
+ if isinstance(generator, list):
+ masked_image_latents = [
+ self.vae.encode(masked_image[i : i + 1]).latent_dist.sample(generator=generator[i])
+ for i in range(batch_size)
+ ]
+ masked_image_latents = paddle.concat(masked_image_latents, axis=0)
+ else:
+ masked_image_latents = self.vae.encode(masked_image).latent_dist.sample(generator=generator)
+ masked_image_latents = 0.18215 * masked_image_latents
+
+ # duplicate mask and masked_image_latents for each generation per prompt, using mps friendly method
+ if mask.shape[0] < batch_size:
+ if not batch_size % mask.shape[0] == 0:
+ raise ValueError(
+ "The passed mask and the required batch size don't match. Masks are supposed to be duplicated to"
+ f" a total batch size of {batch_size}, but {mask.shape[0]} masks were passed. Make sure the number"
+ " of masks that you pass is divisible by the total requested batch size."
+ )
+ mask = mask.tile([batch_size // mask.shape[0], 1, 1, 1])
+ if masked_image_latents.shape[0] < batch_size:
+ if not batch_size % masked_image_latents.shape[0] == 0:
+ raise ValueError(
+ "The passed images and the required batch size don't match. Images are supposed to be duplicated"
+ f" to a total batch size of {batch_size}, but {masked_image_latents.shape[0]} images were passed."
+ " Make sure the number of images that you pass is divisible by the total requested batch size."
+ )
+ masked_image_latents = masked_image_latents.tile([batch_size // masked_image_latents.shape[0], 1, 1, 1])
+
+ mask = paddle.concat([mask] * 2) if do_classifier_free_guidance else mask
+ masked_image_latents = (
+ paddle.concat([masked_image_latents] * 2) if do_classifier_free_guidance else masked_image_latents
+ )
+
+ # aligning device to prevent device errors when concating it with the latent model input
+ masked_image_latents = masked_image_latents.cast(dtype)
+ return mask, masked_image_latents
+
+ def _encode_image(self, image, num_images_per_prompt, do_classifier_free_guidance):
+ # dtype = self.image_encoder.dtype
+
+ if not isinstance(image, paddle.Tensor):
+ image = self.feature_extractor(images=image, return_tensors="pd").pixel_values
+
+ # image = image.cast(dtype)
+ image_embeddings = self.image_encoder(image)
+
+ # duplicate image embeddings for each generation per prompt, using mps friendly method
+ bs_embed, seq_len, _ = image_embeddings.shape
+ image_embeddings = image_embeddings.tile([1, num_images_per_prompt, 1])
+ image_embeddings = image_embeddings.reshape([bs_embed * num_images_per_prompt, seq_len, -1])
+
+ if do_classifier_free_guidance:
+ uncond_embeddings = self.image_encoder.uncond_vector
+ uncond_embeddings = uncond_embeddings.tile([1, image_embeddings.shape[0], 1])
+ uncond_embeddings = uncond_embeddings.reshape([bs_embed * num_images_per_prompt, 1, -1])
+
+ # For classifier free guidance, we need to do two forward passes.
+ # Here we concatenate the unconditional and text embeddings into a single batch
+ # to avoid doing two forward passes
+ image_embeddings = paddle.concat([uncond_embeddings, image_embeddings])
+
+ return image_embeddings
+
+ @paddle.no_grad()
+ def __call__(
+ self,
+ example_image: Union[paddle.Tensor, PIL.Image.Image],
+ image: Union[paddle.Tensor, PIL.Image.Image],
+ mask_image: Union[paddle.Tensor, PIL.Image.Image],
+ height: Optional[int] = None,
+ width: Optional[int] = None,
+ num_inference_steps: int = 50,
+ guidance_scale: float = 5.0,
+ num_images_per_prompt: Optional[int] = 1,
+ eta: float = 0.0,
+ generator: Optional[Union[paddle.Generator, List[paddle.Generator]]] = None,
+ latents: Optional[paddle.Tensor] = None,
+ output_type: Optional[str] = "pil",
+ return_dict: bool = True,
+ callback: Optional[Callable[[int, int, paddle.Tensor], None]] = None,
+ callback_steps: Optional[int] = 1,
+ ):
+ r"""
+ Function invoked when calling the pipeline for generation.
+
+ Args:
+ example_image (`paddle.Tensor` or `PIL.Image.Image` or `List[PIL.Image.Image]`):
+ The exemplar image to guide the image generation.
+ image (`paddle.Tensor` or `PIL.Image.Image` or `List[PIL.Image.Image]`):
+ `Image`, or tensor representing an image batch which will be inpainted, *i.e.* parts of the image will
+ be masked out with `mask_image` and repainted according to `prompt`.
+ mask_image (`paddle.Tensor` or `PIL.Image.Image` or `List[PIL.Image.Image]`):
+ `Image`, or tensor representing an image batch, to mask `image`. White pixels in the mask will be
+ repainted, while black pixels will be preserved. If `mask_image` is a PIL image, it will be converted
+ to a single channel (luminance) before use. If it's a tensor, it should contain one color channel (L)
+ instead of 3, so the expected shape would be `(B, H, W, 1)`.
+ height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
+ The height in pixels of the generated image.
+ width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
+ The width in pixels of the generated image.
+ num_inference_steps (`int`, *optional*, defaults to 50):
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
+ expense of slower inference.
+ guidance_scale (`float`, *optional*, defaults to 7.5):
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
+ usually at the expense of lower image quality.
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
+ The number of images to generate per prompt.
+ eta (`float`, *optional*, defaults to 0.0):
+ Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
+ [`schedulers.DDIMScheduler`], will be ignored for others.
+ generator (`torch.Generator`, *optional*):
+ One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
+ to make generation deterministic.
+ latents (`paddle.Tensor`, *optional*):
+ Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
+ tensor will ge generated by sampling using the supplied random `generator`.
+ output_type (`str`, *optional*, defaults to `"pil"`):
+ The output format of the generate image. Choose between
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
+ return_dict (`bool`, *optional*, defaults to `True`):
+ Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
+ plain tuple.
+ callback (`Callable`, *optional*):
+ A function that will be called every `callback_steps` steps during inference. The function will be
+ called with the following arguments: `callback(step: int, timestep: int, latents: paddle.Tensor)`.
+ callback_steps (`int`, *optional*, defaults to 1):
+ The frequency at which the `callback` function will be called. If not specified, the callback will be
+ called at every step.
+
+ Returns:
+ [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
+ [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
+ When returning a tuple, the first element is a list with the generated images, and the second element is a
+ list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
+ (nsfw) content, according to the `safety_checker`.
+ """
+ # 1. Define call parameters
+ if isinstance(image, PIL.Image.Image):
+ batch_size = 1
+ elif isinstance(image, list):
+ batch_size = len(image)
+ else:
+ batch_size = image.shape[0]
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
+ # corresponds to doing no classifier free guidance.
+ do_classifier_free_guidance = guidance_scale > 1.0
+
+ # 2. Preprocess mask and image
+ mask, masked_image = prepare_mask_and_masked_image(image, mask_image)
+ height, width = masked_image.shape[-2:]
+
+ # 3. Check inputs
+ self.check_inputs(example_image, height, width, callback_steps)
+
+ # 4. Encode input image
+ image_embeddings = self._encode_image(example_image, num_images_per_prompt, do_classifier_free_guidance)
+
+ # 5. set timesteps
+ self.scheduler.set_timesteps(num_inference_steps)
+ timesteps = self.scheduler.timesteps
+
+ # 6. Prepare latent variables
+ num_channels_latents = self.vae.config.latent_channels
+ latents = self.prepare_latents(
+ batch_size * num_images_per_prompt,
+ num_channels_latents,
+ height,
+ width,
+ image_embeddings.dtype,
+ generator,
+ latents,
+ )
+
+ # 7. Prepare mask latent variables
+ mask, masked_image_latents = self.prepare_mask_latents(
+ mask,
+ masked_image,
+ batch_size * num_images_per_prompt,
+ height,
+ width,
+ image_embeddings.dtype,
+ generator,
+ do_classifier_free_guidance,
+ )
+
+ # 8. Check that sizes of mask, masked image and latents match
+ num_channels_mask = mask.shape[1]
+ num_channels_masked_image = masked_image_latents.shape[1]
+ if num_channels_latents + num_channels_mask + num_channels_masked_image != self.unet.config.in_channels:
+ raise ValueError(
+ f"Incorrect configuration settings! The config of `pipeline.unet`: {self.unet.config} expects"
+ f" {self.unet.config.in_channels} but received `num_channels_latents`: {num_channels_latents} +"
+ f" `num_channels_mask`: {num_channels_mask} + `num_channels_masked_image`: {num_channels_masked_image}"
+ f" = {num_channels_latents+num_channels_masked_image+num_channels_mask}. Please verify the config of"
+ " `pipeline.unet` or your `mask_image` or `image` input."
+ )
+
+ # 9. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
+ extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
+
+ # 10. Denoising loop
+ num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
+ for i, t in enumerate(timesteps):
+ # expand the latents if we are doing classifier free guidance
+ latent_model_input = paddle.concat([latents] * 2) if do_classifier_free_guidance else latents
+
+ # concat latents, mask, masked_image_latents in the channel dimension
+ latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
+ latent_model_input = paddle.concat([latent_model_input, masked_image_latents, mask], axis=1)
+
+ # predict the noise residual
+ noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=image_embeddings).sample
+
+ # perform guidance
+ if do_classifier_free_guidance:
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
+ noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
+
+ # compute the previous noisy sample x_t -> x_t-1
+ latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
+
+ # call the callback, if provided
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
+ progress_bar.update()
+ if callback is not None and i % callback_steps == 0:
+ callback(i, t, latents)
+
+ # 11. Post-processing
+ image = self.decode_latents(latents)
+
+ # 12. Run safety checker
+ image, has_nsfw_concept = self.run_safety_checker(image, image_embeddings.dtype)
+
+ # 13. Convert to PIL
+ if output_type == "pil":
+ image = self.numpy_to_pil(image)
+
+ if not return_dict:
+ return (image, has_nsfw_concept)
+
+ return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
diff --git a/ppdiffusers/pipelines/pndm/__init__.py b/ppdiffusers/pipelines/pndm/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..132f733020f3f30109687fc5e7b1bd53ac83eed1
--- /dev/null
+++ b/ppdiffusers/pipelines/pndm/__init__.py
@@ -0,0 +1,17 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+# Copyright 2022 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+# flake8: noqa
+from .pipeline_pndm import PNDMPipeline
diff --git a/ppdiffusers/pipelines/pndm/__pycache__/__init__.cpython-37.pyc b/ppdiffusers/pipelines/pndm/__pycache__/__init__.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..cd78542803664dc5c841d76b09cbe46963af0ffc
Binary files /dev/null and b/ppdiffusers/pipelines/pndm/__pycache__/__init__.cpython-37.pyc differ
diff --git a/ppdiffusers/pipelines/pndm/__pycache__/pipeline_pndm.cpython-37.pyc b/ppdiffusers/pipelines/pndm/__pycache__/pipeline_pndm.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..ca53e48a1850574c5f04336294dea26982019d45
Binary files /dev/null and b/ppdiffusers/pipelines/pndm/__pycache__/pipeline_pndm.cpython-37.pyc differ
diff --git a/ppdiffusers/pipelines/pndm/pipeline_pndm.py b/ppdiffusers/pipelines/pndm/pipeline_pndm.py
new file mode 100644
index 0000000000000000000000000000000000000000..b3f5ef0ea4ce1a1b6d5472b7a7f195d42bd5932e
--- /dev/null
+++ b/ppdiffusers/pipelines/pndm/pipeline_pndm.py
@@ -0,0 +1,94 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+# Copyright 2022 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from typing import List, Optional, Tuple, Union
+
+import paddle
+
+from ...models import UNet2DModel
+from ...pipeline_utils import DiffusionPipeline, ImagePipelineOutput
+from ...schedulers import PNDMScheduler
+
+
+class PNDMPipeline(DiffusionPipeline):
+ r"""
+ This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
+ library implements for all the pipelines (such as downloading or saving, running on a particular xxxx, etc.)
+
+ Parameters:
+ unet (`UNet2DModel`): U-Net architecture to denoise the encoded image latents.
+ scheduler ([`SchedulerMixin`]):
+ The `PNDMScheduler` to be used in combination with `unet` to denoise the encoded image.
+ """
+
+ unet: UNet2DModel
+ scheduler: PNDMScheduler
+
+ def __init__(self, unet: UNet2DModel, scheduler: PNDMScheduler):
+ super().__init__()
+ self.register_modules(unet=unet, scheduler=scheduler)
+
+ @paddle.no_grad()
+ def __call__(
+ self,
+ batch_size: int = 1,
+ num_inference_steps: int = 50,
+ generator: Optional[Union[paddle.Generator, List[paddle.Generator]]] = None,
+ output_type: Optional[str] = "pil",
+ return_dict: bool = True,
+ **kwargs,
+ ) -> Union[ImagePipelineOutput, Tuple]:
+ r"""
+ Args:
+ batch_size (`int`, `optional`, defaults to 1): The number of images to generate.
+ num_inference_steps (`int`, `optional`, defaults to 50):
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
+ expense of slower inference.
+ generator (`paddle.Generator`, `optional`): A [paddle
+ generator](to make generation deterministic.
+ output_type (`str`, `optional`, defaults to `"pil"`): The output format of the generate image. Choose
+ between [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
+ return_dict (`bool`, `optional`, defaults to `True`): Whether or not to return a
+ [`~pipeline_utils.ImagePipelineOutput`] instead of a plain tuple.
+
+ Returns:
+ [`~pipeline_utils.ImagePipelineOutput`] or `tuple`: [`~pipelines.utils.ImagePipelineOutput`] if
+ `return_dict` is True, otherwise a `tuple. When returning a tuple, the first element is a list with the
+ generated images.
+ """
+ # For more information on the sampling method you can take a look at Algorithm 2 of
+ # the official paper: https://arxiv.org/pdf/2202.09778.pdf
+
+ # Sample gaussian noise to begin loop
+ image = paddle.randn(
+ (batch_size, self.unet.in_channels, self.unet.sample_size, self.unet.sample_size),
+ generator=generator,
+ )
+
+ self.scheduler.set_timesteps(num_inference_steps)
+ for t in self.progress_bar(self.scheduler.timesteps):
+ model_output = self.unet(image, t).sample
+
+ image = self.scheduler.step(model_output, t, image).prev_sample
+
+ image = (image / 2 + 0.5).clip(0, 1)
+ image = image.transpose([0, 2, 3, 1]).numpy()
+ if output_type == "pil":
+ image = self.numpy_to_pil(image)
+
+ if not return_dict:
+ return (image,)
+
+ return ImagePipelineOutput(images=image)
diff --git a/ppdiffusers/pipelines/repaint/__init__.py b/ppdiffusers/pipelines/repaint/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..4ae60c60bd825398fb4b6a0817e0288a21d21f13
--- /dev/null
+++ b/ppdiffusers/pipelines/repaint/__init__.py
@@ -0,0 +1,16 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+# Copyright 2022 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+# flake8: noqa
+from .pipeline_repaint import RePaintPipeline
diff --git a/ppdiffusers/pipelines/repaint/__pycache__/__init__.cpython-37.pyc b/ppdiffusers/pipelines/repaint/__pycache__/__init__.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..d86cf99414eff2d51d3c2c493a3837fa4d3a482f
Binary files /dev/null and b/ppdiffusers/pipelines/repaint/__pycache__/__init__.cpython-37.pyc differ
diff --git a/ppdiffusers/pipelines/repaint/__pycache__/pipeline_repaint.cpython-37.pyc b/ppdiffusers/pipelines/repaint/__pycache__/pipeline_repaint.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..c68e1a6bcba0176a0fb549e7b8a3b6eb1cf75eb1
Binary files /dev/null and b/ppdiffusers/pipelines/repaint/__pycache__/pipeline_repaint.cpython-37.pyc differ
diff --git a/ppdiffusers/pipelines/repaint/pipeline_repaint.py b/ppdiffusers/pipelines/repaint/pipeline_repaint.py
new file mode 100644
index 0000000000000000000000000000000000000000..d73c1c7b5623fdb115260d0d0f12d03064e80ddf
--- /dev/null
+++ b/ppdiffusers/pipelines/repaint/pipeline_repaint.py
@@ -0,0 +1,172 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+# Copyright 2022 ETH Zurich Computer Vision Lab and The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from typing import List, Optional, Tuple, Union
+
+import numpy as np
+import paddle
+import PIL
+
+from ...models import UNet2DModel
+from ...pipeline_utils import DiffusionPipeline, ImagePipelineOutput
+from ...schedulers import RePaintScheduler
+from ...utils import PIL_INTERPOLATION, logging
+
+logger = logging.get_logger(__name__) # pylint: disable=invalid-name
+
+
+# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.preprocess
+def _preprocess_image(image: Union[List, PIL.Image.Image, paddle.Tensor]):
+ if isinstance(image, paddle.Tensor):
+ return image
+ elif isinstance(image, PIL.Image.Image):
+ image = [image]
+
+ if isinstance(image[0], PIL.Image.Image):
+ w, h = image[0].size
+ w, h = map(lambda x: x - x % 32, (w, h)) # resize to integer multiple of 32
+
+ image = [np.array(i.resize((w, h), resample=PIL_INTERPOLATION["lanczos"]))[None, :] for i in image]
+ image = np.concatenate(image, axis=0)
+ image = np.array(image).astype(np.float32) / 255.0
+ image = image.transpose(0, 3, 1, 2)
+ image = 2.0 * image - 1.0
+ image = paddle.to_tensor(image)
+ elif isinstance(image[0], paddle.Tensor):
+ image = paddle.concat(image, axis=0)
+ return image
+
+
+def _preprocess_mask(mask: Union[List, PIL.Image.Image, paddle.Tensor]):
+ if isinstance(mask, paddle.Tensor):
+ return mask
+ elif isinstance(mask, PIL.Image.Image):
+ mask = [mask]
+
+ if isinstance(mask[0], PIL.Image.Image):
+ w, h = mask[0].size
+ w, h = map(lambda x: x - x % 32, (w, h)) # resize to integer multiple of 32
+ mask = [np.array(m.convert("L").resize((w, h), resample=PIL_INTERPOLATION["nearest"]))[None, :] for m in mask]
+ mask = np.concatenate(mask, axis=0)
+ mask = mask.astype(np.float32) / 255.0
+ mask[mask < 0.5] = 0
+ mask[mask >= 0.5] = 1
+ mask = paddle.to_tensor(mask)
+ elif isinstance(mask[0], paddle.Tensor):
+ mask = paddle.concat(mask, axis=0)
+ return mask
+
+
+class RePaintPipeline(DiffusionPipeline):
+ unet: UNet2DModel
+ scheduler: RePaintScheduler
+
+ def __init__(self, unet, scheduler):
+ super().__init__()
+ self.register_modules(unet=unet, scheduler=scheduler)
+
+ @paddle.no_grad()
+ def __call__(
+ self,
+ image: Union[paddle.Tensor, PIL.Image.Image],
+ mask_image: Union[paddle.Tensor, PIL.Image.Image],
+ num_inference_steps: int = 250,
+ eta: float = 0.0,
+ jump_length: int = 10,
+ jump_n_sample: int = 10,
+ generator: Optional[Union[paddle.Generator, List[paddle.Generator]]] = None,
+ output_type: Optional[str] = "pil",
+ return_dict: bool = True,
+ ) -> Union[ImagePipelineOutput, Tuple]:
+ r"""
+ Args:
+ image (`paddle.Tensor` or `PIL.Image.Image`):
+ The original image to inpaint on.
+ mask_image (`paddle.Tensor` or `PIL.Image.Image`):
+ The mask_image where 0.0 values define which part of the original image to inpaint (change).
+ num_inference_steps (`int`, *optional*, defaults to 1000):
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
+ expense of slower inference.
+ eta (`float`):
+ The weight of noise for added noise in a diffusion step. Its value is between 0.0 and 1.0 - 0.0 is DDIM
+ and 1.0 is DDPM scheduler respectively.
+ jump_length (`int`, *optional*, defaults to 10):
+ The number of steps taken forward in time before going backward in time for a single jump ("j" in
+ RePaint paper). Take a look at Figure 9 and 10 in https://arxiv.org/pdf/2201.09865.pdf.
+ jump_n_sample (`int`, *optional*, defaults to 10):
+ The number of times we will make forward time jump for a given chosen time sample. Take a look at
+ Figure 9 and 10 in https://arxiv.org/pdf/2201.09865.pdf.
+ generator (`paddle.Generator`, *optional*):
+ One or a list of paddle generator(s) to make generation deterministic.
+ output_type (`str`, *optional*, defaults to `"pil"`):
+ The output format of the generate image. Choose between
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
+ return_dict (`bool`, *optional*, defaults to `True`):
+ Whether or not to return a [`~pipeline_utils.ImagePipelineOutput`] instead of a plain tuple.
+
+ Returns:
+ [`~pipeline_utils.ImagePipelineOutput`] or `tuple`: [`~pipelines.utils.ImagePipelineOutput`] if
+ `return_dict` is True, otherwise a `tuple. When returning a tuple, the first element is a list with the
+ generated images.
+ """
+ original_image = _preprocess_image(image)
+ original_image = original_image.cast(self.unet.dtype)
+ mask_image = _preprocess_mask(mask_image)
+ mask_image = mask_image.cast(self.unet.dtype)
+
+ batch_size = original_image.shape[0]
+
+ # sample gaussian noise to begin the loop
+ if isinstance(generator, list) and len(generator) != batch_size:
+ raise ValueError(
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
+ )
+
+ image_shape = original_image.shape
+ if isinstance(generator, list):
+ shape = (1,) + image_shape[1:]
+ image = [paddle.randn(shape, generator=generator[i], dtype=self.unet.dtype) for i in range(batch_size)]
+ image = paddle.concat(image, axis=0)
+ else:
+ image = paddle.randn(image_shape, generator=generator, dtype=self.unet.dtype)
+
+ # set step values
+ self.scheduler.set_timesteps(num_inference_steps, jump_length, jump_n_sample)
+ self.scheduler.eta = eta
+
+ t_last = self.scheduler.timesteps[0] + 1
+ generator = generator[0] if isinstance(generator, list) else generator
+ for i, t in enumerate(self.progress_bar(self.scheduler.timesteps)):
+ if t < t_last:
+ # predict the noise residual
+ model_output = self.unet(image, t).sample
+ # compute previous image: x_t -> x_t-1
+ image = self.scheduler.step(model_output, t, image, original_image, mask_image, generator).prev_sample
+
+ else:
+ # compute the reverse: x_t-1 -> x_t
+ image = self.scheduler.undo_step(image, t_last, generator)
+ t_last = t
+
+ image = (image / 2 + 0.5).clip(0, 1)
+ image = image.transpose([0, 2, 3, 1]).numpy()
+ if output_type == "pil":
+ image = self.numpy_to_pil(image)
+
+ if not return_dict:
+ return (image,)
+
+ return ImagePipelineOutput(images=image)
diff --git a/ppdiffusers/pipelines/score_sde_ve/__init__.py b/ppdiffusers/pipelines/score_sde_ve/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..3e3a6ffbb48c17c664b0815139ada8db8bb33cad
--- /dev/null
+++ b/ppdiffusers/pipelines/score_sde_ve/__init__.py
@@ -0,0 +1,17 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+# Copyright 2022 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+# flake8: noqa
+from .pipeline_score_sde_ve import ScoreSdeVePipeline
diff --git a/ppdiffusers/pipelines/score_sde_ve/__pycache__/__init__.cpython-37.pyc b/ppdiffusers/pipelines/score_sde_ve/__pycache__/__init__.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..87b510ff5621c58d78cd7af5d226dfec6ed79621
Binary files /dev/null and b/ppdiffusers/pipelines/score_sde_ve/__pycache__/__init__.cpython-37.pyc differ
diff --git a/ppdiffusers/pipelines/score_sde_ve/__pycache__/pipeline_score_sde_ve.cpython-37.pyc b/ppdiffusers/pipelines/score_sde_ve/__pycache__/pipeline_score_sde_ve.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..b34ee5176fd1f3ecdb42de8ab8acb8706fe04531
Binary files /dev/null and b/ppdiffusers/pipelines/score_sde_ve/__pycache__/pipeline_score_sde_ve.cpython-37.pyc differ
diff --git a/ppdiffusers/pipelines/score_sde_ve/pipeline_score_sde_ve.py b/ppdiffusers/pipelines/score_sde_ve/pipeline_score_sde_ve.py
new file mode 100644
index 0000000000000000000000000000000000000000..58f340bf2b849005a49efebbfb8bed4d56d694d6
--- /dev/null
+++ b/ppdiffusers/pipelines/score_sde_ve/pipeline_score_sde_ve.py
@@ -0,0 +1,100 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+# Copyright 2022 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from typing import List, Optional, Tuple, Union
+
+import paddle
+
+from ...models import UNet2DModel
+from ...pipeline_utils import DiffusionPipeline, ImagePipelineOutput
+from ...schedulers import ScoreSdeVeScheduler
+
+
+class ScoreSdeVePipeline(DiffusionPipeline):
+ r"""
+ Parameters:
+ This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
+ library implements for all the pipelines (such as downloading or saving, running on a particular xxxx, etc.)
+ unet ([`UNet2DModel`]): U-Net architecture to denoise the encoded image. scheduler ([`SchedulerMixin`]):
+ The [`ScoreSdeVeScheduler`] scheduler to be used in combination with `unet` to denoise the encoded image.
+ """
+ unet: UNet2DModel
+ scheduler: ScoreSdeVeScheduler
+
+ def __init__(self, unet: UNet2DModel, scheduler: DiffusionPipeline):
+ super().__init__()
+ self.register_modules(unet=unet, scheduler=scheduler)
+
+ @paddle.no_grad()
+ def __call__(
+ self,
+ batch_size: int = 1,
+ num_inference_steps: int = 2000,
+ generator: Optional[Union[paddle.Generator, List[paddle.Generator]]] = None,
+ output_type: Optional[str] = "pil",
+ return_dict: bool = True,
+ **kwargs,
+ ) -> Union[ImagePipelineOutput, Tuple]:
+ r"""
+ Args:
+ batch_size (`int`, *optional*, defaults to 1):
+ The number of images to generate.
+ generator (`paddle.Generator`, *optional*):
+ One or a list of paddle generator(s) to make generation deterministic.
+ output_type (`str`, *optional*, defaults to `"pil"`):
+ The output format of the generate image. Choose between
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
+ return_dict (`bool`, *optional*, defaults to `True`):
+ Whether or not to return a [`~pipeline_utils.ImagePipelineOutput`] instead of a plain tuple.
+
+ Returns:
+ [`~pipeline_utils.ImagePipelineOutput`] or `tuple`: [`~pipelines.utils.ImagePipelineOutput`] if
+ `return_dict` is True, otherwise a `tuple. When returning a tuple, the first element is a list with the
+ generated images.
+ """
+
+ img_size = self.unet.config.sample_size
+ shape = (batch_size, 3, img_size, img_size)
+
+ model = self.unet
+
+ sample = paddle.randn(shape, generator=generator) * self.scheduler.init_noise_sigma
+
+ self.scheduler.set_timesteps(num_inference_steps)
+ self.scheduler.set_sigmas(num_inference_steps)
+
+ for i, t in enumerate(self.progress_bar(self.scheduler.timesteps)):
+ sigma_t = self.scheduler.sigmas[i] * paddle.ones((shape[0],))
+
+ # correction step
+ for _ in range(self.scheduler.config.correct_steps):
+ model_output = self.unet(sample, sigma_t).sample
+ sample = self.scheduler.step_correct(model_output, sample, generator=generator).prev_sample
+
+ # prediction step
+ model_output = model(sample, sigma_t).sample
+ output = self.scheduler.step_pred(model_output, t, sample, generator=generator)
+
+ sample, sample_mean = output.prev_sample, output.prev_sample_mean
+
+ sample = sample_mean.clip(0, 1)
+ sample = sample.transpose([0, 2, 3, 1]).numpy()
+ if output_type == "pil":
+ sample = self.numpy_to_pil(sample)
+
+ if not return_dict:
+ return (sample,)
+
+ return ImagePipelineOutput(images=sample)
diff --git a/ppdiffusers/pipelines/stable_diffusion/__init__.py b/ppdiffusers/pipelines/stable_diffusion/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..4b0bdca2c3fa80c64e9743800710b3c4b3eb5d16
--- /dev/null
+++ b/ppdiffusers/pipelines/stable_diffusion/__init__.py
@@ -0,0 +1,107 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+# Copyright 2022 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+# flake8: noqa
+
+from dataclasses import dataclass
+from typing import List, Optional, Union
+
+import numpy as np
+import PIL
+
+from ...utils import (
+ BaseOutput,
+ OptionalDependencyNotAvailable,
+ is_fastdeploy_available,
+ is_k_diffusion_available,
+ is_paddle_available,
+ is_paddlenlp_available,
+)
+
+
+@dataclass
+class StableDiffusionPipelineOutput(BaseOutput):
+ """
+ Output class for Stable Diffusion pipelines.
+
+ Args:
+ images (`List[PIL.Image.Image]` or `np.ndarray`)
+ List of denoised PIL images of length `batch_size` or numpy array of shape `(batch_size, height, width,
+ num_channels)`. PIL images or numpy array present the denoised images of the diffusion pipeline.
+ nsfw_content_detected (`List[bool]`)
+ List of flags denoting whether the corresponding generated image likely represents "not-safe-for-work"
+ (nsfw) content, or `None` if safety checking could not be performed.
+ """
+
+ images: Union[List[PIL.Image.Image], np.ndarray]
+ nsfw_content_detected: Optional[List[bool]]
+
+
+try:
+ if not (is_paddlenlp_available() and is_paddle_available()):
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ from ...utils.dummy_paddle_and_paddlenlp_objects import (
+ StableDiffusionDepth2ImgPipeline,
+ )
+else:
+ from .pipeline_stable_diffusion_depth2img import StableDiffusionDepth2ImgPipeline
+
+if is_paddlenlp_available() and is_paddle_available():
+ from .pipeline_cycle_diffusion import CycleDiffusionPipeline
+ from .pipeline_stable_diffusion import StableDiffusionPipeline
+ from .pipeline_stable_diffusion_all_in_one import StableDiffusionPipelineAllinOne
+ from .pipeline_stable_diffusion_img2img import StableDiffusionImg2ImgPipeline
+ from .pipeline_stable_diffusion_inpaint import StableDiffusionInpaintPipeline
+ from .pipeline_stable_diffusion_inpaint_legacy import (
+ StableDiffusionInpaintPipelineLegacy,
+ )
+ from .pipeline_stable_diffusion_mega import StableDiffusionMegaPipeline
+ from .pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline
+ from .safety_checker import StableDiffusionSafetyChecker
+
+try:
+ if not (is_paddlenlp_available() and is_paddle_available()):
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ from ...utils.dummy_paddle_and_paddlenlp_objects import (
+ StableDiffusionImageVariationPipeline,
+ )
+else:
+ from .pipeline_stable_diffusion_image_variation import (
+ StableDiffusionImageVariationPipeline,
+ )
+
+try:
+ if not (is_paddle_available() and is_paddlenlp_available() and is_k_diffusion_available()):
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ from ...utils.dummy_paddle_and_paddlenlp_and_k_diffusion_objects import * # noqa F403
+else:
+ from .pipeline_stable_diffusion_k_diffusion import StableDiffusionKDiffusionPipeline
+
+if is_paddlenlp_available() and is_fastdeploy_available():
+ from .pipeline_fastdeploy_stable_diffusion import FastDeployStableDiffusionPipeline
+ from .pipeline_fastdeploy_stable_diffusion_img2img import (
+ FastDeployStableDiffusionImg2ImgPipeline,
+ )
+ from .pipeline_fastdeploy_stable_diffusion_inpaint import (
+ FastDeployStableDiffusionInpaintPipeline,
+ )
+ from .pipeline_fastdeploy_stable_diffusion_inpaint_legacy import (
+ FastDeployStableDiffusionInpaintPipelineLegacy,
+ )
+ from .pipeline_fastdeploy_stable_diffusion_mega import (
+ FastDeployStableDiffusionMegaPipeline,
+ )
diff --git a/ppdiffusers/pipelines/stable_diffusion/__pycache__/__init__.cpython-37.pyc b/ppdiffusers/pipelines/stable_diffusion/__pycache__/__init__.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..15651adf764bb99a28e0615e5d43b4241506df88
Binary files /dev/null and b/ppdiffusers/pipelines/stable_diffusion/__pycache__/__init__.cpython-37.pyc differ
diff --git a/ppdiffusers/pipelines/stable_diffusion/__pycache__/pipeline_cycle_diffusion.cpython-37.pyc b/ppdiffusers/pipelines/stable_diffusion/__pycache__/pipeline_cycle_diffusion.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..9615b90a7c9b6101094a7c98bbb27487798cdd27
Binary files /dev/null and b/ppdiffusers/pipelines/stable_diffusion/__pycache__/pipeline_cycle_diffusion.cpython-37.pyc differ
diff --git a/ppdiffusers/pipelines/stable_diffusion/__pycache__/pipeline_stable_diffusion.cpython-37.pyc b/ppdiffusers/pipelines/stable_diffusion/__pycache__/pipeline_stable_diffusion.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..e202297950d074b2f021c68f463437cdbc154912
Binary files /dev/null and b/ppdiffusers/pipelines/stable_diffusion/__pycache__/pipeline_stable_diffusion.cpython-37.pyc differ
diff --git a/ppdiffusers/pipelines/stable_diffusion/__pycache__/pipeline_stable_diffusion_all_in_one.cpython-37.pyc b/ppdiffusers/pipelines/stable_diffusion/__pycache__/pipeline_stable_diffusion_all_in_one.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..a58b10b888002677d341509d1338b3f7a2a790ab
Binary files /dev/null and b/ppdiffusers/pipelines/stable_diffusion/__pycache__/pipeline_stable_diffusion_all_in_one.cpython-37.pyc differ
diff --git a/ppdiffusers/pipelines/stable_diffusion/__pycache__/pipeline_stable_diffusion_depth2img.cpython-37.pyc b/ppdiffusers/pipelines/stable_diffusion/__pycache__/pipeline_stable_diffusion_depth2img.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..db3e5f9f92affb64e537315364d20221b8fcb0fc
Binary files /dev/null and b/ppdiffusers/pipelines/stable_diffusion/__pycache__/pipeline_stable_diffusion_depth2img.cpython-37.pyc differ
diff --git a/ppdiffusers/pipelines/stable_diffusion/__pycache__/pipeline_stable_diffusion_image_variation.cpython-37.pyc b/ppdiffusers/pipelines/stable_diffusion/__pycache__/pipeline_stable_diffusion_image_variation.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..76076b41f96ff17c502c6e86ba5c061d1f58ff0f
Binary files /dev/null and b/ppdiffusers/pipelines/stable_diffusion/__pycache__/pipeline_stable_diffusion_image_variation.cpython-37.pyc differ
diff --git a/ppdiffusers/pipelines/stable_diffusion/__pycache__/pipeline_stable_diffusion_img2img.cpython-37.pyc b/ppdiffusers/pipelines/stable_diffusion/__pycache__/pipeline_stable_diffusion_img2img.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..5280748fb27043dc0544af1cfcadd5b2b50528e7
Binary files /dev/null and b/ppdiffusers/pipelines/stable_diffusion/__pycache__/pipeline_stable_diffusion_img2img.cpython-37.pyc differ
diff --git a/ppdiffusers/pipelines/stable_diffusion/__pycache__/pipeline_stable_diffusion_inpaint.cpython-37.pyc b/ppdiffusers/pipelines/stable_diffusion/__pycache__/pipeline_stable_diffusion_inpaint.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..c5eb812cac350eb16b6b3a6b82d736e902003eee
Binary files /dev/null and b/ppdiffusers/pipelines/stable_diffusion/__pycache__/pipeline_stable_diffusion_inpaint.cpython-37.pyc differ
diff --git a/ppdiffusers/pipelines/stable_diffusion/__pycache__/pipeline_stable_diffusion_inpaint_legacy.cpython-37.pyc b/ppdiffusers/pipelines/stable_diffusion/__pycache__/pipeline_stable_diffusion_inpaint_legacy.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..a7d8d8311acf1d76a4b676d6aed5154504d5b82b
Binary files /dev/null and b/ppdiffusers/pipelines/stable_diffusion/__pycache__/pipeline_stable_diffusion_inpaint_legacy.cpython-37.pyc differ
diff --git a/ppdiffusers/pipelines/stable_diffusion/__pycache__/pipeline_stable_diffusion_k_diffusion.cpython-37.pyc b/ppdiffusers/pipelines/stable_diffusion/__pycache__/pipeline_stable_diffusion_k_diffusion.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..f4fa352b4e1fbf08dd57cb192fb420f5a2642655
Binary files /dev/null and b/ppdiffusers/pipelines/stable_diffusion/__pycache__/pipeline_stable_diffusion_k_diffusion.cpython-37.pyc differ
diff --git a/ppdiffusers/pipelines/stable_diffusion/__pycache__/pipeline_stable_diffusion_mega.cpython-37.pyc b/ppdiffusers/pipelines/stable_diffusion/__pycache__/pipeline_stable_diffusion_mega.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..03dd345c4e3fa2588b2b4553bd5f94d3980b4c1b
Binary files /dev/null and b/ppdiffusers/pipelines/stable_diffusion/__pycache__/pipeline_stable_diffusion_mega.cpython-37.pyc differ
diff --git a/ppdiffusers/pipelines/stable_diffusion/__pycache__/pipeline_stable_diffusion_upscale.cpython-37.pyc b/ppdiffusers/pipelines/stable_diffusion/__pycache__/pipeline_stable_diffusion_upscale.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..c98bbb2447de30954ee23724acd7b406afd3acf7
Binary files /dev/null and b/ppdiffusers/pipelines/stable_diffusion/__pycache__/pipeline_stable_diffusion_upscale.cpython-37.pyc differ
diff --git a/ppdiffusers/pipelines/stable_diffusion/__pycache__/safety_checker.cpython-37.pyc b/ppdiffusers/pipelines/stable_diffusion/__pycache__/safety_checker.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..e25b78376ec0fc145a27ce8a3c1b35b482964d0b
Binary files /dev/null and b/ppdiffusers/pipelines/stable_diffusion/__pycache__/safety_checker.cpython-37.pyc differ
diff --git a/ppdiffusers/pipelines/stable_diffusion/pipeline_cycle_diffusion.py b/ppdiffusers/pipelines/stable_diffusion/pipeline_cycle_diffusion.py
new file mode 100644
index 0000000000000000000000000000000000000000..a352efdc98e0aad330fca4f490a0616e5175c873
--- /dev/null
+++ b/ppdiffusers/pipelines/stable_diffusion/pipeline_cycle_diffusion.py
@@ -0,0 +1,631 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+# Copyright 2022 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import inspect
+from typing import Callable, List, Optional, Union
+
+import numpy as np
+import paddle
+import PIL
+from packaging import version
+
+from paddlenlp.transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
+
+from ...configuration_utils import FrozenDict
+from ...models import AutoencoderKL, UNet2DConditionModel
+from ...pipeline_utils import DiffusionPipeline
+from ...schedulers import DDIMScheduler
+from ...utils import PIL_INTERPOLATION, deprecate, logging
+from . import StableDiffusionPipelineOutput
+from .safety_checker import StableDiffusionSafetyChecker
+
+logger = logging.get_logger(__name__) # pylint: disable=invalid-name
+
+
+# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.preprocess
+def preprocess(image):
+ if isinstance(image, paddle.Tensor):
+ return image
+ elif isinstance(image, PIL.Image.Image):
+ image = [image]
+
+ if isinstance(image[0], PIL.Image.Image):
+ w, h = image[0].size
+ w, h = map(lambda x: x - x % 32, (w, h)) # resize to integer multiple of 32
+
+ image = [np.array(i.resize((w, h), resample=PIL_INTERPOLATION["lanczos"]))[None, :] for i in image]
+ image = np.concatenate(image, axis=0)
+ image = np.array(image).astype(np.float32) / 255.0
+ image = image.transpose(0, 3, 1, 2)
+ image = 2.0 * image - 1.0
+ image = paddle.to_tensor(image)
+ elif isinstance(image[0], paddle.Tensor):
+ image = paddle.concat(image, axis=0)
+ return image
+
+
+def posterior_sample(scheduler, latents, timestep, clean_latents, generator, eta):
+ # 1. get previous step value (=t-1)
+ prev_timestep = timestep - scheduler.config.num_train_timesteps // scheduler.num_inference_steps
+
+ if prev_timestep <= 0:
+ return clean_latents
+
+ # 2. compute alphas, betas
+ alpha_prod_t = scheduler.alphas_cumprod[timestep]
+ alpha_prod_t_prev = (
+ scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else scheduler.final_alpha_cumprod
+ )
+
+ variance = scheduler._get_variance(timestep, prev_timestep)
+ std_dev_t = eta * variance ** (0.5)
+
+ # direction pointing to x_t
+ e_t = (latents - alpha_prod_t ** (0.5) * clean_latents) / (1 - alpha_prod_t) ** (0.5)
+ dir_xt = (1.0 - alpha_prod_t_prev - std_dev_t**2) ** (0.5) * e_t
+ noise = std_dev_t * paddle.randn(clean_latents.shape, dtype=clean_latents.dtype, generator=generator)
+ prev_latents = alpha_prod_t_prev ** (0.5) * clean_latents + dir_xt + noise
+
+ return prev_latents
+
+
+def compute_noise(scheduler, prev_latents, latents, timestep, noise_pred, eta):
+ # 1. get previous step value (=t-1)
+ prev_timestep = timestep - scheduler.config.num_train_timesteps // scheduler.num_inference_steps
+
+ # 2. compute alphas, betas
+ alpha_prod_t = scheduler.alphas_cumprod[timestep]
+ alpha_prod_t_prev = (
+ scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else scheduler.final_alpha_cumprod
+ )
+
+ beta_prod_t = 1 - alpha_prod_t
+
+ # 3. compute predicted original sample from predicted noise also called
+ # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
+ pred_original_sample = (latents - beta_prod_t ** (0.5) * noise_pred) / alpha_prod_t ** (0.5)
+
+ # 4. Clip "predicted x_0"
+ if scheduler.config.clip_sample:
+ pred_original_sample = pred_original_sample.clip(-1, 1)
+
+ # 5. compute variance: "sigma_t(η)" -> see formula (16)
+ # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1)
+ variance = scheduler._get_variance(timestep, prev_timestep)
+ std_dev_t = eta * variance ** (0.5)
+
+ # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
+ pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t**2) ** (0.5) * noise_pred
+
+ noise = (prev_latents - (alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction)) / (
+ variance ** (0.5) * eta
+ )
+ return noise
+
+
+class CycleDiffusionPipeline(DiffusionPipeline):
+ r"""
+ Pipeline for text-guided image to image generation using Stable Diffusion.
+
+ This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
+ library implements for all the pipelines (such as downloading or saving, running on a particular xxxx, etc.)
+
+ Args:
+ vae ([`AutoencoderKL`]):
+ Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
+ text_encoder ([`CLIPTextModel`]):
+ Frozen text-encoder. Stable Diffusion uses the text portion of
+ [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
+ the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
+ tokenizer (`CLIPTokenizer`):
+ Tokenizer of class
+ [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
+ unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
+ scheduler ([`SchedulerMixin`]):
+ A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
+ [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
+ safety_checker ([`StableDiffusionSafetyChecker`]):
+ Classification module that estimates whether generated images could be considered offensive or harmful.
+ Please, refer to the [model card](https://huggingface.co/CompVis/stable-diffusion-v1-4) for details.
+ feature_extractor ([`CLIPFeatureExtractor`]):
+ Model that extracts features from generated images to be used as inputs for the `safety_checker`.
+ """
+ _optional_components = ["safety_checker", "feature_extractor"]
+
+ def __init__(
+ self,
+ vae: AutoencoderKL,
+ text_encoder: CLIPTextModel,
+ tokenizer: CLIPTokenizer,
+ unet: UNet2DConditionModel,
+ scheduler: DDIMScheduler,
+ safety_checker: StableDiffusionSafetyChecker,
+ feature_extractor: CLIPFeatureExtractor,
+ requires_safety_checker: bool = True,
+ ):
+ super().__init__()
+
+ if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
+ deprecation_message = (
+ f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
+ f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
+ "to update the config accordingly as leaving `steps_offset` might led to incorrect results"
+ " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
+ " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
+ " file"
+ )
+ deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False)
+ new_config = dict(scheduler.config)
+ new_config["steps_offset"] = 1
+ scheduler._internal_dict = FrozenDict(new_config)
+
+ if safety_checker is None and requires_safety_checker:
+ logger.warning(
+ f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
+ " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
+ " results in services or applications open to the public. PaddleNLP team, diffusers team and Hugging Face"
+ " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
+ " it only for use-cases that involve analyzing network behavior or auditing its results. For more"
+ " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
+ )
+ if safety_checker is not None and feature_extractor is None:
+ raise ValueError(
+ "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
+ " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
+ )
+ is_unet_version_less_0_9_0 = hasattr(unet.config, "_ppdiffusers_version") and version.parse(
+ version.parse(unet.config._ppdiffusers_version).base_version
+ ) < version.parse("0.9.0.dev0")
+ is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64
+ if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64:
+ deprecation_message = (
+ "The configuration file of the unet has set the default `sample_size` to smaller than"
+ " 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the"
+ " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
+ " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
+ " \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
+ " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
+ " in the config might lead to incorrect results in future versions. If you have downloaded this"
+ " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
+ " the `unet/config.json` file"
+ )
+ deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False)
+ new_config = dict(unet.config)
+ new_config["sample_size"] = 64
+ unet._internal_dict = FrozenDict(new_config)
+
+ self.register_modules(
+ vae=vae,
+ text_encoder=text_encoder,
+ tokenizer=tokenizer,
+ unet=unet,
+ scheduler=scheduler,
+ safety_checker=safety_checker,
+ feature_extractor=feature_extractor,
+ )
+
+ self.register_to_config(requires_safety_checker=requires_safety_checker)
+
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._encode_prompt
+ def _encode_prompt(self, prompt, num_images_per_prompt, do_classifier_free_guidance, negative_prompt):
+ r"""
+ Encodes the prompt into text encoder hidden states.
+
+ Args:
+ prompt (`str` or `list(int)`):
+ prompt to be encoded
+ num_images_per_prompt (`int`):
+ number of images that should be generated per prompt
+ do_classifier_free_guidance (`bool`):
+ whether to use classifier free guidance or not
+ negative_prompt (`str` or `List[str]`):
+ The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
+ if `guidance_scale` is less than `1`).
+ """
+ batch_size = len(prompt) if isinstance(prompt, list) else 1
+
+ text_inputs = self.tokenizer(
+ prompt,
+ padding="max_length",
+ max_length=self.tokenizer.model_max_length,
+ truncation=True,
+ return_tensors="pd",
+ )
+ text_input_ids = text_inputs.input_ids
+ untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pd").input_ids
+
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not paddle.equal_all(
+ text_input_ids, untruncated_ids
+ ):
+ removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1])
+ logger.warning(
+ "The following part of your input was truncated because CLIP can only handle sequences up to"
+ f" {self.tokenizer.model_max_length} tokens: {removed_text}"
+ )
+
+ if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
+ attention_mask = text_inputs.attention_mask
+ else:
+ attention_mask = None
+
+ text_embeddings = self.text_encoder(
+ text_input_ids,
+ attention_mask=attention_mask,
+ )
+ text_embeddings = text_embeddings[0]
+
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
+ bs_embed, seq_len, _ = text_embeddings.shape
+ text_embeddings = text_embeddings.tile([1, num_images_per_prompt, 1])
+ text_embeddings = text_embeddings.reshape([bs_embed * num_images_per_prompt, seq_len, -1])
+
+ # get unconditional embeddings for classifier free guidance
+ if do_classifier_free_guidance:
+ uncond_tokens: List[str]
+ if negative_prompt is None:
+ uncond_tokens = [""] * batch_size
+ elif type(prompt) is not type(negative_prompt):
+ raise TypeError(
+ f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
+ f" {type(prompt)}."
+ )
+ elif isinstance(negative_prompt, str):
+ uncond_tokens = [negative_prompt]
+ elif batch_size != len(negative_prompt):
+ raise ValueError(
+ f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
+ f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
+ " the batch size of `prompt`."
+ )
+ else:
+ uncond_tokens = negative_prompt
+
+ max_length = text_input_ids.shape[-1]
+ uncond_input = self.tokenizer(
+ uncond_tokens,
+ padding="max_length",
+ max_length=max_length,
+ truncation=True,
+ return_tensors="pd",
+ )
+
+ if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
+ attention_mask = uncond_input.attention_mask
+ else:
+ attention_mask = None
+
+ uncond_embeddings = self.text_encoder(
+ uncond_input.input_ids,
+ attention_mask=attention_mask,
+ )
+ uncond_embeddings = uncond_embeddings[0]
+
+ # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
+ seq_len = uncond_embeddings.shape[1]
+ uncond_embeddings = uncond_embeddings.tile([1, num_images_per_prompt, 1])
+ uncond_embeddings = uncond_embeddings.reshape([batch_size * num_images_per_prompt, seq_len, -1])
+
+ # For classifier free guidance, we need to do two forward passes.
+ # Here we concatenate the unconditional and text embeddings into a single batch
+ # to avoid doing two forward passes
+ text_embeddings = paddle.concat([uncond_embeddings, text_embeddings])
+
+ return text_embeddings
+
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.StableDiffusionImg2ImgPipeline.check_inputs
+ def check_inputs(self, prompt, strength, callback_steps):
+ if not isinstance(prompt, str) and not isinstance(prompt, list):
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
+
+ if strength < 0 or strength > 1:
+ raise ValueError(f"The value of strength should in [1.0, 1.0] but is {strength}")
+
+ if (callback_steps is None) or (
+ callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
+ ):
+ raise ValueError(
+ f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
+ f" {type(callback_steps)}."
+ )
+
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
+ def prepare_extra_step_kwargs(self, generator, eta):
+ # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
+ # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
+ # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
+ # and should be between [0, 1]
+
+ accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
+ extra_step_kwargs = {}
+ if accepts_eta:
+ extra_step_kwargs["eta"] = eta
+
+ # check if the scheduler accepts generator
+ accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
+ if accepts_generator:
+ extra_step_kwargs["generator"] = generator
+ return extra_step_kwargs
+
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker
+ def run_safety_checker(self, image, dtype):
+ if self.safety_checker is not None:
+ safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pd")
+ image, has_nsfw_concept = self.safety_checker(
+ images=image, clip_input=safety_checker_input.pixel_values.cast(dtype)
+ )
+ else:
+ has_nsfw_concept = None
+ return image, has_nsfw_concept
+
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents
+ def decode_latents(self, latents):
+ latents = 1 / 0.18215 * latents
+ image = self.vae.decode(latents).sample
+ image = (image / 2 + 0.5).clip(0, 1)
+ # we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
+ image = image.transpose([0, 2, 3, 1]).cast("float32").numpy()
+ return image
+
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.StableDiffusionImg2ImgPipeline.get_timesteps
+ def get_timesteps(self, num_inference_steps, strength):
+ # get the original timestep using init_timestep
+ init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
+
+ t_start = max(num_inference_steps - init_timestep, 0)
+ timesteps = self.scheduler.timesteps[t_start:]
+
+ return timesteps, num_inference_steps - t_start
+
+ def prepare_latents(self, image, timestep, batch_size, num_images_per_prompt, dtype, generator=None):
+ image = image.cast(dtype=dtype)
+
+ batch_size = image.shape[0]
+ if isinstance(generator, list) and len(generator) != batch_size:
+ raise ValueError(
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
+ )
+
+ if isinstance(generator, list):
+ init_latents = [
+ self.vae.encode(image[i : i + 1]).latent_dist.sample(generator[i]) for i in range(batch_size)
+ ]
+ init_latents = paddle.concat(init_latents, axis=0)
+ else:
+ init_latents = self.vae.encode(image).latent_dist.sample(generator)
+ init_latents = 0.18215 * init_latents
+
+ if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] == 0:
+ # expand init_latents for batch_size
+ deprecation_message = (
+ f"You have passed {batch_size} text prompts (`prompt`), but only {init_latents.shape[0]} initial"
+ " images (`image`). Initial images are now duplicating to match the number of text prompts. Note"
+ " that this behavior is deprecated and will be removed in a version 1.0.0. Please make sure to update"
+ " your script to pass as many initial images as text prompts to suppress this warning."
+ )
+ deprecate("len(prompt) != len(image)", "1.0.0", deprecation_message, standard_warn=False)
+ additional_image_per_prompt = batch_size // init_latents.shape[0]
+ init_latents = paddle.concat([init_latents] * additional_image_per_prompt * num_images_per_prompt, axis=0)
+ elif batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] != 0:
+ raise ValueError(
+ f"Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts."
+ )
+ else:
+ init_latents = paddle.concat([init_latents] * num_images_per_prompt, axis=0)
+
+ # add noise to latents using the timestep
+ shape = init_latents.shape
+ if isinstance(generator, list):
+ shape = [
+ 1,
+ ] + shape[1:]
+ noise = [paddle.randn(shape, generator=generator[i], dtype=dtype) for i in range(batch_size)]
+ noise = paddle.concat(noise, axis=0)
+ else:
+ noise = paddle.randn(shape, generator=generator, dtype=dtype)
+
+ # get latents
+ clean_latents = init_latents
+ init_latents = self.scheduler.add_noise(init_latents, noise, timestep)
+ latents = init_latents
+
+ return latents, clean_latents
+
+ @paddle.no_grad()
+ def __call__(
+ self,
+ prompt: Union[str, List[str]],
+ source_prompt: Union[str, List[str]],
+ image: Union[paddle.Tensor, PIL.Image.Image] = None,
+ strength: float = 0.8,
+ num_inference_steps: Optional[int] = 50,
+ guidance_scale: Optional[float] = 7.5,
+ source_guidance_scale: Optional[float] = 1,
+ num_images_per_prompt: Optional[int] = 1,
+ eta: Optional[float] = 0.1,
+ generator: Optional[Union[paddle.Generator, List[paddle.Generator]]] = None,
+ output_type: Optional[str] = "pil",
+ return_dict: bool = True,
+ callback: Optional[Callable[[int, int, paddle.Tensor], None]] = None,
+ callback_steps: Optional[int] = 1,
+ ):
+ r"""
+ Function invoked when calling the pipeline for generation.
+
+ Args:
+ prompt (`str` or `List[str]`):
+ The prompt or prompts to guide the image generation.
+ image (`paddle.Tensor` or `PIL.Image.Image`):
+ `Image`, or tensor representing an image batch, that will be used as the starting point for the
+ process.
+ strength (`float`, *optional*, defaults to 0.8):
+ Conceptually, indicates how much to transform the reference `image`. Must be between 0 and 1.
+ `image` will be used as a starting point, adding more noise to it the larger the `strength`. The
+ number of denoising steps depends on the amount of noise initially added. When `strength` is 1, added
+ noise will be maximum and the denoising process will run for the full number of iterations specified in
+ `num_inference_steps`. A value of 1, therefore, essentially ignores `image`.
+ num_inference_steps (`int`, *optional*, defaults to 50):
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
+ expense of slower inference. This parameter will be modulated by `strength`.
+ guidance_scale (`float`, *optional*, defaults to 7.5):
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
+ usually at the expense of lower image quality.
+ source_guidance_scale (`float`, *optional*, defaults to 1):
+ Guidance scale for the source prompt. This is useful to control the amount of influence the source
+ prompt for encoding.
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
+ The number of images to generate per prompt.
+ eta (`float`, *optional*, defaults to 0.1):
+ Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
+ [`schedulers.DDIMScheduler`], will be ignored for others.
+ generator (`paddle.Generator`, *optional*):
+ One or a list of paddle generator(s) to make generation deterministic.
+ output_type (`str`, *optional*, defaults to `"pil"`):
+ The output format of the generate image. Choose between
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
+ return_dict (`bool`, *optional*, defaults to `True`):
+ Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
+ plain tuple.
+ callback (`Callable`, *optional*):
+ A function that will be called every `callback_steps` steps during inference. The function will be
+ called with the following arguments: `callback(step: int, timestep: int, latents: paddle.Tensor)`.
+ callback_steps (`int`, *optional*, defaults to 1):
+ The frequency at which the `callback` function will be called. If not specified, the callback will be
+ called at every step.
+
+ Returns:
+ [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
+ [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
+ When returning a tuple, the first element is a list with the generated images, and the second element is a
+ list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
+ (nsfw) content, according to the `safety_checker`.
+ """
+ # 1. Check inputs
+ self.check_inputs(prompt, strength, callback_steps)
+
+ # 2. Define call parameters
+ batch_size = 1 if isinstance(prompt, str) else len(prompt)
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
+ # corresponds to doing no classifier free guidance.
+ do_classifier_free_guidance = guidance_scale > 1.0
+
+ # 3. Encode input prompt
+ text_embeddings = self._encode_prompt(prompt, num_images_per_prompt, do_classifier_free_guidance, None)
+ source_text_embeddings = self._encode_prompt(
+ source_prompt, num_images_per_prompt, do_classifier_free_guidance, None
+ )
+
+ # 4. Preprocess image
+ image = preprocess(image)
+
+ # 5. Prepare timesteps
+ self.scheduler.set_timesteps(num_inference_steps)
+ timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength)
+ latent_timestep = timesteps[:1].tile([batch_size * num_images_per_prompt])
+
+ # 6. Prepare latent variables
+ latents, clean_latents = self.prepare_latents(
+ image, latent_timestep, batch_size, num_images_per_prompt, text_embeddings.dtype, generator
+ )
+ source_latents = latents
+
+ # 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
+ extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
+ generator = extra_step_kwargs.pop("generator", None)
+
+ # 8. Denoising loop
+ num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
+ for i, t in enumerate(timesteps):
+ # expand the latents if we are doing classifier free guidance
+ latent_model_input = paddle.concat([latents] * 2)
+ source_latent_model_input = paddle.concat([source_latents] * 2)
+ latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
+ source_latent_model_input = self.scheduler.scale_model_input(source_latent_model_input, t)
+
+ # predict the noise residual
+ concat_latent_model_input = paddle.stack(
+ [
+ source_latent_model_input[0],
+ latent_model_input[0],
+ source_latent_model_input[1],
+ latent_model_input[1],
+ ],
+ axis=0,
+ )
+ concat_text_embeddings = paddle.stack(
+ [
+ source_text_embeddings[0],
+ text_embeddings[0],
+ source_text_embeddings[1],
+ text_embeddings[1],
+ ],
+ axis=0,
+ )
+ concat_noise_pred = self.unet(
+ concat_latent_model_input, t, encoder_hidden_states=concat_text_embeddings
+ ).sample
+
+ # perform guidance
+ (
+ source_noise_pred_uncond,
+ noise_pred_uncond,
+ source_noise_pred_text,
+ noise_pred_text,
+ ) = concat_noise_pred.chunk(4, axis=0)
+ noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
+ source_noise_pred = source_noise_pred_uncond + source_guidance_scale * (
+ source_noise_pred_text - source_noise_pred_uncond
+ )
+
+ # Sample source_latents from the posterior distribution.
+ prev_source_latents = posterior_sample(
+ self.scheduler, source_latents, t, clean_latents, generator=generator, **extra_step_kwargs
+ )
+ # Compute noise.
+ noise = compute_noise(
+ self.scheduler, prev_source_latents, source_latents, t, source_noise_pred, **extra_step_kwargs
+ )
+ source_latents = prev_source_latents
+
+ # compute the previous noisy sample x_t -> x_t-1
+ latents = self.scheduler.step(
+ noise_pred, t, latents, variance_noise=noise, **extra_step_kwargs
+ ).prev_sample
+
+ # call the callback, if provided
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
+ progress_bar.update()
+ if callback is not None and i % callback_steps == 0:
+ callback(i, t, latents)
+
+ # 9. Post-processing
+ image = self.decode_latents(latents)
+
+ # 10. Run safety checker
+ image, has_nsfw_concept = self.run_safety_checker(image, text_embeddings.dtype)
+
+ # 11. Convert to PIL
+ if output_type == "pil":
+ image = self.numpy_to_pil(image)
+
+ if not return_dict:
+ return (image, has_nsfw_concept)
+
+ return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
diff --git a/ppdiffusers/pipelines/stable_diffusion/pipeline_fastdeploy_stable_diffusion.py b/ppdiffusers/pipelines/stable_diffusion/pipeline_fastdeploy_stable_diffusion.py
new file mode 100644
index 0000000000000000000000000000000000000000..dcbf8e18d3397271d166a11e2297b4b5ab0bb192
--- /dev/null
+++ b/ppdiffusers/pipelines/stable_diffusion/pipeline_fastdeploy_stable_diffusion.py
@@ -0,0 +1,460 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+# Copyright 2022 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import inspect
+import time
+from typing import Callable, List, Optional, Union
+
+import numpy as np
+import paddle
+
+from paddlenlp.transformers import CLIPFeatureExtractor, CLIPTokenizer
+
+from ...fastdeploy_utils import FastDeployRuntimeModel
+from ...pipeline_utils import DiffusionPipeline
+from ...schedulers import (
+ DDIMScheduler,
+ DPMSolverMultistepScheduler,
+ EulerAncestralDiscreteScheduler,
+ EulerDiscreteScheduler,
+ LMSDiscreteScheduler,
+ PNDMScheduler,
+)
+from ...schedulers.preconfig import (
+ PreconfigEulerAncestralDiscreteScheduler,
+ PreconfigLMSDiscreteScheduler,
+)
+from ...utils import logging
+from . import StableDiffusionPipelineOutput
+
+logger = logging.get_logger(__name__)
+
+
+class FastDeployStableDiffusionPipeline(DiffusionPipeline):
+ r"""
+ Pipeline for text-to-image generation using Stable Diffusion.
+
+ This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
+ library implements for all the pipelines (such as downloading or saving etc.)
+
+ Args:
+ vae_encoder ([`FastDeployRuntimeModel`]):
+ Variational Auto-Encoder (VAE) Model to encode images to latent representations.
+ vae_decoder ([`FastDeployRuntimeModel`]):
+ Variational Auto-Encoder (VAE) Model to decode images from latent representations.
+ text_encoder ([`FastDeployRuntimeModel`]):
+ Frozen text-encoder. Stable Diffusion uses the text portion of
+ [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
+ the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
+ tokenizer (`CLIPTokenizer`):
+ Tokenizer of class
+ [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
+ unet ([`FastDeployRuntimeModel`]): Conditional U-Net architecture to denoise the encoded image latents.
+ scheduler ([`SchedulerMixin`]):
+ A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
+ [`DDIMScheduler`], [`LMSDiscreteScheduler`], [`PNDMScheduler`], [`EulerDiscreteScheduler`], [`EulerAncestralDiscreteScheduler`]
+ or [`DPMSolverMultistepScheduler`].
+ safety_checker ([`FastDeployRuntimeModel`]):
+ Classification module that estimates whether generated images could be considered offensive or harmful.
+ Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
+ feature_extractor ([`CLIPFeatureExtractor`]):
+ Model that extracts features from generated images to be used as inputs for the `safety_checker`.
+ """
+ _optional_components = ["vae_encoder", "safety_checker", "feature_extractor"]
+
+ def __init__(
+ self,
+ vae_encoder: FastDeployRuntimeModel,
+ vae_decoder: FastDeployRuntimeModel,
+ text_encoder: FastDeployRuntimeModel,
+ tokenizer: CLIPTokenizer,
+ unet: FastDeployRuntimeModel,
+ scheduler: Union[
+ DDIMScheduler,
+ PNDMScheduler,
+ LMSDiscreteScheduler,
+ PreconfigLMSDiscreteScheduler,
+ EulerDiscreteScheduler,
+ EulerAncestralDiscreteScheduler,
+ PreconfigEulerAncestralDiscreteScheduler,
+ DPMSolverMultistepScheduler,
+ ],
+ safety_checker: FastDeployRuntimeModel,
+ feature_extractor: CLIPFeatureExtractor,
+ requires_safety_checker: bool = True,
+ ):
+ super().__init__()
+ if safety_checker is None and requires_safety_checker:
+ logger.warning(
+ f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
+ " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
+ " results in services or applications open to the public. PaddleNLP team, diffusers team and Hugging Face"
+ " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
+ " it only for use-cases that involve analyzing network behavior or auditing its results. For more"
+ " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
+ )
+ if safety_checker is not None and feature_extractor is None:
+ raise ValueError(
+ "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
+ " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
+ )
+
+ self.register_modules(
+ vae_encoder=vae_encoder,
+ vae_decoder=vae_decoder,
+ text_encoder=text_encoder,
+ tokenizer=tokenizer,
+ unet=unet,
+ scheduler=scheduler,
+ safety_checker=safety_checker,
+ feature_extractor=feature_extractor,
+ )
+ self.register_to_config(requires_safety_checker=requires_safety_checker)
+
+ def _encode_prompt(self, prompt, num_images_per_prompt, do_classifier_free_guidance, negative_prompt):
+ r"""
+ Encodes the prompt into text encoder hidden states.
+
+ Args:
+ prompt (`str` or `list(int)`):
+ prompt to be encoded
+ num_images_per_prompt (`int`):
+ number of images that should be generated per prompt
+ do_classifier_free_guidance (`bool`):
+ whether to use classifier free guidance or not
+ negative_prompt (`str` or `List[str]`):
+ The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
+ if `guidance_scale` is less than `1`).
+ """
+ batch_size = len(prompt) if isinstance(prompt, list) else 1
+
+ # get prompt text embeddings
+ text_inputs = self.tokenizer(
+ prompt,
+ padding="max_length",
+ max_length=self.tokenizer.model_max_length,
+ truncation=True,
+ return_tensors="np",
+ )
+ text_input_ids = text_inputs.input_ids
+ untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="np").input_ids
+
+ if not np.array_equal(text_input_ids, untruncated_ids):
+ removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1])
+ logger.warning(
+ "The following part of your input was truncated because CLIP can only handle sequences up to"
+ f" {self.tokenizer.model_max_length} tokens: {removed_text}"
+ )
+
+ text_embeddings = self.text_encoder(input_ids=text_input_ids.astype(np.int64))[0]
+ text_embeddings = np.repeat(text_embeddings, num_images_per_prompt, axis=0)
+ # get unconditional embeddings for classifier free guidance
+ if do_classifier_free_guidance:
+ uncond_tokens: List[str]
+ if negative_prompt is None:
+ uncond_tokens = [""] * batch_size
+ elif type(prompt) is not type(negative_prompt):
+ raise TypeError(
+ f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
+ f" {type(prompt)}."
+ )
+ elif isinstance(negative_prompt, str):
+ uncond_tokens = [negative_prompt] * batch_size
+ elif batch_size != len(negative_prompt):
+ raise ValueError(
+ f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
+ f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
+ " the batch size of `prompt`."
+ )
+ else:
+ uncond_tokens = negative_prompt
+
+ max_length = text_input_ids.shape[-1]
+ uncond_input = self.tokenizer(
+ uncond_tokens,
+ padding="max_length",
+ max_length=max_length,
+ truncation=True,
+ return_tensors="np",
+ )
+ uncond_embeddings = self.text_encoder(input_ids=uncond_input.input_ids.astype(np.int64))[0]
+ uncond_embeddings = np.repeat(uncond_embeddings, num_images_per_prompt, axis=0)
+
+ # For classifier free guidance, we need to do two forward passes.
+ # Here we concatenate the unconditional and text embeddings into a single batch
+ # to avoid doing two forward passes
+ text_embeddings = np.concatenate([uncond_embeddings, text_embeddings])
+
+ return text_embeddings
+
+ def run_safety_checker(self, image, dtype):
+ if self.safety_checker is not None:
+ safety_checker_input = self.feature_extractor(
+ self.numpy_to_pil(image), return_tensors="np"
+ ).pixel_values.astype(dtype)
+ # There will throw an error if use safety_checker batchsize>1
+ images, has_nsfw_concept = [], []
+ for i in range(image.shape[0]):
+ image_i, has_nsfw_concept_i = self.safety_checker(
+ clip_input=safety_checker_input[i : i + 1], images=image[i : i + 1]
+ )
+ images.append(image_i)
+ has_nsfw_concept.append(has_nsfw_concept_i[0])
+ image = np.concatenate(images)
+ else:
+ has_nsfw_concept = None
+ return image, has_nsfw_concept
+
+ def decode_latents(self, latents):
+ latents = 1 / 0.18215 * latents
+ latents_shape = latents.shape
+ vae_output_shape = [latents_shape[0], 3, latents_shape[2] * 8, latents_shape[3] * 8]
+ images_vae = paddle.zeros(vae_output_shape, dtype="float32")
+
+ vae_input_name = self.vae_decoder.model.get_input_info(0).name
+ vae_output_name = self.vae_decoder.model.get_output_info(0).name
+
+ self.vae_decoder.zero_copy_infer(
+ prebinded_inputs={vae_input_name: latents},
+ prebinded_outputs={vae_output_name: images_vae},
+ share_with_raw_ptr=True,
+ )
+
+ images_vae = paddle.clip(images_vae / 2 + 0.5, 0, 1)
+ images = images_vae.transpose([0, 2, 3, 1])
+ return images.numpy()
+
+ def prepare_extra_step_kwargs(self, eta):
+ # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
+ # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
+ # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
+ # and should be between [0, 1]
+
+ accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
+ extra_step_kwargs = {}
+ if accepts_eta:
+ extra_step_kwargs["eta"] = eta
+ return extra_step_kwargs
+
+ def check_var_kwargs_of_scheduler_func(self, scheduler_func):
+ sig = inspect.signature(scheduler_func)
+ params = sig.parameters.values()
+ has_kwargs = any([True for p in params if p.kind == p.VAR_KEYWORD])
+ return has_kwargs
+
+ def check_inputs(self, prompt, height, width, callback_steps):
+ if not isinstance(prompt, str) and not isinstance(prompt, list):
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
+
+ if height % 8 != 0 or width % 8 != 0:
+ raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
+
+ if (callback_steps is None) or (
+ callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
+ ):
+ raise ValueError(
+ f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
+ f" {type(callback_steps)}."
+ )
+
+ def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, generator, latents=None):
+ if generator is None:
+ generator = np.random
+
+ latents_shape = (batch_size, num_channels_latents, height // 8, width // 8)
+ if latents is None:
+ latents = generator.randn(*latents_shape).astype(dtype)
+ elif latents.shape != latents_shape:
+ raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}")
+
+ # scale the initial noise by the standard deviation required by the scheduler
+ latents = latents * float(self.scheduler.init_noise_sigma)
+ return latents
+
+ def __call__(
+ self,
+ prompt: Union[str, List[str]],
+ height: Optional[int] = 512,
+ width: Optional[int] = 512,
+ num_inference_steps: Optional[int] = 50,
+ guidance_scale: Optional[float] = 7.5,
+ negative_prompt: Optional[Union[str, List[str]]] = None,
+ num_images_per_prompt: Optional[int] = 1,
+ eta: Optional[float] = 0.0,
+ generator: Optional[np.random.RandomState] = None,
+ latents: Optional[np.ndarray] = None,
+ output_type: Optional[str] = "pil",
+ return_dict: bool = True,
+ callback: Optional[Callable[[int, int, np.ndarray], None]] = None,
+ callback_steps: Optional[int] = 1,
+ ):
+ r"""
+ Function invoked when calling the pipeline for generation.
+
+ Args:
+ prompt (`str` or `List[str]`):
+ The prompt or prompts to guide the image generation.
+ height (`int`, *optional*, 512):
+ The height in pixels of the generated image.
+ width (`int`, *optional*, 512):
+ The width in pixels of the generated image.
+ num_inference_steps (`int`, *optional*, defaults to 50):
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
+ expense of slower inference.
+ guidance_scale (`float`, *optional*, defaults to 7.5):
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
+ usually at the expense of lower image quality.
+ negative_prompt (`str` or `List[str]`, *optional*):
+ The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
+ if `guidance_scale` is less than `1`).
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
+ The number of images to generate per prompt.
+ eta (`float`, *optional*, defaults to 0.0):
+ Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
+ [`schedulers.DDIMScheduler`], will be ignored for others.
+ generator (`np.random.RandomState`, *optional*):
+ A np.random.RandomState to make generation deterministic.
+ latents (`np.ndarray`, *optional*):
+ Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
+ tensor will ge generated by sampling using the supplied random `generator`.
+ output_type (`str`, *optional*, defaults to `"pil"`):
+ The output format of the generate image. Choose between
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
+ return_dict (`bool`, *optional*, defaults to `True`):
+ Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
+ plain tuple.
+ callback (`Callable`, *optional*):
+ A function that will be called every `callback_steps` steps during inference. The function will be
+ called with the following arguments: `callback(step: int, timestep: int, latents: np.ndarray)`.
+ callback_steps (`int`, *optional*, defaults to 1):
+ The frequency at which the `callback` function will be called. If not specified, the callback will be
+ called at every step.
+
+ Returns:
+ [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
+ [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
+ When returning a tuple, the first element is a list with the generated images, and the second element is a
+ list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
+ (nsfw) content, according to the `safety_checker`.
+ """
+ # 1. Check inputs. Raise error if not correct
+ self.check_inputs(prompt, height, width, callback_steps)
+
+ # 2. Define call parameters
+ batch_size = 1 if isinstance(prompt, str) else len(prompt)
+
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
+ # corresponds to doing no classifier free guidance.
+ do_classifier_free_guidance = guidance_scale > 1.0
+
+ # 3. Encode input prompt
+ start_time_encode_prompt = time.perf_counter()
+ text_embeddings = self._encode_prompt(
+ prompt, num_images_per_prompt, do_classifier_free_guidance, negative_prompt
+ )
+ print("_encode_prompt latency:", time.perf_counter() - start_time_encode_prompt)
+ # 4. Prepare timesteps
+ timesteps = self.scheduler.timesteps
+
+ # 5. Prepare latent variables
+ num_channels_latents = 4
+ latents = self.prepare_latents(
+ batch_size * num_images_per_prompt,
+ num_channels_latents,
+ height,
+ width,
+ text_embeddings.dtype,
+ generator,
+ latents,
+ )
+ if isinstance(latents, np.ndarray):
+ latents = paddle.to_tensor(latents)
+ # 6. Prepare extra step kwargs.
+ extra_step_kwargs = self.prepare_extra_step_kwargs(eta)
+ # 7. Denoising loop
+ num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
+ scheduler_support_kwagrs_scale_input = self.check_var_kwargs_of_scheduler_func(
+ self.scheduler.scale_model_input
+ )
+ scheduler_support_kwagrs_step = self.check_var_kwargs_of_scheduler_func(self.scheduler.step)
+
+ unet_output_name = self.unet.model.get_output_info(0).name
+ unet_input_names = [self.unet.model.get_input_info(i).name for i in range(self.unet.model.num_inputs())]
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
+ text_embeddings = paddle.to_tensor(text_embeddings, dtype="float32")
+ for i, t in enumerate(timesteps):
+ noise_pred_unet = paddle.zeros(
+ [2 * batch_size * num_images_per_prompt, 4, height // 8, width // 8], dtype="float32"
+ )
+ # expand the latents if we are doing classifier free guidance
+ latent_model_input = paddle.concat([latents] * 2) if do_classifier_free_guidance else latents
+ if scheduler_support_kwagrs_scale_input:
+ latent_model_input = self.scheduler.scale_model_input(latent_model_input, t, step_index=i)
+ else:
+ latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
+
+ # predict the noise residual
+ self.unet.zero_copy_infer(
+ prebinded_inputs={
+ unet_input_names[0]: latent_model_input,
+ unet_input_names[1]: t,
+ unet_input_names[2]: text_embeddings,
+ },
+ prebinded_outputs={unet_output_name: noise_pred_unet},
+ share_with_raw_ptr=True,
+ )
+ # perform guidance
+ if do_classifier_free_guidance:
+ noise_pred_uncond, noise_pred_text = noise_pred_unet.chunk(2)
+ noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
+ # compute the previous noisy sample x_t -> x_t-1
+ if scheduler_support_kwagrs_step:
+ scheduler_output = self.scheduler.step(
+ noise_pred, t, latents, step_index=i, return_pred_original_sample=False, **extra_step_kwargs
+ )
+ else:
+ scheduler_output = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs)
+ latents = scheduler_output.prev_sample
+ if i == num_inference_steps - 1:
+ # sync for accuracy it/s measure
+ paddle.device.cuda.synchronize()
+ # call the callback, if provided
+ if i == num_inference_steps - 1 or (
+ (i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0
+ ):
+ progress_bar.update()
+ if callback is not None and i % callback_steps == 0:
+ callback(i, t, latents)
+
+ # 8. Post-processing
+ time_start_decoder = time.perf_counter()
+ image = self.decode_latents(latents)
+ print("decoder latency:", time.perf_counter() - time_start_decoder)
+ # 9. Run safety checker
+ image, has_nsfw_concept = self.run_safety_checker(image, text_embeddings.dtype)
+
+ # 10. Convert to PIL
+ if output_type == "pil":
+ image = self.numpy_to_pil(image)
+
+ if not return_dict:
+ return (image, has_nsfw_concept)
+
+ return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
diff --git a/ppdiffusers/pipelines/stable_diffusion/pipeline_fastdeploy_stable_diffusion_img2img.py b/ppdiffusers/pipelines/stable_diffusion/pipeline_fastdeploy_stable_diffusion_img2img.py
new file mode 100644
index 0000000000000000000000000000000000000000..73b303700e17d247aa9b0fab5882938b1216daf4
--- /dev/null
+++ b/ppdiffusers/pipelines/stable_diffusion/pipeline_fastdeploy_stable_diffusion_img2img.py
@@ -0,0 +1,458 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import inspect
+from typing import Callable, List, Optional, Union
+
+import numpy as np
+import paddle
+import PIL
+
+from paddlenlp.transformers import CLIPFeatureExtractor, CLIPTokenizer
+
+from ...fastdeploy_utils import FastDeployRuntimeModel
+from ...pipeline_utils import DiffusionPipeline
+from ...schedulers import (
+ DDIMScheduler,
+ DPMSolverMultistepScheduler,
+ EulerAncestralDiscreteScheduler,
+ EulerDiscreteScheduler,
+ LMSDiscreteScheduler,
+ PNDMScheduler,
+)
+from ...utils import PIL_INTERPOLATION, logging
+from . import StableDiffusionPipelineOutput
+
+logger = logging.get_logger(__name__) # pylint: disable=invalid-name
+
+
+# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.preprocess
+def preprocess(image):
+ if isinstance(image, paddle.Tensor):
+ return image
+ elif isinstance(image, PIL.Image.Image):
+ image = [image]
+
+ if isinstance(image[0], PIL.Image.Image):
+ w, h = image[0].size
+ w, h = map(lambda x: x - x % 32, (w, h)) # resize to integer multiple of 32
+
+ image = [np.array(i.resize((w, h), resample=PIL_INTERPOLATION["lanczos"]))[None, :] for i in image]
+ image = np.concatenate(image, axis=0)
+ image = np.array(image).astype(np.float32) / 255.0
+ image = image.transpose(0, 3, 1, 2)
+ image = 2.0 * image - 1.0
+ image = paddle.to_tensor(image)
+ elif isinstance(image[0], paddle.Tensor):
+ image = paddle.concat(image, axis=0)
+ return image
+
+
+class FastDeployStableDiffusionImg2ImgPipeline(DiffusionPipeline):
+ r"""
+ Pipeline for text-guided image-to-image generation using Stable Diffusion.
+
+ This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
+ library implements for all the pipelines (such as downloading or saving etc.)
+
+ Args:
+ vae_encoder ([`FastDeployRuntimeModel`]):
+ Variational Auto-Encoder (VAE) Model to encode images to latent representations.
+ vae_decoder ([`FastDeployRuntimeModel`]):
+ Variational Auto-Encoder (VAE) Model to decode images from latent representations.
+ text_encoder ([`FastDeployRuntimeModel`]):
+ Frozen text-encoder. Stable Diffusion uses the text portion of
+ [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
+ the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
+ tokenizer (`CLIPTokenizer`):
+ Tokenizer of class
+ [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
+ unet ([`FastDeployRuntimeModel`]): Conditional U-Net architecture to denoise the encoded image latents.
+ scheduler ([`SchedulerMixin`]):
+ A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
+ [`DDIMScheduler`], [`LMSDiscreteScheduler`], [`PNDMScheduler`], [`EulerDiscreteScheduler`], [`EulerAncestralDiscreteScheduler`]
+ or [`DPMSolverMultistepScheduler`].
+ safety_checker ([`FastDeployRuntimeModel`]):
+ Classification module that estimates whether generated images could be considered offensive or harmful.
+ Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
+ feature_extractor ([`CLIPFeatureExtractor`]):
+ Model that extracts features from generated images to be used as inputs for the `safety_checker`.
+ """
+ _optional_components = ["safety_checker", "feature_extractor"]
+
+ def __init__(
+ self,
+ vae_encoder: FastDeployRuntimeModel,
+ vae_decoder: FastDeployRuntimeModel,
+ text_encoder: FastDeployRuntimeModel,
+ tokenizer: CLIPTokenizer,
+ unet: FastDeployRuntimeModel,
+ scheduler: Union[
+ DDIMScheduler,
+ PNDMScheduler,
+ LMSDiscreteScheduler,
+ EulerDiscreteScheduler,
+ EulerAncestralDiscreteScheduler,
+ DPMSolverMultistepScheduler,
+ ],
+ safety_checker: FastDeployRuntimeModel,
+ feature_extractor: CLIPFeatureExtractor,
+ requires_safety_checker: bool = True,
+ ):
+ super().__init__()
+ if safety_checker is None and requires_safety_checker:
+ logger.warning(
+ f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
+ " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
+ " results in services or applications open to the public. PaddleNLP team, diffusers team and Hugging Face"
+ " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
+ " it only for use-cases that involve analyzing network behavior or auditing its results. For more"
+ " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
+ )
+ if safety_checker is not None and feature_extractor is None:
+ raise ValueError(
+ "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
+ " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
+ )
+
+ self.register_modules(
+ vae_encoder=vae_encoder,
+ vae_decoder=vae_decoder,
+ text_encoder=text_encoder,
+ tokenizer=tokenizer,
+ unet=unet,
+ scheduler=scheduler,
+ safety_checker=safety_checker,
+ feature_extractor=feature_extractor,
+ )
+ self.register_to_config(requires_safety_checker=requires_safety_checker)
+
+ def _encode_prompt(self, prompt, num_images_per_prompt, do_classifier_free_guidance, negative_prompt):
+ r"""
+ Encodes the prompt into text encoder hidden states.
+
+ Args:
+ prompt (`str` or `list(int)`):
+ prompt to be encoded
+ num_images_per_prompt (`int`):
+ number of images that should be generated per prompt
+ do_classifier_free_guidance (`bool`):
+ whether to use classifier free guidance or not
+ negative_prompt (`str` or `List[str]`):
+ The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
+ if `guidance_scale` is less than `1`).
+ """
+ batch_size = len(prompt) if isinstance(prompt, list) else 1
+
+ # get prompt text embeddings
+ text_inputs = self.tokenizer(
+ prompt,
+ padding="max_length",
+ max_length=self.tokenizer.model_max_length,
+ truncation=True,
+ return_tensors="np",
+ )
+ text_input_ids = text_inputs.input_ids
+ untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="np").input_ids
+
+ if not np.array_equal(text_input_ids, untruncated_ids):
+ removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1])
+ logger.warning(
+ "The following part of your input was truncated because CLIP can only handle sequences up to"
+ f" {self.tokenizer.model_max_length} tokens: {removed_text}"
+ )
+
+ text_embeddings = self.text_encoder(input_ids=text_input_ids.astype(np.int64))[0]
+ text_embeddings = np.repeat(text_embeddings, num_images_per_prompt, axis=0)
+
+ # get unconditional embeddings for classifier free guidance
+ if do_classifier_free_guidance:
+ uncond_tokens: List[str]
+ if negative_prompt is None:
+ uncond_tokens = [""] * batch_size
+ elif type(prompt) is not type(negative_prompt):
+ raise TypeError(
+ f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
+ f" {type(prompt)}."
+ )
+ elif isinstance(negative_prompt, str):
+ uncond_tokens = [negative_prompt] * batch_size
+ elif batch_size != len(negative_prompt):
+ raise ValueError(
+ f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
+ f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
+ " the batch size of `prompt`."
+ )
+ else:
+ uncond_tokens = negative_prompt
+
+ max_length = text_input_ids.shape[-1]
+ uncond_input = self.tokenizer(
+ uncond_tokens,
+ padding="max_length",
+ max_length=max_length,
+ truncation=True,
+ return_tensors="np",
+ )
+ uncond_embeddings = self.text_encoder(input_ids=uncond_input.input_ids.astype(np.int64))[0]
+ uncond_embeddings = np.repeat(uncond_embeddings, num_images_per_prompt, axis=0)
+
+ # For classifier free guidance, we need to do two forward passes.
+ # Here we concatenate the unconditional and text embeddings into a single batch
+ # to avoid doing two forward passes
+ text_embeddings = np.concatenate([uncond_embeddings, text_embeddings])
+
+ return text_embeddings
+
+ def run_safety_checker(self, image, dtype):
+ if self.safety_checker is not None:
+ safety_checker_input = self.feature_extractor(
+ self.numpy_to_pil(image), return_tensors="np"
+ ).pixel_values.astype(dtype)
+ # There will throw an error if use safety_checker batchsize>1
+ images, has_nsfw_concept = [], []
+ for i in range(image.shape[0]):
+ image_i, has_nsfw_concept_i = self.safety_checker(
+ clip_input=safety_checker_input[i : i + 1], images=image[i : i + 1]
+ )
+ images.append(image_i)
+ has_nsfw_concept.append(has_nsfw_concept_i[0])
+ image = np.concatenate(images)
+ else:
+ has_nsfw_concept = None
+ return image, has_nsfw_concept
+
+ def decode_latents(self, latents):
+ latents = 1 / 0.18215 * latents
+ image = np.concatenate(
+ [self.vae_decoder(latent_sample=latents[i : i + 1])[0] for i in range(latents.shape[0])]
+ )
+ image = np.clip(image / 2 + 0.5, 0, 1)
+ image = image.transpose([0, 2, 3, 1])
+ return image
+
+ def prepare_extra_step_kwargs(self, eta):
+ # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
+ # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
+ # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
+ # and should be between [0, 1]
+
+ accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
+ extra_step_kwargs = {}
+ if accepts_eta:
+ extra_step_kwargs["eta"] = eta
+
+ return extra_step_kwargs
+
+ def check_inputs(self, prompt, strength, callback_steps):
+ if not isinstance(prompt, str) and not isinstance(prompt, list):
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
+
+ if strength < 0 or strength > 1:
+ raise ValueError(f"The value of strength should in [1.0, 1.0] but is {strength}")
+
+ if (callback_steps is None) or (
+ callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
+ ):
+ raise ValueError(
+ f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
+ f" {type(callback_steps)}."
+ )
+
+ def get_timesteps(self, num_inference_steps, strength):
+ # get the original timestep using init_timestep
+ offset = self.scheduler.config.get("steps_offset", 0)
+ init_timestep = int(num_inference_steps * strength) + offset
+ init_timestep = min(init_timestep, num_inference_steps)
+
+ t_start = max(num_inference_steps - init_timestep + offset, 0)
+ timesteps = self.scheduler.timesteps
+ timesteps = timesteps[t_start:]
+ return timesteps, num_inference_steps - t_start
+
+ def prepare_latents(self, image, timestep, batch_size, num_images_per_prompt, dtype, generator=None, noise=None):
+ if generator is None:
+ generator = np.random
+
+ image = image.astype(dtype)
+ init_latents = self.vae_encoder(sample=image)[0]
+ init_latents = 0.18215 * init_latents
+
+ if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] != 0:
+ raise ValueError(
+ f"Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts."
+ )
+ else:
+ init_latents = np.concatenate([init_latents] * num_images_per_prompt, axis=0)
+
+ # add noise to latents using the timesteps
+ if noise is None:
+ noise = paddle.to_tensor(generator.randn(*init_latents.shape).astype(dtype))
+ elif list(noise.shape) != list(init_latents.shape):
+ raise ValueError(f"Unexpected noise shape, got {noise.shape}, expected {init_latents.shape}")
+ elif isinstance(noise, np.ndarray):
+ noise = paddle.to_tensor(noise, dtype=dtype)
+
+ # get latents
+ init_latents = self.scheduler.add_noise(paddle.to_tensor(init_latents), noise, timestep)
+ latents = init_latents
+
+ return latents
+
+ def __call__(
+ self,
+ prompt: Union[str, List[str]],
+ image: Union[np.ndarray, PIL.Image.Image] = None,
+ strength: float = 0.8,
+ num_inference_steps: Optional[int] = 50,
+ guidance_scale: Optional[float] = 7.5,
+ negative_prompt: Optional[Union[str, List[str]]] = None,
+ num_images_per_prompt: Optional[int] = 1,
+ eta: Optional[float] = 0.0,
+ generator: Optional[np.random.RandomState] = None,
+ noise: Optional[np.ndarray] = None,
+ output_type: Optional[str] = "pil",
+ return_dict: bool = True,
+ callback: Optional[Callable[[int, int, np.ndarray], None]] = None,
+ callback_steps: Optional[int] = 1,
+ ):
+ r"""
+ Function invoked when calling the pipeline for generation.
+ Args:
+ prompt (`str` or `List[str]`):
+ The prompt or prompts to guide the image generation.
+ image (`np.ndarray` or `PIL.Image.Image`):
+ `Image`, or tensor representing an image batch, that will be used as the starting point for the
+ process.
+ strength (`float`, *optional*, defaults to 0.8):
+ Conceptually, indicates how much to transform the reference `image`. Must be between 0 and 1.
+ `image` will be used as a starting point, adding more noise to it the larger the `strength`. The
+ number of denoising steps depends on the amount of noise initially added. When `strength` is 1, added
+ noise will be maximum and the denoising process will run for the full number of iterations specified in
+ `num_inference_steps`. A value of 1, therefore, essentially ignores `image`.
+ num_inference_steps (`int`, *optional*, defaults to 50):
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
+ expense of slower inference. This parameter will be modulated by `strength`.
+ guidance_scale (`float`, *optional*, defaults to 7.5):
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
+ usually at the expense of lower image quality.
+ negative_prompt (`str` or `List[str]`, *optional*):
+ The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
+ if `guidance_scale` is less than `1`).
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
+ The number of images to generate per prompt.
+ eta (`float`, *optional*, defaults to 0.0):
+ Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
+ [`schedulers.DDIMScheduler`], will be ignored for others.
+ generator (`np.random.RandomState`, *optional*):
+ A np.random.RandomState to make generation deterministic.
+ noise (`np.ndarray`, *optional*):
+ Pre-generated noise tensor, sampled from a Gaussian distribution, to be used as inputs for image
+ generation. If not provided, a noise tensor will ge generated by sampling using the supplied random
+ `generator`.
+ output_type (`str`, *optional*, defaults to `"pil"`):
+ The output format of the generate image. Choose between
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
+ return_dict (`bool`, *optional*, defaults to `True`):
+ Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
+ plain tuple.
+ callback (`Callable`, *optional*):
+ A function that will be called every `callback_steps` steps during inference. The function will be
+ called with the following arguments: `callback(step: int, timestep: int, latents: np.ndarray)`.
+ callback_steps (`int`, *optional*, defaults to 1):
+ The frequency at which the `callback` function will be called. If not specified, the callback will be
+ called at every step.
+ Returns:
+ [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
+ [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
+ When returning a tuple, the first element is a list with the generated images, and the second element is a
+ list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
+ (nsfw) content, according to the `safety_checker`.
+ """
+ # 1. Check inputs
+ self.check_inputs(prompt, strength, callback_steps)
+
+ # 2. Define call parameters
+ batch_size = 1 if isinstance(prompt, str) else len(prompt)
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
+ # corresponds to doing no classifier free guidance.
+ do_classifier_free_guidance = guidance_scale > 1.0
+
+ # 3. Encode input prompt
+ text_embeddings = self._encode_prompt(
+ prompt, num_images_per_prompt, do_classifier_free_guidance, negative_prompt
+ )
+
+ # 4. Preprocess image
+ image = preprocess(image)
+
+ # 5. set timesteps
+ self.scheduler.set_timesteps(num_inference_steps)
+ timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength)
+ latent_timestep = timesteps[:1].tile([batch_size * num_images_per_prompt])
+
+ # 6. Prepare latent variables
+ latents = self.prepare_latents(
+ image, latent_timestep, batch_size, num_images_per_prompt, text_embeddings.dtype, generator, noise
+ )
+
+ # 7. Prepare extra step kwargs.
+ extra_step_kwargs = self.prepare_extra_step_kwargs(eta)
+
+ # 8. Denoising loop
+ num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
+ text_embeddings = paddle.to_tensor(text_embeddings)
+ for i, t in enumerate(timesteps):
+ # expand the latents if we are doing classifier free guidance
+ latent_model_input = paddle.concat([latents] * 2) if do_classifier_free_guidance else latents
+ latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
+
+ # predict the noise residual
+ noise_pred = self.unet.zero_copy_infer(
+ sample=latent_model_input, timestep=t, encoder_hidden_states=text_embeddings
+ )[0]
+ # perform guidance
+ if do_classifier_free_guidance:
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
+ noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
+
+ # compute the previous noisy sample x_t -> x_t-1
+ scheduler_output = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs)
+ latents = scheduler_output.prev_sample
+
+ # call the callback, if provided
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
+ progress_bar.update()
+ if callback is not None and i % callback_steps == 0:
+ callback(i, t, latents)
+
+ # 9. Post-processing
+ image = self.decode_latents(latents.numpy())
+
+ # 10. Run safety checker
+ image, has_nsfw_concept = self.run_safety_checker(image, text_embeddings.dtype)
+
+ # 11. Convert to PIL
+ if output_type == "pil":
+ image = self.numpy_to_pil(image)
+
+ if not return_dict:
+ return (image, has_nsfw_concept)
+
+ return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
diff --git a/ppdiffusers/pipelines/stable_diffusion/pipeline_fastdeploy_stable_diffusion_inpaint.py b/ppdiffusers/pipelines/stable_diffusion/pipeline_fastdeploy_stable_diffusion_inpaint.py
new file mode 100644
index 0000000000000000000000000000000000000000..3a024f8e739d22393ae486a30e452d709854030f
--- /dev/null
+++ b/ppdiffusers/pipelines/stable_diffusion/pipeline_fastdeploy_stable_diffusion_inpaint.py
@@ -0,0 +1,491 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import inspect
+from typing import Callable, List, Optional, Union
+
+import numpy as np
+import paddle
+import PIL
+
+from paddlenlp.transformers import CLIPFeatureExtractor, CLIPTokenizer
+
+from ...fastdeploy_utils import FastDeployRuntimeModel
+from ...pipeline_utils import DiffusionPipeline
+from ...schedulers import (
+ DDIMScheduler,
+ DPMSolverMultistepScheduler,
+ EulerAncestralDiscreteScheduler,
+ EulerDiscreteScheduler,
+ LMSDiscreteScheduler,
+ PNDMScheduler,
+)
+from ...utils import PIL_INTERPOLATION, logging
+from . import StableDiffusionPipelineOutput
+
+logger = logging.get_logger(__name__) # pylint: disable=invalid-name
+
+NUM_UNET_INPUT_CHANNELS = 9
+NUM_LATENT_CHANNELS = 4
+
+
+def prepare_mask_and_masked_image(image, mask, latents_shape):
+ image = np.array(image.convert("RGB").resize((latents_shape[1] * 8, latents_shape[0] * 8)))
+ image = image[None].transpose(0, 3, 1, 2)
+ image = image.astype(np.float32) / 127.5 - 1.0
+
+ image_mask = np.array(mask.convert("L").resize((latents_shape[1] * 8, latents_shape[0] * 8)))
+ masked_image = image * (image_mask < 127.5)
+
+ mask = mask.resize((latents_shape[1], latents_shape[0]), PIL_INTERPOLATION["nearest"])
+ mask = np.array(mask.convert("L"))
+ mask = mask.astype(np.float32) / 255.0
+ mask = mask[None, None]
+ mask[mask < 0.5] = 0
+ mask[mask >= 0.5] = 1
+
+ return mask, masked_image
+
+
+class FastDeployStableDiffusionInpaintPipeline(DiffusionPipeline):
+ r"""
+ Pipeline for text-guided image inpainting using Stable Diffusion.
+
+ This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
+ library implements for all the pipelines (such as downloading or saving etc.)
+
+ Args:
+ vae_encoder ([`FastDeployRuntimeModel`]):
+ Variational Auto-Encoder (VAE) Model to encode images to latent representations.
+ vae_decoder ([`FastDeployRuntimeModel`]):
+ Variational Auto-Encoder (VAE) Model to decode images from latent representations.
+ text_encoder ([`FastDeployRuntimeModel`]):
+ Frozen text-encoder. Stable Diffusion uses the text portion of
+ [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
+ the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
+ tokenizer (`CLIPTokenizer`):
+ Tokenizer of class
+ [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
+ unet ([`FastDeployRuntimeModel`]): Conditional U-Net architecture to denoise the encoded image latents.
+ scheduler ([`SchedulerMixin`]):
+ A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
+ [`DDIMScheduler`], [`LMSDiscreteScheduler`], [`PNDMScheduler`], [`EulerDiscreteScheduler`], [`EulerAncestralDiscreteScheduler`]
+ or [`DPMSolverMultistepScheduler`].
+ safety_checker ([`FastDeployRuntimeModel`]):
+ Classification module that estimates whether generated images could be considered offensive or harmful.
+ Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
+ feature_extractor ([`CLIPFeatureExtractor`]):
+ Model that extracts features from generated images to be used as inputs for the `safety_checker`.
+ """
+ _optional_components = ["safety_checker", "feature_extractor"]
+
+ def __init__(
+ self,
+ vae_encoder: FastDeployRuntimeModel,
+ vae_decoder: FastDeployRuntimeModel,
+ text_encoder: FastDeployRuntimeModel,
+ tokenizer: CLIPTokenizer,
+ unet: FastDeployRuntimeModel,
+ scheduler: Union[
+ DDIMScheduler,
+ PNDMScheduler,
+ LMSDiscreteScheduler,
+ EulerDiscreteScheduler,
+ EulerAncestralDiscreteScheduler,
+ DPMSolverMultistepScheduler,
+ ],
+ safety_checker: FastDeployRuntimeModel,
+ feature_extractor: CLIPFeatureExtractor,
+ requires_safety_checker: bool = True,
+ ):
+ super().__init__()
+ if safety_checker is None and requires_safety_checker:
+ logger.warning(
+ f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
+ " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
+ " results in services or applications open to the public. PaddleNLP team, diffusers team and Hugging Face"
+ " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
+ " it only for use-cases that involve analyzing network behavior or auditing its results. For more"
+ " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
+ )
+ if safety_checker is not None and feature_extractor is None:
+ raise ValueError(
+ "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
+ " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
+ )
+
+ self.register_modules(
+ vae_encoder=vae_encoder,
+ vae_decoder=vae_decoder,
+ text_encoder=text_encoder,
+ tokenizer=tokenizer,
+ unet=unet,
+ scheduler=scheduler,
+ safety_checker=safety_checker,
+ feature_extractor=feature_extractor,
+ )
+ self.register_to_config(requires_safety_checker=requires_safety_checker)
+
+ def _encode_prompt(self, prompt, num_images_per_prompt, do_classifier_free_guidance, negative_prompt):
+ r"""
+ Encodes the prompt into text encoder hidden states.
+
+ Args:
+ prompt (`str` or `list(int)`):
+ prompt to be encoded
+ num_images_per_prompt (`int`):
+ number of images that should be generated per prompt
+ do_classifier_free_guidance (`bool`):
+ whether to use classifier free guidance or not
+ negative_prompt (`str` or `List[str]`):
+ The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
+ if `guidance_scale` is less than `1`).
+ """
+ batch_size = len(prompt) if isinstance(prompt, list) else 1
+
+ # get prompt text embeddings
+ text_inputs = self.tokenizer(
+ prompt,
+ padding="max_length",
+ max_length=self.tokenizer.model_max_length,
+ truncation=True,
+ return_tensors="np",
+ )
+ text_input_ids = text_inputs.input_ids
+ untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="np").input_ids
+
+ if not np.array_equal(text_input_ids, untruncated_ids):
+ removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1])
+ logger.warning(
+ "The following part of your input was truncated because CLIP can only handle sequences up to"
+ f" {self.tokenizer.model_max_length} tokens: {removed_text}"
+ )
+
+ text_embeddings = self.text_encoder(input_ids=text_input_ids.astype(np.int64))[0]
+ text_embeddings = np.repeat(text_embeddings, num_images_per_prompt, axis=0)
+
+ # get unconditional embeddings for classifier free guidance
+ if do_classifier_free_guidance:
+ uncond_tokens: List[str]
+ if negative_prompt is None:
+ uncond_tokens = [""] * batch_size
+ elif type(prompt) is not type(negative_prompt):
+ raise TypeError(
+ f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
+ f" {type(prompt)}."
+ )
+ elif isinstance(negative_prompt, str):
+ uncond_tokens = [negative_prompt] * batch_size
+ elif batch_size != len(negative_prompt):
+ raise ValueError(
+ f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
+ f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
+ " the batch size of `prompt`."
+ )
+ else:
+ uncond_tokens = negative_prompt
+
+ max_length = text_input_ids.shape[-1]
+ uncond_input = self.tokenizer(
+ uncond_tokens,
+ padding="max_length",
+ max_length=max_length,
+ truncation=True,
+ return_tensors="np",
+ )
+ uncond_embeddings = self.text_encoder(input_ids=uncond_input.input_ids.astype(np.int64))[0]
+ uncond_embeddings = np.repeat(uncond_embeddings, num_images_per_prompt, axis=0)
+
+ # For classifier free guidance, we need to do two forward passes.
+ # Here we concatenate the unconditional and text embeddings into a single batch
+ # to avoid doing two forward passes
+ text_embeddings = np.concatenate([uncond_embeddings, text_embeddings])
+
+ return text_embeddings
+
+ def run_safety_checker(self, image, dtype):
+ if self.safety_checker is not None:
+ safety_checker_input = self.feature_extractor(
+ self.numpy_to_pil(image), return_tensors="np"
+ ).pixel_values.astype(dtype)
+ # There will throw an error if use safety_checker batchsize>1
+ images, has_nsfw_concept = [], []
+ for i in range(image.shape[0]):
+ image_i, has_nsfw_concept_i = self.safety_checker(
+ clip_input=safety_checker_input[i : i + 1], images=image[i : i + 1]
+ )
+ images.append(image_i)
+ has_nsfw_concept.append(has_nsfw_concept_i[0])
+ image = np.concatenate(images)
+ else:
+ has_nsfw_concept = None
+ return image, has_nsfw_concept
+
+ def decode_latents(self, latents):
+ latents = 1 / 0.18215 * latents
+ image = np.concatenate(
+ [self.vae_decoder(latent_sample=latents[i : i + 1])[0] for i in range(latents.shape[0])]
+ )
+ image = np.clip(image / 2 + 0.5, 0, 1)
+ image = image.transpose([0, 2, 3, 1])
+ return image
+
+ def prepare_extra_step_kwargs(self, eta):
+ # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
+ # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
+ # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
+ # and should be between [0, 1]
+
+ accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
+ extra_step_kwargs = {}
+ if accepts_eta:
+ extra_step_kwargs["eta"] = eta
+
+ return extra_step_kwargs
+
+ def check_inputs(self, prompt, height, width, callback_steps):
+ if not isinstance(prompt, str) and not isinstance(prompt, list):
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
+
+ if height % 8 != 0 or width % 8 != 0:
+ raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
+
+ if (callback_steps is None) or (
+ callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
+ ):
+ raise ValueError(
+ f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
+ f" {type(callback_steps)}."
+ )
+
+ def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, generator, latents=None):
+ if generator is None:
+ generator = np.random
+
+ latents_shape = (batch_size, num_channels_latents, height // 8, width // 8)
+ if latents is None:
+ latents = paddle.to_tensor(generator.randn(*latents_shape), dtype=dtype)
+ elif latents.shape != latents_shape:
+ raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}")
+
+ # scale the initial noise by the standard deviation required by the scheduler
+ latents = latents * float(self.scheduler.init_noise_sigma)
+ return latents
+
+ def prepare_mask_latents(self, mask, masked_image, batch_size, dtype, do_classifier_free_guidance):
+ mask = mask.astype(dtype)
+ masked_image = masked_image.astype(dtype)
+
+ # encode the mask image into latents space so we can concatenate it to the latents
+ masked_image_latents = self.vae_encoder(sample=masked_image)[0]
+ masked_image_latents = 0.18215 * masked_image_latents
+
+ # duplicate mask and masked_image_latents for each generation per prompt, using mps friendly method
+ mask = mask.repeat(batch_size, 0)
+ masked_image_latents = masked_image_latents.repeat(batch_size, 0)
+
+ mask = np.concatenate([mask] * 2) if do_classifier_free_guidance else mask
+ masked_image_latents = (
+ np.concatenate([masked_image_latents] * 2) if do_classifier_free_guidance else masked_image_latents
+ )
+ masked_image_latents = masked_image_latents.astype(dtype)
+ return mask, masked_image_latents
+
+ def __call__(
+ self,
+ prompt: Union[str, List[str]],
+ image: PIL.Image.Image,
+ mask_image: PIL.Image.Image,
+ height: int = 512,
+ width: int = 512,
+ num_inference_steps: int = 50,
+ guidance_scale: float = 7.5,
+ negative_prompt: Optional[Union[str, List[str]]] = None,
+ num_images_per_prompt: Optional[int] = 1,
+ eta: float = 0.0,
+ generator: Optional[np.random.RandomState] = None,
+ latents: Optional[np.ndarray] = None,
+ output_type: Optional[str] = "pil",
+ return_dict: bool = True,
+ callback: Optional[Callable[[int, int, np.ndarray], None]] = None,
+ callback_steps: Optional[int] = 1,
+ ):
+ r"""
+ Function invoked when calling the pipeline for generation.
+
+ Args:
+ prompt (`str` or `List[str]`):
+ The prompt or prompts to guide the image generation.
+ image (`PIL.Image.Image`):
+ `Image`, or tensor representing an image batch which will be inpainted, *i.e.* parts of the image will
+ be masked out with `mask_image` and repainted according to `prompt`.
+ mask_image (`PIL.Image.Image`):
+ `Image`, or tensor representing an image batch, to mask `image`. White pixels in the mask will be
+ repainted, while black pixels will be preserved. If `mask_image` is a PIL image, it will be converted
+ to a single channel (luminance) before use. If it's a tensor, it should contain one color channel (L)
+ instead of 3, so the expected shape would be `(B, H, W, 1)`.
+ height (`int`, *optional*, defaults to 512):
+ The height in pixels of the generated image.
+ width (`int`, *optional*, defaults to 512):
+ The width in pixels of the generated image.
+ num_inference_steps (`int`, *optional*, defaults to 50):
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
+ expense of slower inference.
+ guidance_scale (`float`, *optional*, defaults to 7.5):
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
+ usually at the expense of lower image quality.
+ negative_prompt (`str` or `List[str]`, *optional*):
+ The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
+ if `guidance_scale` is less than `1`).
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
+ The number of images to generate per prompt.
+ eta (`float`, *optional*, defaults to 0.0):
+ Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
+ [`schedulers.DDIMScheduler`], will be ignored for others.
+ generator (`np.random.RandomState`, *optional*):
+ A np.random.RandomState to make generation deterministic.
+ latents (`np.ndarray`, *optional*):
+ Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
+ tensor will ge generated by sampling using the supplied random `generator`.
+ output_type (`str`, *optional*, defaults to `"pil"`):
+ The output format of the generate image. Choose between
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
+ return_dict (`bool`, *optional*, defaults to `True`):
+ Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
+ plain tuple.
+ callback (`Callable`, *optional*):
+ A function that will be called every `callback_steps` steps during inference. The function will be
+ called with the following arguments: `callback(step: int, timestep: int, latents: np.ndarray)`.
+ callback_steps (`int`, *optional*, defaults to 1):
+ The frequency at which the `callback` function will be called. If not specified, the callback will be
+ called at every step.
+
+ Returns:
+ [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
+ [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
+ When returning a tuple, the first element is a list with the generated images, and the second element is a
+ list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
+ (nsfw) content, according to the `safety_checker`.
+ """
+ # 1. Check inputs
+ self.check_inputs(prompt, height, width, callback_steps)
+
+ # 2. Define call parameters
+ batch_size = 1 if isinstance(prompt, str) else len(prompt)
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
+ # corresponds to doing no classifier free guidance.
+ do_classifier_free_guidance = guidance_scale > 1.0
+
+ # 3. Encode input prompt
+ text_embeddings = self._encode_prompt(
+ prompt, num_images_per_prompt, do_classifier_free_guidance, negative_prompt
+ )
+
+ # 4. set timesteps
+ self.scheduler.set_timesteps(num_inference_steps)
+ timesteps = self.scheduler.timesteps
+
+ # 5. Prepare latent variables
+ num_channels_latents = NUM_LATENT_CHANNELS
+ latents = self.prepare_latents(
+ batch_size * num_images_per_prompt,
+ num_channels_latents,
+ height,
+ width,
+ text_embeddings.dtype,
+ generator,
+ latents,
+ )
+
+ # 6. Preprocess mask and image
+ if isinstance(image, PIL.Image.Image) and isinstance(mask_image, PIL.Image.Image):
+ mask, masked_image = prepare_mask_and_masked_image(image, mask_image, latents.shape[-2:])
+
+ # 7. Prepare mask latent variables
+ mask, masked_image_latents = self.prepare_mask_latents(
+ mask,
+ masked_image,
+ batch_size * num_images_per_prompt,
+ text_embeddings.dtype,
+ do_classifier_free_guidance,
+ )
+ num_channels_mask = mask.shape[1]
+ num_channels_masked_image = masked_image_latents.shape[1]
+ mask = paddle.to_tensor(mask)
+ masked_image_latents = paddle.to_tensor(masked_image_latents)
+
+ # 8. Check that sizes of mask, masked image and latents match
+ unet_input_channels = NUM_UNET_INPUT_CHANNELS
+ if num_channels_latents + num_channels_mask + num_channels_masked_image != unet_input_channels:
+ raise ValueError(
+ "Incorrect configuration settings! The config of `pipeline.unet` expects"
+ f" {unet_input_channels} but received `num_channels_latents`: {num_channels_latents} +"
+ f" `num_channels_mask`: {num_channels_mask} + `num_channels_masked_image`: {num_channels_masked_image}"
+ f" = {num_channels_latents+num_channels_masked_image+num_channels_mask}. Please verify the config of"
+ " `pipeline.unet` or your `mask_image` or `image` input."
+ )
+
+ # 9. Prepare extra step kwargs.
+ extra_step_kwargs = self.prepare_extra_step_kwargs(eta)
+
+ # 10. Denoising loop
+ num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
+ text_embeddings = paddle.to_tensor(text_embeddings, dtype="float32")
+ for i, t in enumerate(timesteps):
+ # expand the latents if we are doing classifier free guidance
+ latent_model_input = paddle.concat([latents] * 2) if do_classifier_free_guidance else latents
+ # concat latents, mask, masked_image_latnets in the channel dimension
+ latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
+ latent_model_input = paddle.concat([latent_model_input, mask, masked_image_latents], axis=1)
+
+ # predict the noise residual
+ noise_pred = self.unet.zero_copy_infer(
+ sample=latent_model_input, timestep=t, encoder_hidden_states=text_embeddings
+ )[0]
+
+ # perform guidance
+ if do_classifier_free_guidance:
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
+ noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
+
+ # compute the previous noisy sample x_t -> x_t-1
+ scheduler_output = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs)
+ latents = scheduler_output.prev_sample
+
+ # call the callback, if provided
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
+ progress_bar.update()
+ if callback is not None and i % callback_steps == 0:
+ callback(i, t, latents)
+
+ # 11. Post-processing
+ image = self.decode_latents(latents.numpy())
+
+ # 12. Run safety checker
+ image, has_nsfw_concept = self.run_safety_checker(image, text_embeddings.dtype)
+
+ # 13. Convert to PIL
+ if output_type == "pil":
+ image = self.numpy_to_pil(image)
+
+ if not return_dict:
+ return (image, has_nsfw_concept)
+
+ return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
diff --git a/ppdiffusers/pipelines/stable_diffusion/pipeline_fastdeploy_stable_diffusion_inpaint_legacy.py b/ppdiffusers/pipelines/stable_diffusion/pipeline_fastdeploy_stable_diffusion_inpaint_legacy.py
new file mode 100644
index 0000000000000000000000000000000000000000..eeec062eaa837626f5b4ec59014f9b3c33bd0486
--- /dev/null
+++ b/ppdiffusers/pipelines/stable_diffusion/pipeline_fastdeploy_stable_diffusion_inpaint_legacy.py
@@ -0,0 +1,477 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+# Copyright 2022 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import inspect
+from typing import Callable, List, Optional, Union
+
+import numpy as np
+import paddle
+import PIL
+
+from paddlenlp.transformers import CLIPFeatureExtractor, CLIPTokenizer
+
+from ...fastdeploy_utils import FastDeployRuntimeModel
+from ...pipeline_utils import DiffusionPipeline
+from ...schedulers import (
+ DDIMScheduler,
+ DPMSolverMultistepScheduler,
+ EulerAncestralDiscreteScheduler,
+ EulerDiscreteScheduler,
+ LMSDiscreteScheduler,
+ PNDMScheduler,
+)
+from ...utils import PIL_INTERPOLATION, logging
+from . import StableDiffusionPipelineOutput
+
+logger = logging.get_logger(__name__) # pylint: disable=invalid-name
+
+
+def preprocess_image(image):
+ w, h = image.size
+ w, h = map(lambda x: x - x % 32, (w, h)) # resize to integer multiple of 32
+ image = image.resize((w, h), resample=PIL_INTERPOLATION["lanczos"])
+ image = np.array(image).astype(np.float32) / 255.0
+ image = image[None].transpose(0, 3, 1, 2)
+ return 2.0 * image - 1.0
+
+
+def preprocess_mask(mask, scale_factor=8):
+ mask = mask.convert("L")
+ w, h = mask.size
+ w, h = map(lambda x: x - x % 32, (w, h)) # resize to integer multiple of 32
+ mask = mask.resize((w // scale_factor, h // scale_factor), resample=PIL_INTERPOLATION["nearest"])
+ mask = np.array(mask).astype(np.float32) / 255.0
+ mask = np.tile(mask, (4, 1, 1))
+ mask = mask[None].transpose(0, 1, 2, 3) # what does this step do?
+ mask = 1 - mask # repaint white, keep black
+ return mask
+
+
+class FastDeployStableDiffusionInpaintPipelineLegacy(DiffusionPipeline):
+ r"""
+ Pipeline for text-guided image inpainting legacy using Stable Diffusion.
+
+ This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
+ library implements for all the pipelines (such as downloading or saving etc.)
+
+ Args:
+ vae_encoder ([`FastDeployRuntimeModel`]):
+ Variational Auto-Encoder (VAE) Model to encode images to latent representations.
+ vae_decoder ([`FastDeployRuntimeModel`]):
+ Variational Auto-Encoder (VAE) Model to decode images from latent representations.
+ text_encoder ([`FastDeployRuntimeModel`]):
+ Frozen text-encoder. Stable Diffusion uses the text portion of
+ [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
+ the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
+ tokenizer (`CLIPTokenizer`):
+ Tokenizer of class
+ [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
+ unet ([`FastDeployRuntimeModel`]): Conditional U-Net architecture to denoise the encoded image latents.
+ scheduler ([`SchedulerMixin`]):
+ A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
+ [`DDIMScheduler`], [`LMSDiscreteScheduler`], [`PNDMScheduler`], [`EulerDiscreteScheduler`], [`EulerAncestralDiscreteScheduler`]
+ or [`DPMSolverMultistepScheduler`].
+ safety_checker ([`FastDeployRuntimeModel`]):
+ Classification module that estimates whether generated images could be considered offensive or harmful.
+ Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
+ feature_extractor ([`CLIPFeatureExtractor`]):
+ Model that extracts features from generated images to be used as inputs for the `safety_checker`.
+ """
+ _optional_components = ["safety_checker", "feature_extractor"]
+
+ def __init__(
+ self,
+ vae_encoder: FastDeployRuntimeModel,
+ vae_decoder: FastDeployRuntimeModel,
+ text_encoder: FastDeployRuntimeModel,
+ tokenizer: CLIPTokenizer,
+ unet: FastDeployRuntimeModel,
+ scheduler: Union[
+ DDIMScheduler,
+ PNDMScheduler,
+ LMSDiscreteScheduler,
+ EulerDiscreteScheduler,
+ EulerAncestralDiscreteScheduler,
+ DPMSolverMultistepScheduler,
+ ],
+ safety_checker: FastDeployRuntimeModel,
+ feature_extractor: CLIPFeatureExtractor,
+ requires_safety_checker: bool = True,
+ ):
+ super().__init__()
+
+ if safety_checker is None and requires_safety_checker:
+ logger.warning(
+ f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
+ " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
+ " results in services or applications open to the public. PaddleNLP team, diffusers team and Hugging Face"
+ " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
+ " it only for use-cases that involve analyzing network behavior or auditing its results. For more"
+ " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
+ )
+ if safety_checker is not None and feature_extractor is None:
+ raise ValueError(
+ "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
+ " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
+ )
+
+ self.register_modules(
+ vae_encoder=vae_encoder,
+ vae_decoder=vae_decoder,
+ text_encoder=text_encoder,
+ tokenizer=tokenizer,
+ unet=unet,
+ scheduler=scheduler,
+ safety_checker=safety_checker,
+ feature_extractor=feature_extractor,
+ )
+
+ self.register_to_config(requires_safety_checker=requires_safety_checker)
+
+ def _encode_prompt(self, prompt, num_images_per_prompt, do_classifier_free_guidance, negative_prompt):
+ r"""
+ Encodes the prompt into text encoder hidden states.
+
+ Args:
+ prompt (`str` or `list(int)`):
+ prompt to be encoded
+ num_images_per_prompt (`int`):
+ number of images that should be generated per prompt
+ do_classifier_free_guidance (`bool`):
+ whether to use classifier free guidance or not
+ negative_prompt (`str` or `List[str]`):
+ The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
+ if `guidance_scale` is less than `1`).
+ """
+ batch_size = len(prompt) if isinstance(prompt, list) else 1
+
+ # get prompt text embeddings
+ text_inputs = self.tokenizer(
+ prompt,
+ padding="max_length",
+ max_length=self.tokenizer.model_max_length,
+ truncation=True,
+ return_tensors="np",
+ )
+ text_input_ids = text_inputs.input_ids
+ untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="np").input_ids
+
+ if not np.array_equal(text_input_ids, untruncated_ids):
+ removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1])
+ logger.warning(
+ "The following part of your input was truncated because CLIP can only handle sequences up to"
+ f" {self.tokenizer.model_max_length} tokens: {removed_text}"
+ )
+
+ text_embeddings = self.text_encoder(input_ids=text_input_ids.astype(np.int64))[0]
+ text_embeddings = np.repeat(text_embeddings, num_images_per_prompt, axis=0)
+
+ # get unconditional embeddings for classifier free guidance
+ if do_classifier_free_guidance:
+ uncond_tokens: List[str]
+ if negative_prompt is None:
+ uncond_tokens = [""] * batch_size
+ elif type(prompt) is not type(negative_prompt):
+ raise TypeError(
+ f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
+ f" {type(prompt)}."
+ )
+ elif isinstance(negative_prompt, str):
+ uncond_tokens = [negative_prompt] * batch_size
+ elif batch_size != len(negative_prompt):
+ raise ValueError(
+ f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
+ f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
+ " the batch size of `prompt`."
+ )
+ else:
+ uncond_tokens = negative_prompt
+
+ max_length = text_input_ids.shape[-1]
+ uncond_input = self.tokenizer(
+ uncond_tokens,
+ padding="max_length",
+ max_length=max_length,
+ truncation=True,
+ return_tensors="np",
+ )
+ uncond_embeddings = self.text_encoder(input_ids=uncond_input.input_ids.astype(np.int64))[0]
+ uncond_embeddings = np.repeat(uncond_embeddings, num_images_per_prompt, axis=0)
+
+ # For classifier free guidance, we need to do two forward passes.
+ # Here we concatenate the unconditional and text embeddings into a single batch
+ # to avoid doing two forward passes
+ text_embeddings = np.concatenate([uncond_embeddings, text_embeddings])
+
+ return text_embeddings
+
+ def run_safety_checker(self, image, dtype):
+ if self.safety_checker is not None:
+ safety_checker_input = self.feature_extractor(
+ self.numpy_to_pil(image), return_tensors="np"
+ ).pixel_values.astype(dtype)
+ # There will throw an error if use safety_checker batchsize>1
+ images, has_nsfw_concept = [], []
+ for i in range(image.shape[0]):
+ image_i, has_nsfw_concept_i = self.safety_checker(
+ clip_input=safety_checker_input[i : i + 1], images=image[i : i + 1]
+ )
+ images.append(image_i)
+ has_nsfw_concept.append(has_nsfw_concept_i[0])
+ image = np.concatenate(images)
+ else:
+ has_nsfw_concept = None
+ return image, has_nsfw_concept
+
+ def decode_latents(self, latents):
+ latents = 1 / 0.18215 * latents
+ image = np.concatenate(
+ [self.vae_decoder(latent_sample=latents[i : i + 1])[0] for i in range(latents.shape[0])]
+ )
+ image = np.clip(image / 2 + 0.5, 0, 1)
+ image = image.transpose([0, 2, 3, 1])
+ return image
+
+ def prepare_extra_step_kwargs(self, eta):
+ # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
+ # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
+ # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
+ # and should be between [0, 1]
+
+ accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
+ extra_step_kwargs = {}
+ if accepts_eta:
+ extra_step_kwargs["eta"] = eta
+
+ return extra_step_kwargs
+
+ def check_inputs(self, prompt, strength, callback_steps):
+ if not isinstance(prompt, str) and not isinstance(prompt, list):
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
+
+ if strength < 0 or strength > 1:
+ raise ValueError(f"The value of strength should in [1.0, 1.0] but is {strength}")
+
+ if (callback_steps is None) or (
+ callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
+ ):
+ raise ValueError(
+ f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
+ f" {type(callback_steps)}."
+ )
+
+ def get_timesteps(self, num_inference_steps, strength):
+ # get the original timestep using init_timestep
+ offset = self.scheduler.config.get("steps_offset", 0)
+ init_timestep = int(num_inference_steps * strength) + offset
+ init_timestep = min(init_timestep, num_inference_steps)
+
+ t_start = max(num_inference_steps - init_timestep + offset, 0)
+ timesteps = self.scheduler.timesteps[t_start:]
+
+ return timesteps, num_inference_steps - t_start
+
+ def prepare_latents(self, image, timestep, batch_size, num_images_per_prompt, dtype, generator=None, noise=None):
+ if generator is None:
+ generator = np.random
+
+ image = image.astype(dtype)
+ init_latents = self.vae_encoder(sample=image)[0]
+ init_latents = 0.18215 * init_latents
+ init_latents = paddle.to_tensor(init_latents)
+
+ # Expand init_latents for batch_size and num_images_per_prompt
+ init_latents = paddle.concat([init_latents] * batch_size * num_images_per_prompt, axis=0)
+ init_latents_orig = paddle.to_tensor(init_latents)
+
+ # add noise to latents using the timesteps
+ if noise is None:
+ noise = paddle.to_tensor(generator.randn(*init_latents.shape).astype(dtype))
+ elif list(noise.shape) != list(init_latents.shape):
+ raise ValueError(f"Unexpected noise shape, got {noise.shape}, expected {init_latents.shape}")
+ elif isinstance(noise, np.ndarray):
+ noise = paddle.to_tensor(noise, dtype=dtype)
+
+ init_latents = self.scheduler.add_noise(init_latents, noise, timestep)
+ latents = init_latents
+ return latents, init_latents_orig, noise
+
+ def __call__(
+ self,
+ prompt: Union[str, List[str]],
+ image: Union[np.ndarray, PIL.Image.Image] = None,
+ mask_image: Union[np.ndarray, PIL.Image.Image] = None,
+ strength: float = 0.8,
+ num_inference_steps: Optional[int] = 50,
+ guidance_scale: Optional[float] = 7.5,
+ negative_prompt: Optional[Union[str, List[str]]] = None,
+ num_images_per_prompt: Optional[int] = 1,
+ eta: Optional[float] = 0.0,
+ generator: Optional[np.random.RandomState] = None,
+ noise: Optional[np.ndarray] = None,
+ output_type: Optional[str] = "pil",
+ return_dict: bool = True,
+ callback: Optional[Callable[[int, int, np.ndarray], None]] = None,
+ callback_steps: Optional[int] = 1,
+ ):
+ r"""
+ Function invoked when calling the pipeline for generation.
+
+ Args:
+ prompt (`str` or `List[str]`):
+ The prompt or prompts to guide the image generation.
+ image (`nd.ndarray` or `PIL.Image.Image`):
+ `Image`, or tensor representing an image batch, that will be used as the starting point for the
+ process. This is the image whose masked region will be inpainted.
+ mask_image (`nd.ndarray` or `PIL.Image.Image`):
+ `Image`, or tensor representing an image batch, to mask `image`. White pixels in the mask will be
+ replaced by noise and therefore repainted, while black pixels will be preserved. If `mask_image` is a
+ PIL image, it will be converted to a single channel (luminance) before use. If it's a tensor, it should
+ contain one color channel (L) instead of 3, so the expected shape would be `(B, H, W, 1)`.uu
+ strength (`float`, *optional*, defaults to 0.8):
+ Conceptually, indicates how much to transform the reference `image`. Must be between 0 and 1.
+ `image` will be used as a starting point, adding more noise to it the larger the `strength`. The
+ number of denoising steps depends on the amount of noise initially added. When `strength` is 1, added
+ noise will be maximum and the denoising process will run for the full number of iterations specified in
+ `num_inference_steps`. A value of 1, therefore, essentially ignores `image`.
+ num_inference_steps (`int`, *optional*, defaults to 50):
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
+ expense of slower inference. This parameter will be modulated by `strength`.
+ guidance_scale (`float`, *optional*, defaults to 7.5):
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
+ usually at the expense of lower image quality.
+ negative_prompt (`str` or `List[str]`, *optional*):
+ The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
+ if `guidance_scale` is less than `1`).
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
+ The number of images to generate per prompt.
+ eta (`float`, *optional*, defaults to 0.0):
+ Corresponds to parameter eta (?) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
+ [`schedulers.DDIMScheduler`], will be ignored for others.
+ generator (`np.random.RandomState`, *optional*):
+ A np.random.RandomState to make generation deterministic.
+ noise (`np.ndarray`, *optional*):
+ Pre-generated noise tensor, sampled from a Gaussian distribution, to be used as inputs for image
+ generation. If not provided, a noise tensor will ge generated by sampling using the supplied random
+ `generator`.
+ output_type (`str`, *optional*, defaults to `"pil"`):
+ The output format of the generate image. Choose between
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
+ return_dict (`bool`, *optional*, defaults to `True`):
+ Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
+ plain tuple.
+ callback (`Callable`, *optional*):
+ A function that will be called every `callback_steps` steps during inference. The function will be
+ called with the following arguments: `callback(step: int, timestep: int, latents: np.ndarray)`.
+ callback_steps (`int`, *optional*, defaults to 1):
+ The frequency at which the `callback` function will be called. If not specified, the callback will be
+ called at every step.
+
+ Returns:
+ [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
+ [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
+ When returning a tuple, the first element is a list with the generated images, and the second element is a
+ list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
+ (nsfw) content, according to the `safety_checker`.
+ """
+ # 1. Check inputs
+ self.check_inputs(prompt, strength, callback_steps)
+
+ # 2. Define call parameters
+ batch_size = 1 if isinstance(prompt, str) else len(prompt)
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
+ # corresponds to doing no classifier free guidance.
+ do_classifier_free_guidance = guidance_scale > 1.0
+
+ # 3. Encode input prompt
+ text_embeddings = self._encode_prompt(
+ prompt, num_images_per_prompt, do_classifier_free_guidance, negative_prompt
+ )
+
+ # 4. Preprocess image and mask
+ if isinstance(image, PIL.Image.Image):
+ image = preprocess_image(image)
+
+ if isinstance(mask_image, PIL.Image.Image):
+ mask_image = preprocess_mask(mask_image)
+
+ # 5. set timesteps
+ self.scheduler.set_timesteps(num_inference_steps)
+ timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength)
+ latent_timestep = timesteps[:1].tile([batch_size * num_images_per_prompt])
+
+ # 6. Prepare latent variables
+ # encode the init image into latents and scale the latents
+ latents, init_latents_orig, noise = self.prepare_latents(
+ image, latent_timestep, batch_size, num_images_per_prompt, text_embeddings.dtype, generator, noise
+ )
+
+ # 7. Prepare mask latent
+ mask = paddle.to_tensor(mask_image, dtype=latents.dtype)
+ mask = paddle.concat([mask] * batch_size * num_images_per_prompt)
+
+ # 8. Prepare extra step kwargs.
+ extra_step_kwargs = self.prepare_extra_step_kwargs(eta)
+
+ # 9. Denoising loop
+ num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
+ text_embeddings = paddle.to_tensor(text_embeddings, dtype="float32")
+ for i, t in enumerate(timesteps):
+ # expand the latents if we are doing classifier free guidance
+ latent_model_input = paddle.concat([latents] * 2) if do_classifier_free_guidance else latents
+ latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
+ latent_model_input = latent_model_input
+
+ # predict the noise residual
+ noise_pred = self.unet.zero_copy_infer(
+ sample=latent_model_input, timestep=t, encoder_hidden_states=text_embeddings
+ )[0]
+ # perform guidance
+ if do_classifier_free_guidance:
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
+ noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
+
+ # compute the previous noisy sample x_t -> x_t-1
+ scheduler_output = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs)
+ latents = scheduler_output.prev_sample
+ init_latents_proper = self.scheduler.add_noise(init_latents_orig, noise, t)
+
+ latents = (init_latents_proper * mask) + (latents * (1 - mask))
+
+ # call the callback, if provided
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
+ progress_bar.update()
+ if callback is not None and i % callback_steps == 0:
+ callback(i, t, latents)
+
+ # 10. Post-processing
+ image = self.decode_latents(latents.numpy())
+
+ # 11. Run safety checker
+ image, has_nsfw_concept = self.run_safety_checker(image, text_embeddings.dtype)
+
+ # 12. Convert to PIL
+ if output_type == "pil":
+ image = self.numpy_to_pil(image)
+
+ if not return_dict:
+ return (image, has_nsfw_concept)
+
+ return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
diff --git a/ppdiffusers/pipelines/stable_diffusion/pipeline_fastdeploy_stable_diffusion_mega.py b/ppdiffusers/pipelines/stable_diffusion/pipeline_fastdeploy_stable_diffusion_mega.py
new file mode 100644
index 0000000000000000000000000000000000000000..80f961b7dcc640e8279596443c5afbad2c378932
--- /dev/null
+++ b/ppdiffusers/pipelines/stable_diffusion/pipeline_fastdeploy_stable_diffusion_mega.py
@@ -0,0 +1,193 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import inspect
+from typing import Callable, List, Optional, Union
+
+import numpy as np
+import PIL.Image
+
+from ...utils import logging
+from .pipeline_fastdeploy_stable_diffusion import FastDeployStableDiffusionPipeline
+from .pipeline_fastdeploy_stable_diffusion_img2img import (
+ FastDeployStableDiffusionImg2ImgPipeline,
+)
+from .pipeline_fastdeploy_stable_diffusion_inpaint_legacy import (
+ FastDeployStableDiffusionInpaintPipelineLegacy,
+)
+
+logger = logging.get_logger(__name__) # pylint: disable=invalid-name
+
+
+class FastDeployStableDiffusionMegaPipeline(FastDeployStableDiffusionPipeline):
+ r"""
+ Pipeline for generation using FastDeployStableDiffusion.
+
+ This model inherits from [`FastDeployStableDiffusionPipeline`]. Check the superclass documentation for the generic methods the
+ library implements for all the pipelines (such as downloading or saving etc.)
+
+ Args:
+ vae_encoder ([`FastDeployRuntimeModel`]):
+ Variational Auto-Encoder (VAE) Model to encode images to latent representations.
+ vae_decoder ([`FastDeployRuntimeModel`]):
+ Variational Auto-Encoder (VAE) Model to decode images from latent representations.
+ text_encoder ([`FastDeployRuntimeModel`]):
+ Frozen text-encoder. Stable Diffusion uses the text portion of
+ [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
+ the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
+ tokenizer (`CLIPTokenizer`):
+ Tokenizer of class
+ [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
+ unet ([`FastDeployRuntimeModel`]): Conditional U-Net architecture to denoise the encoded image latents.
+ scheduler ([`SchedulerMixin`]):
+ A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
+ [`DDIMScheduler`], [`LMSDiscreteScheduler`], [`PNDMScheduler`], [`EulerDiscreteScheduler`], [`EulerAncestralDiscreteScheduler`]
+ or [`DPMSolverMultistepScheduler`].
+ safety_checker ([`FastDeployRuntimeModel`]):
+ Classification module that estimates whether generated images could be considered offensive or harmful.
+ Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
+ feature_extractor ([`CLIPFeatureExtractor`]):
+ Model that extracts features from generated images to be used as inputs for the `safety_checker`.
+ """
+ _optional_components = ["safety_checker", "feature_extractor"]
+
+ def __call__(self, *args, **kwargs):
+ return self.text2img(*args, **kwargs)
+
+ def text2img(
+ self,
+ prompt: Union[str, List[str]],
+ height: Optional[int] = 512,
+ width: Optional[int] = 512,
+ num_inference_steps: Optional[int] = 50,
+ guidance_scale: Optional[float] = 7.5,
+ negative_prompt: Optional[Union[str, List[str]]] = None,
+ num_images_per_prompt: Optional[int] = 1,
+ eta: Optional[float] = 0.0,
+ generator: Optional[np.random.RandomState] = None,
+ latents: Optional[np.ndarray] = None,
+ output_type: Optional[str] = "pil",
+ return_dict: bool = True,
+ callback: Optional[Callable[[int, int, np.ndarray], None]] = None,
+ callback_steps: Optional[int] = 1,
+ ):
+
+ expected_components = inspect.signature(FastDeployStableDiffusionPipeline.__init__).parameters.keys()
+ components = {name: component for name, component in self.components.items() if name in expected_components}
+ temp_pipeline = FastDeployStableDiffusionPipeline(
+ **components, requires_safety_checker=self.config.requires_safety_checker
+ )
+ output = temp_pipeline(
+ prompt=prompt,
+ height=height,
+ width=width,
+ num_inference_steps=num_inference_steps,
+ guidance_scale=guidance_scale,
+ negative_prompt=negative_prompt,
+ num_images_per_prompt=num_images_per_prompt,
+ eta=eta,
+ generator=generator,
+ latents=latents,
+ output_type=output_type,
+ return_dict=return_dict,
+ callback=callback,
+ callback_steps=callback_steps,
+ )
+ return output
+
+ def img2img(
+ self,
+ prompt: Union[str, List[str]],
+ image: Union[np.ndarray, PIL.Image.Image],
+ strength: float = 0.8,
+ num_inference_steps: Optional[int] = 50,
+ guidance_scale: Optional[float] = 7.5,
+ negative_prompt: Optional[Union[str, List[str]]] = None,
+ num_images_per_prompt: Optional[int] = 1,
+ eta: Optional[float] = 0.0,
+ generator: Optional[np.random.RandomState] = None,
+ noise: Optional[np.ndarray] = None,
+ output_type: Optional[str] = "pil",
+ return_dict: bool = True,
+ callback: Optional[Callable[[int, int, np.ndarray], None]] = None,
+ callback_steps: Optional[int] = 1,
+ ):
+ expected_components = inspect.signature(FastDeployStableDiffusionImg2ImgPipeline.__init__).parameters.keys()
+ components = {name: component for name, component in self.components.items() if name in expected_components}
+ temp_pipeline = FastDeployStableDiffusionImg2ImgPipeline(
+ **components, requires_safety_checker=self.config.requires_safety_checker
+ )
+ output = temp_pipeline(
+ prompt=prompt,
+ image=image,
+ strength=strength,
+ num_inference_steps=num_inference_steps,
+ guidance_scale=guidance_scale,
+ negative_prompt=negative_prompt,
+ num_images_per_prompt=num_images_per_prompt,
+ eta=eta,
+ generator=generator,
+ noise=noise,
+ output_type=output_type,
+ return_dict=return_dict,
+ callback=callback,
+ callback_steps=callback_steps,
+ )
+
+ return output
+
+ def inpaint_legacy(
+ self,
+ prompt: Union[str, List[str]],
+ image: Union[np.ndarray, PIL.Image.Image],
+ mask_image: Union[np.ndarray, PIL.Image.Image],
+ strength: float = 0.8,
+ num_inference_steps: Optional[int] = 50,
+ guidance_scale: Optional[float] = 7.5,
+ negative_prompt: Optional[Union[str, List[str]]] = None,
+ num_images_per_prompt: Optional[int] = 1,
+ eta: Optional[float] = 0.0,
+ generator: Optional[np.random.RandomState] = None,
+ noise: Optional[np.ndarray] = None,
+ output_type: Optional[str] = "pil",
+ return_dict: bool = True,
+ callback: Optional[Callable[[int, int, np.ndarray], None]] = None,
+ callback_steps: Optional[int] = 1,
+ ):
+ expected_components = inspect.signature(
+ FastDeployStableDiffusionInpaintPipelineLegacy.__init__
+ ).parameters.keys()
+ components = {name: component for name, component in self.components.items() if name in expected_components}
+ temp_pipeline = FastDeployStableDiffusionInpaintPipelineLegacy(
+ **components, requires_safety_checker=self.config.requires_safety_checker
+ )
+ output = temp_pipeline(
+ prompt=prompt,
+ image=image,
+ mask_image=mask_image,
+ strength=strength,
+ num_inference_steps=num_inference_steps,
+ guidance_scale=guidance_scale,
+ negative_prompt=negative_prompt,
+ num_images_per_prompt=num_images_per_prompt,
+ eta=eta,
+ generator=generator,
+ noise=noise,
+ output_type=output_type,
+ return_dict=return_dict,
+ callback=callback,
+ callback_steps=callback_steps,
+ )
+
+ return output
diff --git a/ppdiffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py b/ppdiffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py
new file mode 100644
index 0000000000000000000000000000000000000000..964e948cc87029d187f73daf3029e4c5155f97d8
--- /dev/null
+++ b/ppdiffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py
@@ -0,0 +1,498 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+# Copyright 2022 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import inspect
+from typing import Callable, List, Optional, Union
+
+import paddle
+from packaging import version
+
+from paddlenlp.transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
+
+from ...configuration_utils import FrozenDict
+from ...models import AutoencoderKL, UNet2DConditionModel
+from ...pipeline_utils import DiffusionPipeline
+from ...schedulers import (
+ DDIMScheduler,
+ DPMSolverMultistepScheduler,
+ EulerAncestralDiscreteScheduler,
+ EulerDiscreteScheduler,
+ LMSDiscreteScheduler,
+ PNDMScheduler,
+)
+from ...utils import deprecate, logging
+from . import StableDiffusionPipelineOutput
+from .safety_checker import StableDiffusionSafetyChecker
+
+logger = logging.get_logger(__name__) # pylint: disable=invalid-name
+
+
+class StableDiffusionPipeline(DiffusionPipeline):
+ r"""
+ Pipeline for text-to-image generation using Stable Diffusion.
+
+ This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
+ library implements for all the pipelines (such as downloading or saving, running on a particular xxxx, etc.)
+
+ Args:
+ vae ([`AutoencoderKL`]):
+ Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
+ text_encoder ([`CLIPTextModel`]):
+ Frozen text-encoder. Stable Diffusion uses the text portion of
+ [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
+ the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
+ tokenizer (`CLIPTokenizer`):
+ Tokenizer of class
+ [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
+ unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
+ scheduler ([`SchedulerMixin`]):
+ A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
+ [`DDIMScheduler`], [`LMSDiscreteScheduler`], [`PNDMScheduler`], [`EulerDiscreteScheduler`], [`EulerAncestralDiscreteScheduler`]
+ or [`DPMSolverMultistepScheduler`].
+ safety_checker ([`StableDiffusionSafetyChecker`]):
+ Classification module that estimates whether generated images could be considered offensive or harmful.
+ Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
+ feature_extractor ([`CLIPFeatureExtractor`]):
+ Model that extracts features from generated images to be used as inputs for the `safety_checker`.
+ """
+ _optional_components = ["safety_checker", "feature_extractor"]
+
+ def __init__(
+ self,
+ vae: AutoencoderKL,
+ text_encoder: CLIPTextModel,
+ tokenizer: CLIPTokenizer,
+ unet: UNet2DConditionModel,
+ scheduler: Union[
+ DDIMScheduler,
+ PNDMScheduler,
+ LMSDiscreteScheduler,
+ EulerDiscreteScheduler,
+ EulerAncestralDiscreteScheduler,
+ DPMSolverMultistepScheduler,
+ ],
+ safety_checker: StableDiffusionSafetyChecker,
+ feature_extractor: CLIPFeatureExtractor,
+ requires_safety_checker: bool = True,
+ ):
+ super().__init__()
+
+ if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
+ deprecation_message = (
+ f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
+ f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
+ "to update the config accordingly as leaving `steps_offset` might led to incorrect results"
+ " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
+ " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
+ " file"
+ )
+ deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False)
+ new_config = dict(scheduler.config)
+ new_config["steps_offset"] = 1
+ scheduler._internal_dict = FrozenDict(new_config)
+
+ if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True:
+ deprecation_message = (
+ f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`."
+ " `clip_sample` should be set to False in the configuration file. Please make sure to update the"
+ " config accordingly as not setting `clip_sample` in the config might lead to incorrect results in"
+ " future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very"
+ " nice if you could open a Pull request for the `scheduler/scheduler_config.json` file"
+ )
+ deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False)
+ new_config = dict(scheduler.config)
+ new_config["clip_sample"] = False
+ scheduler._internal_dict = FrozenDict(new_config)
+
+ if safety_checker is None and requires_safety_checker:
+ logger.warning(
+ f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
+ " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
+ " results in services or applications open to the public. PaddleNLP team, diffusers team and Hugging Face"
+ " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
+ " it only for use-cases that involve analyzing network behavior or auditing its results. For more"
+ " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
+ )
+ if safety_checker is not None and feature_extractor is None:
+ raise ValueError(
+ "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
+ " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
+ )
+ is_unet_version_less_0_9_0 = hasattr(unet.config, "_ppdiffusers_version") and version.parse(
+ version.parse(unet.config._ppdiffusers_version).base_version
+ ) < version.parse("0.9.0.dev0")
+ is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64
+ if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64:
+ deprecation_message = (
+ "The configuration file of the unet has set the default `sample_size` to smaller than"
+ " 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the"
+ " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
+ " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
+ " \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
+ " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
+ " in the config might lead to incorrect results in future versions. If you have downloaded this"
+ " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
+ " the `unet/config.json` file"
+ )
+ deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False)
+ new_config = dict(unet.config)
+ new_config["sample_size"] = 64
+ unet._internal_dict = FrozenDict(new_config)
+
+ self.register_modules(
+ vae=vae,
+ text_encoder=text_encoder,
+ tokenizer=tokenizer,
+ unet=unet,
+ scheduler=scheduler,
+ safety_checker=safety_checker,
+ feature_extractor=feature_extractor,
+ )
+ self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
+ self.register_to_config(requires_safety_checker=requires_safety_checker)
+
+ def _encode_prompt(self, prompt, num_images_per_prompt, do_classifier_free_guidance, negative_prompt):
+ r"""
+ Encodes the prompt into text encoder hidden states.
+
+ Args:
+ prompt (`str` or `list(int)`):
+ prompt to be encoded
+ num_images_per_prompt (`int`):
+ number of images that should be generated per prompt
+ do_classifier_free_guidance (`bool`):
+ whether to use classifier free guidance or not
+ negative_prompt (`str` or `List[str]`):
+ The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
+ if `guidance_scale` is less than `1`).
+ """
+ batch_size = len(prompt) if isinstance(prompt, list) else 1
+
+ text_inputs = self.tokenizer(
+ prompt,
+ padding="max_length",
+ max_length=self.tokenizer.model_max_length,
+ truncation=True,
+ return_tensors="pd",
+ )
+ text_input_ids = text_inputs.input_ids
+ untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pd").input_ids
+
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not paddle.equal_all(
+ text_input_ids, untruncated_ids
+ ):
+ removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1])
+ logger.warning(
+ "The following part of your input was truncated because CLIP can only handle sequences up to"
+ f" {self.tokenizer.model_max_length} tokens: {removed_text}"
+ )
+
+ config = (
+ self.text_encoder.config
+ if isinstance(self.text_encoder.config, dict)
+ else self.text_encoder.config.to_dict()
+ )
+ if config.get("use_attention_mask", None) is not None and config["use_attention_mask"]:
+ attention_mask = text_inputs.attention_mask
+ else:
+ attention_mask = None
+
+ text_embeddings = self.text_encoder(
+ text_input_ids,
+ attention_mask=attention_mask,
+ )
+ text_embeddings = text_embeddings[0]
+
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
+ bs_embed, seq_len, _ = text_embeddings.shape
+ text_embeddings = text_embeddings.tile([1, num_images_per_prompt, 1])
+ text_embeddings = text_embeddings.reshape([bs_embed * num_images_per_prompt, seq_len, -1])
+
+ # get unconditional embeddings for classifier free guidance
+ if do_classifier_free_guidance:
+ uncond_tokens: List[str]
+ if negative_prompt is None:
+ uncond_tokens = [""] * batch_size
+ elif type(prompt) is not type(negative_prompt):
+ raise TypeError(
+ f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
+ f" {type(prompt)}."
+ )
+ elif isinstance(negative_prompt, str):
+ uncond_tokens = [negative_prompt]
+ elif batch_size != len(negative_prompt):
+ raise ValueError(
+ f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
+ f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
+ " the batch size of `prompt`."
+ )
+ else:
+ uncond_tokens = negative_prompt
+
+ max_length = text_input_ids.shape[-1]
+ uncond_input = self.tokenizer(
+ uncond_tokens,
+ padding="max_length",
+ max_length=max_length,
+ truncation=True,
+ return_tensors="pd",
+ )
+
+ if config.get("use_attention_mask", None) is not None and config["use_attention_mask"]:
+ attention_mask = uncond_input.attention_mask
+ else:
+ attention_mask = None
+
+ uncond_embeddings = self.text_encoder(
+ uncond_input.input_ids,
+ attention_mask=attention_mask,
+ )
+ uncond_embeddings = uncond_embeddings[0]
+
+ # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
+ seq_len = uncond_embeddings.shape[1]
+ uncond_embeddings = uncond_embeddings.tile([1, num_images_per_prompt, 1])
+ uncond_embeddings = uncond_embeddings.reshape([batch_size * num_images_per_prompt, seq_len, -1])
+
+ # For classifier free guidance, we need to do two forward passes.
+ # Here we concatenate the unconditional and text embeddings into a single batch
+ # to avoid doing two forward passes
+ text_embeddings = paddle.concat([uncond_embeddings, text_embeddings])
+
+ return text_embeddings
+
+ def run_safety_checker(self, image, dtype):
+ if self.safety_checker is not None:
+ safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pd")
+ image, has_nsfw_concept = self.safety_checker(
+ images=image, clip_input=safety_checker_input.pixel_values.cast(dtype)
+ )
+ else:
+ has_nsfw_concept = None
+ return image, has_nsfw_concept
+
+ def decode_latents(self, latents):
+ latents = 1 / 0.18215 * latents
+ image = self.vae.decode(latents).sample
+ image = (image / 2 + 0.5).clip(0, 1)
+ # we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
+ image = image.transpose([0, 2, 3, 1]).cast("float32").numpy()
+ return image
+
+ def prepare_extra_step_kwargs(self, generator, eta):
+ # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
+ # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
+ # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
+ # and should be between [0, 1]
+
+ accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
+ extra_step_kwargs = {}
+ if accepts_eta:
+ extra_step_kwargs["eta"] = eta
+
+ # check if the scheduler accepts generator
+ accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
+ if accepts_generator:
+ extra_step_kwargs["generator"] = generator
+ return extra_step_kwargs
+
+ def check_inputs(self, prompt, height, width, callback_steps):
+ if not isinstance(prompt, str) and not isinstance(prompt, list):
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
+
+ if height % 8 != 0 or width % 8 != 0:
+ raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
+
+ if (callback_steps is None) or (
+ callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
+ ):
+ raise ValueError(
+ f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
+ f" {type(callback_steps)}."
+ )
+
+ def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, generator, latents=None):
+ shape = [batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor]
+ if isinstance(generator, list) and len(generator) != batch_size:
+ raise ValueError(
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
+ )
+
+ if latents is None:
+ if isinstance(generator, list):
+ shape = [
+ 1,
+ ] + shape[1:]
+ latents = [paddle.randn(shape, generator=generator[i], dtype=dtype) for i in range(batch_size)]
+ latents = paddle.concat(latents, axis=0)
+ else:
+ latents = paddle.randn(shape, generator=generator, dtype=dtype)
+ else:
+ if latents.shape != shape:
+ raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}")
+
+ # scale the initial noise by the standard deviation required by the scheduler
+ latents = latents * self.scheduler.init_noise_sigma
+ return latents
+
+ @paddle.no_grad()
+ def __call__(
+ self,
+ prompt: Union[str, List[str]],
+ height: Optional[int] = None,
+ width: Optional[int] = None,
+ num_inference_steps: int = 50,
+ guidance_scale: float = 7.5,
+ negative_prompt: Optional[Union[str, List[str]]] = None,
+ num_images_per_prompt: Optional[int] = 1,
+ eta: float = 0.0,
+ generator: Optional[Union[paddle.Generator, List[paddle.Generator]]] = None,
+ latents: Optional[paddle.Tensor] = None,
+ output_type: Optional[str] = "pil",
+ return_dict: bool = True,
+ callback: Optional[Callable[[int, int, paddle.Tensor], None]] = None,
+ callback_steps: Optional[int] = 1,
+ ):
+ r"""
+ Function invoked when calling the pipeline for generation.
+
+ Args:
+ prompt (`str` or `List[str]`):
+ The prompt or prompts to guide the image generation.
+ height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
+ The height in pixels of the generated image.
+ width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
+ The width in pixels of the generated image.
+ num_inference_steps (`int`, *optional*, defaults to 50):
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
+ expense of slower inference.
+ guidance_scale (`float`, *optional*, defaults to 7.5):
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
+ usually at the expense of lower image quality.
+ negative_prompt (`str` or `List[str]`, *optional*):
+ The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
+ if `guidance_scale` is less than `1`).
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
+ The number of images to generate per prompt.
+ eta (`float`, *optional*, defaults to 0.0):
+ Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
+ [`schedulers.DDIMScheduler`], will be ignored for others.
+ generator (`paddle.Generator`, *optional*):
+ One or a list of paddle generator(s) to make generation deterministic.
+ latents (`paddle.Tensor`, *optional*):
+ Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
+ tensor will ge generated by sampling using the supplied random `generator`.
+ output_type (`str`, *optional*, defaults to `"pil"`):
+ The output format of the generate image. Choose between
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
+ return_dict (`bool`, *optional*, defaults to `True`):
+ Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
+ plain tuple.
+ callback (`Callable`, *optional*):
+ A function that will be called every `callback_steps` steps during inference. The function will be
+ called with the following arguments: `callback(step: int, timestep: int, latents: paddle.Tensor)`.
+ callback_steps (`int`, *optional*, defaults to 1):
+ The frequency at which the `callback` function will be called. If not specified, the callback will be
+ called at every step.
+
+ Returns:
+ [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
+ [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
+ When returning a tuple, the first element is a list with the generated images, and the second element is a
+ list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
+ (nsfw) content, according to the `safety_checker`.
+ """
+ # 0. Default height and width to unet
+ height = height or self.unet.config.sample_size * self.vae_scale_factor
+ width = width or self.unet.config.sample_size * self.vae_scale_factor
+
+ # 1. Check inputs. Raise error if not correct
+ self.check_inputs(prompt, height, width, callback_steps)
+
+ # 2. Define call parameters
+ batch_size = 1 if isinstance(prompt, str) else len(prompt)
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
+ # corresponds to doing no classifier free guidance.
+ do_classifier_free_guidance = guidance_scale > 1.0
+
+ # 3. Encode input prompt
+ text_embeddings = self._encode_prompt(
+ prompt, num_images_per_prompt, do_classifier_free_guidance, negative_prompt
+ )
+
+ # 4. Prepare timesteps
+ self.scheduler.set_timesteps(num_inference_steps)
+ timesteps = self.scheduler.timesteps
+
+ # 5. Prepare latent variables
+ num_channels_latents = self.unet.in_channels
+ latents = self.prepare_latents(
+ batch_size * num_images_per_prompt,
+ num_channels_latents,
+ height,
+ width,
+ text_embeddings.dtype,
+ generator,
+ latents,
+ )
+
+ # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
+ extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
+
+ # 7. Denoising loop
+ num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
+ for i, t in enumerate(timesteps):
+ # expand the latents if we are doing classifier free guidance
+ latent_model_input = paddle.concat([latents] * 2) if do_classifier_free_guidance else latents
+ latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
+
+ # predict the noise residual
+ noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample
+
+ # perform guidance
+ if do_classifier_free_guidance:
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
+ noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
+
+ # compute the previous noisy sample x_t -> x_t-1
+ latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
+
+ # call the callback, if provided
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
+ progress_bar.update()
+ if callback is not None and i % callback_steps == 0:
+ callback(i, t, latents)
+
+ # 8. Post-processing
+ image = self.decode_latents(latents)
+
+ # 9. Run safety checker
+ image, has_nsfw_concept = self.run_safety_checker(image, text_embeddings.dtype)
+
+ # 10. Convert to PIL
+ if output_type == "pil":
+ image = self.numpy_to_pil(image)
+
+ if not return_dict:
+ return (image, has_nsfw_concept)
+
+ return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
diff --git a/ppdiffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_all_in_one.py b/ppdiffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_all_in_one.py
new file mode 100644
index 0000000000000000000000000000000000000000..71e95cfe4544feb15e27e683096e850f3f8594a0
--- /dev/null
+++ b/ppdiffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_all_in_one.py
@@ -0,0 +1,1294 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+# Copyright 2022 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import inspect
+import os
+import random
+import re
+import time
+from typing import Callable, List, Optional, Union
+
+import numpy as np
+import paddle
+import PIL
+import PIL.Image
+from packaging import version
+
+from paddlenlp.transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
+
+from ...configuration_utils import FrozenDict
+from ...models import AutoencoderKL, UNet2DConditionModel
+from ...pipeline_utils import DiffusionPipeline
+from ...schedulers import (
+ DDIMScheduler,
+ DPMSolverMultistepScheduler,
+ EulerAncestralDiscreteScheduler,
+ EulerDiscreteScheduler,
+ LMSDiscreteScheduler,
+ PNDMScheduler,
+)
+from ...utils import PIL_INTERPOLATION, deprecate, logging
+from ...utils.testing_utils import load_image
+from . import StableDiffusionPipelineOutput
+from .safety_checker import StableDiffusionSafetyChecker
+
+logger = logging.get_logger(__name__) # pylint: disable=invalid-name
+
+
+def save_all(images, FORMAT="jpg", OUTDIR="./outputs/"):
+ if not isinstance(images, (list, tuple)):
+ images = [images]
+ for image in images:
+ PRECISION = "fp32"
+ argument = image.argument
+ os.makedirs(OUTDIR, exist_ok=True)
+ epoch_time = argument["epoch_time"]
+ PROMPT = argument["prompt"]
+ NEGPROMPT = argument["negative_prompt"]
+ HEIGHT = argument["height"]
+ WIDTH = argument["width"]
+ SEED = argument["seed"]
+ STRENGTH = argument.get("strength", 1)
+ INFERENCE_STEPS = argument["num_inference_steps"]
+ GUIDANCE_SCALE = argument["guidance_scale"]
+
+ filename = f"{str(epoch_time)}_scale_{GUIDANCE_SCALE}_steps_{INFERENCE_STEPS}_seed_{SEED}.{FORMAT}"
+ filedir = f"{OUTDIR}/{filename}"
+ image.save(filedir)
+ with open(f"{OUTDIR}/{epoch_time}_prompt.txt", "w") as file:
+ file.write(
+ f"PROMPT: {PROMPT}\nNEG_PROMPT: {NEGPROMPT}\n\nINFERENCE_STEPS: {INFERENCE_STEPS}\nHeight: {HEIGHT}\nWidth: {WIDTH}\nSeed: {SEED}\n\nPrecision: {PRECISION}\nSTRENGTH: {STRENGTH}\nGUIDANCE_SCALE: {GUIDANCE_SCALE}"
+ )
+
+
+re_attention = re.compile(
+ r"""
+\\\(|
+\\\)|
+\\\[|
+\\]|
+\\\\|
+\\|
+\(|
+\[|
+:([+-]?[.\d]+)\)|
+\)|
+]|
+[^\\()\[\]:]+|
+:
+""",
+ re.X,
+)
+
+
+def parse_prompt_attention(text):
+ """
+ Parses a string with attention tokens and returns a list of pairs: text and its associated weight.
+ Accepted tokens are:
+ (abc) - increases attention to abc by a multiplier of 1.1
+ (abc:3.12) - increases attention to abc by a multiplier of 3.12
+ [abc] - decreases attention to abc by a multiplier of 1.1
+ \( - literal character '('
+ \[ - literal character '['
+ \) - literal character ')'
+ \] - literal character ']'
+ \\ - literal character '\'
+ anything else - just text
+ >>> parse_prompt_attention('normal text')
+ [['normal text', 1.0]]
+ >>> parse_prompt_attention('an (important) word')
+ [['an ', 1.0], ['important', 1.1], [' word', 1.0]]
+ >>> parse_prompt_attention('(unbalanced')
+ [['unbalanced', 1.1]]
+ >>> parse_prompt_attention('\(literal\]')
+ [['(literal]', 1.0]]
+ >>> parse_prompt_attention('(unnecessary)(parens)')
+ [['unnecessaryparens', 1.1]]
+ >>> parse_prompt_attention('a (((house:1.3)) [on] a (hill:0.5), sun, (((sky))).')
+ [['a ', 1.0],
+ ['house', 1.5730000000000004],
+ [' ', 1.1],
+ ['on', 1.0],
+ [' a ', 1.1],
+ ['hill', 0.55],
+ [', sun, ', 1.1],
+ ['sky', 1.4641000000000006],
+ ['.', 1.1]]
+ """
+
+ res = []
+ round_brackets = []
+ square_brackets = []
+
+ round_bracket_multiplier = 1.1
+ square_bracket_multiplier = 1 / 1.1
+
+ def multiply_range(start_position, multiplier):
+ for p in range(start_position, len(res)):
+ res[p][1] *= multiplier
+
+ for m in re_attention.finditer(text):
+ text = m.group(0)
+ weight = m.group(1)
+
+ if text.startswith("\\"):
+ res.append([text[1:], 1.0])
+ elif text == "(":
+ round_brackets.append(len(res))
+ elif text == "[":
+ square_brackets.append(len(res))
+ elif weight is not None and len(round_brackets) > 0:
+ multiply_range(round_brackets.pop(), float(weight))
+ elif text == ")" and len(round_brackets) > 0:
+ multiply_range(round_brackets.pop(), round_bracket_multiplier)
+ elif text == "]" and len(square_brackets) > 0:
+ multiply_range(square_brackets.pop(), square_bracket_multiplier)
+ else:
+ res.append([text, 1.0])
+
+ for pos in round_brackets:
+ multiply_range(pos, round_bracket_multiplier)
+
+ for pos in square_brackets:
+ multiply_range(pos, square_bracket_multiplier)
+
+ if len(res) == 0:
+ res = [["", 1.0]]
+
+ # merge runs of identical weights
+ i = 0
+ while i + 1 < len(res):
+ if res[i][1] == res[i + 1][1]:
+ res[i][0] += res[i + 1][0]
+ res.pop(i + 1)
+ else:
+ i += 1
+
+ return res
+
+
+def get_prompts_with_weights(pipe: DiffusionPipeline, prompt: List[str], max_length: int):
+ r"""
+ Tokenize a list of prompts and return its tokens with weights of each token.
+
+ No padding, starting or ending token is included.
+ """
+ tokens = []
+ weights = []
+ for text in prompt:
+ texts_and_weights = parse_prompt_attention(text)
+ text_token = []
+ text_weight = []
+ for word, weight in texts_and_weights:
+ # tokenize and discard the starting and the ending token
+ token = pipe.tokenizer(word).input_ids[1:-1]
+ text_token += token
+
+ # copy the weight by length of token
+ text_weight += [weight] * len(token)
+
+ # stop if the text is too long (longer than truncation limit)
+ if len(text_token) > max_length:
+ break
+
+ # truncate
+ if len(text_token) > max_length:
+ text_token = text_token[:max_length]
+ text_weight = text_weight[:max_length]
+
+ tokens.append(text_token)
+ weights.append(text_weight)
+ return tokens, weights
+
+
+def pad_tokens_and_weights(tokens, weights, max_length, bos, eos, pad, no_boseos_middle=True, chunk_length=77):
+ r"""
+ Pad the tokens (with starting and ending tokens) and weights (with 1.0) to max_length.
+ """
+ max_embeddings_multiples = (max_length - 2) // (chunk_length - 2)
+ weights_length = max_length if no_boseos_middle else max_embeddings_multiples * chunk_length
+ for i in range(len(tokens)):
+ tokens[i] = [bos] + tokens[i] + [eos] + [pad] * (max_length - 2 - len(tokens[i]))
+ if no_boseos_middle:
+ weights[i] = [1.0] + weights[i] + [1.0] * (max_length - 1 - len(weights[i]))
+ else:
+ w = []
+ if len(weights[i]) == 0:
+ w = [1.0] * weights_length
+ else:
+ for j in range((len(weights[i]) - 1) // chunk_length + 1):
+ w.append(1.0) # weight for starting token in this chunk
+ w += weights[i][j * chunk_length : min(len(weights[i]), (j + 1) * chunk_length)]
+ w.append(1.0) # weight for ending token in this chunk
+ w += [1.0] * (weights_length - len(w))
+ weights[i] = w[:]
+
+ return tokens, weights
+
+
+def get_unweighted_text_embeddings(
+ pipe: DiffusionPipeline, text_input: paddle.Tensor, chunk_length: int, no_boseos_middle: Optional[bool] = True
+):
+ """
+ When the length of tokens is a multiple of the capacity of the text encoder,
+ it should be split into chunks and sent to the text encoder individually.
+ """
+ max_embeddings_multiples = (text_input.shape[1] - 2) // (chunk_length - 2)
+ if max_embeddings_multiples > 1:
+ text_embeddings = []
+ for i in range(max_embeddings_multiples):
+ # extract the i-th chunk
+ text_input_chunk = text_input[:, i * (chunk_length - 2) : (i + 1) * (chunk_length - 2) + 2].clone()
+
+ # cover the head and the tail by the starting and the ending tokens
+ text_input_chunk[:, 0] = text_input[0, 0]
+ text_input_chunk[:, -1] = text_input[0, -1]
+
+ attention_mask = paddle.ones_like(text_input_chunk)
+ text_embedding = pipe.text_encoder(text_input_chunk, attention_mask=attention_mask)[0]
+
+ if no_boseos_middle:
+ if i == 0:
+ # discard the ending token
+ text_embedding = text_embedding[:, :-1]
+ elif i == max_embeddings_multiples - 1:
+ # discard the starting token
+ text_embedding = text_embedding[:, 1:]
+ else:
+ # discard both starting and ending tokens
+ text_embedding = text_embedding[:, 1:-1]
+
+ text_embeddings.append(text_embedding)
+ text_embeddings = paddle.concat(text_embeddings, axis=1)
+ else:
+ attention_mask = paddle.ones_like(text_input)
+ text_embeddings = pipe.text_encoder(text_input, attention_mask=attention_mask)[0]
+ return text_embeddings
+
+
+def get_weighted_text_embeddings(
+ pipe: DiffusionPipeline,
+ prompt: Union[str, List[str]],
+ uncond_prompt: Optional[Union[str, List[str]]] = None,
+ max_embeddings_multiples: Optional[int] = 1,
+ no_boseos_middle: Optional[bool] = False,
+ skip_parsing: Optional[bool] = False,
+ skip_weighting: Optional[bool] = False,
+ **kwargs
+):
+ r"""
+ Prompts can be assigned with local weights using brackets. For example,
+ prompt 'A (very beautiful) masterpiece' highlights the words 'very beautiful',
+ and the embedding tokens corresponding to the words get multiplied by a constant, 1.1.
+
+ Also, to regularize of the embedding, the weighted embedding would be scaled to preserve the original mean.
+
+ Args:
+ pipe (`DiffusionPipeline`):
+ Pipe to provide access to the tokenizer and the text encoder.
+ prompt (`str` or `List[str]`):
+ The prompt or prompts to guide the image generation.
+ uncond_prompt (`str` or `List[str]`):
+ The unconditional prompt or prompts for guide the image generation. If unconditional prompt
+ is provided, the embeddings of prompt and uncond_prompt are concatenated.
+ max_embeddings_multiples (`int`, *optional*, defaults to `1`):
+ The max multiple length of prompt embeddings compared to the max output length of text encoder.
+ no_boseos_middle (`bool`, *optional*, defaults to `False`):
+ If the length of text token is multiples of the capacity of text encoder, whether reserve the starting and
+ ending token in each of the chunk in the middle.
+ skip_parsing (`bool`, *optional*, defaults to `False`):
+ Skip the parsing of brackets.
+ skip_weighting (`bool`, *optional*, defaults to `False`):
+ Skip the weighting. When the parsing is skipped, it is forced True.
+ """
+ max_length = (pipe.tokenizer.model_max_length - 2) * max_embeddings_multiples + 2
+ if isinstance(prompt, str):
+ prompt = [prompt]
+
+ if not skip_parsing:
+ prompt_tokens, prompt_weights = get_prompts_with_weights(pipe, prompt, max_length - 2)
+ if uncond_prompt is not None:
+ if isinstance(uncond_prompt, str):
+ uncond_prompt = [uncond_prompt]
+ uncond_tokens, uncond_weights = get_prompts_with_weights(pipe, uncond_prompt, max_length - 2)
+ else:
+ prompt_tokens = [
+ token[1:-1] for token in pipe.tokenizer(prompt, max_length=max_length, truncation=True).input_ids
+ ]
+ prompt_weights = [[1.0] * len(token) for token in prompt_tokens]
+ if uncond_prompt is not None:
+ if isinstance(uncond_prompt, str):
+ uncond_prompt = [uncond_prompt]
+ uncond_tokens = [
+ token[1:-1]
+ for token in pipe.tokenizer(uncond_prompt, max_length=max_length, truncation=True).input_ids
+ ]
+ uncond_weights = [[1.0] * len(token) for token in uncond_tokens]
+
+ # round up the longest length of tokens to a multiple of (model_max_length - 2)
+ max_length = max([len(token) for token in prompt_tokens])
+ if uncond_prompt is not None:
+ max_length = max(max_length, max([len(token) for token in uncond_tokens]))
+
+ max_embeddings_multiples = min(
+ max_embeddings_multiples, (max_length - 1) // (pipe.tokenizer.model_max_length - 2) + 1
+ )
+ max_embeddings_multiples = max(1, max_embeddings_multiples)
+ max_length = (pipe.tokenizer.model_max_length - 2) * max_embeddings_multiples + 2
+
+ # pad the length of tokens and weights
+ # support bert tokenizer
+ bos = pipe.tokenizer.bos_token_id if pipe.tokenizer.bos_token_id is not None else pipe.tokenizer.cls_token_id
+ eos = pipe.tokenizer.eos_token_id if pipe.tokenizer.eos_token_id is not None else pipe.tokenizer.sep_token_id
+ pad = pipe.tokenizer.pad_token_id
+ prompt_tokens, prompt_weights = pad_tokens_and_weights(
+ prompt_tokens,
+ prompt_weights,
+ max_length,
+ bos,
+ eos,
+ pad,
+ no_boseos_middle=no_boseos_middle,
+ chunk_length=pipe.tokenizer.model_max_length,
+ )
+ prompt_tokens = paddle.to_tensor(prompt_tokens)
+ if uncond_prompt is not None:
+ uncond_tokens, uncond_weights = pad_tokens_and_weights(
+ uncond_tokens,
+ uncond_weights,
+ max_length,
+ bos,
+ eos,
+ pad,
+ no_boseos_middle=no_boseos_middle,
+ chunk_length=pipe.tokenizer.model_max_length,
+ )
+ uncond_tokens = paddle.to_tensor(uncond_tokens)
+
+ # get the embeddings
+ text_embeddings = get_unweighted_text_embeddings(
+ pipe, prompt_tokens, pipe.tokenizer.model_max_length, no_boseos_middle=no_boseos_middle
+ )
+ prompt_weights = paddle.to_tensor(prompt_weights, dtype=text_embeddings.dtype)
+ if uncond_prompt is not None:
+ uncond_embeddings = get_unweighted_text_embeddings(
+ pipe, uncond_tokens, pipe.tokenizer.model_max_length, no_boseos_middle=no_boseos_middle
+ )
+ uncond_weights = paddle.to_tensor(uncond_weights, dtype=uncond_embeddings.dtype)
+
+ # assign weights to the prompts and normalize in the sense of mean
+ # TODO: should we normalize by chunk or in a whole (current implementation)?
+ if (not skip_parsing) and (not skip_weighting):
+ previous_mean = text_embeddings.mean(axis=[-2, -1])
+ text_embeddings *= prompt_weights.unsqueeze(-1)
+ text_embeddings *= previous_mean / text_embeddings.mean(axis=[-2, -1])
+ if uncond_prompt is not None:
+ previous_mean = uncond_embeddings.mean(axis=[-2, -1])
+ uncond_embeddings *= uncond_weights.unsqueeze(-1)
+ uncond_embeddings *= previous_mean / uncond_embeddings.mean(axis=[-2, -1])
+
+ # For classifier free guidance, we need to do two forward passes.
+ # Here we concatenate the unconditional and text embeddings into a single batch
+ # to avoid doing two forward passes
+ if uncond_prompt is not None:
+ text_embeddings = paddle.concat([uncond_embeddings, text_embeddings])
+
+ return text_embeddings
+
+
+def preprocess_image(image):
+ w, h = image.size
+ w, h = map(lambda x: x - x % 32, (w, h)) # resize to integer multiple of 32
+ image = image.resize((w, h), resample=PIL_INTERPOLATION["lanczos"])
+ image = np.array(image).astype(np.float32) / 255.0
+ image = image[None].transpose(0, 3, 1, 2)
+ image = paddle.to_tensor(image)
+ return 2.0 * image - 1.0
+
+
+def preprocess_mask(mask):
+ mask = mask.convert("L")
+ w, h = mask.size
+ w, h = map(lambda x: x - x % 32, (w, h)) # resize to integer multiple of 32
+ mask = mask.resize((w // 8, h // 8), resample=PIL_INTERPOLATION["nearest"])
+ mask = np.array(mask).astype(np.float32) / 255.0
+ mask = np.tile(mask, (4, 1, 1))
+ mask = mask[None].transpose(0, 1, 2, 3) # what does this step do?
+ mask = 1 - mask # repaint white, keep black
+ mask = paddle.to_tensor(mask)
+ return mask
+
+
+class StableDiffusionPipelineAllinOne(DiffusionPipeline):
+ r"""
+ Pipeline for text-to-image image-to-image inpainting generation using Stable Diffusion.
+
+ This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
+ library implements for all the pipelines (such as downloading or saving, running on a particular xxxx, etc.)
+
+ Args:
+ vae ([`AutoencoderKL`]):
+ Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
+ text_encoder ([`CLIPTextModel`]):
+ Frozen text-encoder. Stable Diffusion uses the text portion of
+ [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
+ the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
+ tokenizer (`CLIPTokenizer`):
+ Tokenizer of class
+ [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
+ unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
+ scheduler ([`SchedulerMixin`]):
+ A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
+ [`DDIMScheduler`], [`LMSDiscreteScheduler`], [`PNDMScheduler`], [`EulerDiscreteScheduler`], [`EulerAncestralDiscreteScheduler`]
+ or [`DPMSolverMultistepScheduler`].
+ safety_checker ([`StableDiffusionSafetyChecker`]):
+ Classification module that estimates whether generated images could be considered offensive or harmful.
+ Please, refer to the [model card](https://huggingface.co/junnyu/stable-diffusion-v1-4-paddle) for details.
+ feature_extractor ([`CLIPFeatureExtractor`]):
+ Model that extracts features from generated images to be used as inputs for the `safety_checker`.
+ """
+ _optional_components = ["safety_checker", "feature_extractor"]
+
+ def __init__(
+ self,
+ vae: AutoencoderKL,
+ text_encoder: CLIPTextModel,
+ tokenizer: CLIPTokenizer,
+ unet: UNet2DConditionModel,
+ scheduler: Union[
+ DDIMScheduler,
+ PNDMScheduler,
+ LMSDiscreteScheduler,
+ EulerDiscreteScheduler,
+ EulerAncestralDiscreteScheduler,
+ DPMSolverMultistepScheduler,
+ ],
+ safety_checker: StableDiffusionSafetyChecker,
+ feature_extractor: CLIPFeatureExtractor,
+ requires_safety_checker: bool = False,
+ ):
+ if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
+ deprecation_message = (
+ f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
+ f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
+ "to update the config accordingly as leaving `steps_offset` might led to incorrect results"
+ " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
+ " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
+ " file"
+ )
+ deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False)
+ new_config = dict(scheduler.config)
+ new_config["steps_offset"] = 1
+ scheduler._internal_dict = FrozenDict(new_config)
+
+ if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True:
+ deprecation_message = (
+ f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`."
+ " `clip_sample` should be set to False in the configuration file. Please make sure to update the"
+ " config accordingly as not setting `clip_sample` in the config might lead to incorrect results in"
+ " future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very"
+ " nice if you could open a Pull request for the `scheduler/scheduler_config.json` file"
+ )
+ deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False)
+ new_config = dict(scheduler.config)
+ new_config["clip_sample"] = False
+ scheduler._internal_dict = FrozenDict(new_config)
+
+ if safety_checker is None and requires_safety_checker:
+ logger.warning(
+ f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
+ " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
+ " results in services or applications open to the public. PaddleNLP team, diffusers team and Hugging Face"
+ " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
+ " it only for use-cases that involve analyzing network behavior or auditing its results. For more"
+ " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
+ )
+ if safety_checker is not None and feature_extractor is None:
+ raise ValueError(
+ "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
+ " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
+ )
+ is_unet_version_less_0_9_0 = hasattr(unet.config, "_ppdiffusers_version") and version.parse(
+ version.parse(unet.config._ppdiffusers_version).base_version
+ ) < version.parse("0.9.0.dev0")
+ is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64
+ if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64:
+ deprecation_message = (
+ "The configuration file of the unet has set the default `sample_size` to smaller than"
+ " 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the"
+ " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
+ " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
+ " \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
+ " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
+ " in the config might lead to incorrect results in future versions. If you have downloaded this"
+ " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
+ " the `unet/config.json` file"
+ )
+ deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False)
+ new_config = dict(unet.config)
+ new_config["sample_size"] = 64
+ unet._internal_dict = FrozenDict(new_config)
+
+ self.register_modules(
+ vae=vae,
+ text_encoder=text_encoder,
+ tokenizer=tokenizer,
+ unet=unet,
+ scheduler=scheduler,
+ safety_checker=safety_checker,
+ feature_extractor=feature_extractor,
+ )
+ self.register_to_config(requires_safety_checker=requires_safety_checker)
+
+ def __call__(self, *args, **kwargs):
+ return self.text2image(*args, **kwargs)
+
+ def text2img(self, *args, **kwargs):
+ return self.text2image(*args, **kwargs)
+
+ def _encode_prompt(
+ self,
+ prompt,
+ negative_prompt,
+ max_embeddings_multiples,
+ no_boseos_middle,
+ skip_parsing,
+ skip_weighting,
+ do_classifier_free_guidance,
+ num_images_per_prompt,
+ ):
+ if do_classifier_free_guidance and negative_prompt is None:
+ negative_prompt = ""
+ text_embeddings = get_weighted_text_embeddings(
+ self, prompt, negative_prompt, max_embeddings_multiples, no_boseos_middle, skip_parsing, skip_weighting
+ )
+
+ bs_embed, seq_len, _ = text_embeddings.shape
+ text_embeddings = text_embeddings.tile([1, num_images_per_prompt, 1])
+ text_embeddings = text_embeddings.reshape([bs_embed * num_images_per_prompt, seq_len, -1])
+ return text_embeddings
+
+ def run_safety_checker(self, image, dtype):
+ if self.safety_checker is not None:
+ safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pd")
+ image, has_nsfw_concept = self.safety_checker(
+ images=image, clip_input=safety_checker_input.pixel_values.cast(dtype)
+ )
+ else:
+ has_nsfw_concept = None
+ return image, has_nsfw_concept
+
+ def decode_latents(self, latents):
+ latents = 1 / 0.18215 * latents
+ image = self.vae.decode(latents).sample
+ image = (image / 2 + 0.5).clip(0, 1)
+ # we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
+ image = image.transpose([0, 2, 3, 1]).cast("float32").numpy()
+ return image
+
+ def prepare_extra_step_kwargs(self, eta):
+ # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
+ # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
+ # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
+ # and should be between [0, 1]
+
+ accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
+ extra_step_kwargs = {}
+ if accepts_eta:
+ extra_step_kwargs["eta"] = eta
+
+ return extra_step_kwargs
+
+ def check_inputs_text2img(self, prompt, height, width, callback_steps):
+ if not isinstance(prompt, str) and not isinstance(prompt, list):
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
+
+ if height % 8 != 0 or width % 8 != 0:
+ raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
+
+ if (callback_steps is None) or (
+ callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
+ ):
+ raise ValueError(
+ f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
+ f" {type(callback_steps)}."
+ )
+
+ def check_inputs_img2img_inpaint(self, prompt, strength, callback_steps):
+ if not isinstance(prompt, str) and not isinstance(prompt, list):
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
+
+ if strength < 0 or strength > 1:
+ raise ValueError(f"The value of strength should in [1.0, 1.0] but is {strength}")
+
+ if (callback_steps is None) or (
+ callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
+ ):
+ raise ValueError(
+ f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
+ f" {type(callback_steps)}."
+ )
+
+ def prepare_latents_text2img(self, batch_size, num_channels_latents, height, width, dtype, latents=None):
+ shape = [batch_size, num_channels_latents, height // 8, width // 8]
+ if latents is None:
+ latents = paddle.randn(shape, dtype=dtype)
+ else:
+ if latents.shape != shape:
+ raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}")
+
+ # scale the initial noise by the standard deviation required by the scheduler
+ latents = latents * self.scheduler.init_noise_sigma
+ return latents
+
+ def prepare_latents_img2img(self, image, timestep, num_images_per_prompt, dtype):
+ image = image.cast(dtype=dtype)
+ init_latent_dist = self.vae.encode(image).latent_dist
+ init_latents = init_latent_dist.sample()
+ init_latents = 0.18215 * init_latents
+
+ b, c, h, w = init_latents.shape
+ init_latents = init_latents.tile([1, num_images_per_prompt, 1, 1])
+ init_latents = init_latents.reshape([b * num_images_per_prompt, c, h, w])
+
+ # add noise to latents using the timesteps
+ noise = paddle.randn(init_latents.shape, dtype=dtype)
+
+ # get latents
+ init_latents = self.scheduler.add_noise(init_latents, noise, timestep)
+ latents = init_latents
+
+ return latents
+
+ def get_timesteps(self, num_inference_steps, strength):
+ # get the original timestep using init_timestep
+ offset = self.scheduler.config.get("steps_offset", 0)
+ init_timestep = int(num_inference_steps * strength) + offset
+ init_timestep = min(init_timestep, num_inference_steps)
+
+ t_start = max(num_inference_steps - init_timestep + offset, 0)
+ timesteps = self.scheduler.timesteps[t_start:]
+
+ return timesteps
+
+ def prepare_latents_inpaint(self, image, timestep, num_images_per_prompt, dtype):
+ image = image.cast(dtype)
+ init_latent_dist = self.vae.encode(image).latent_dist
+ init_latents = init_latent_dist.sample()
+ init_latents = 0.18215 * init_latents
+
+ b, c, h, w = init_latents.shape
+ init_latents = init_latents.tile([1, num_images_per_prompt, 1, 1])
+ init_latents = init_latents.reshape([b * num_images_per_prompt, c, h, w])
+
+ init_latents_orig = init_latents
+
+ # add noise to latents using the timesteps
+ noise = paddle.randn(init_latents.shape, dtype=dtype)
+ init_latents = self.scheduler.add_noise(init_latents, noise, timestep)
+ latents = init_latents
+ return latents, init_latents_orig, noise
+
+ @paddle.no_grad()
+ def text2image(
+ self,
+ prompt: Union[str, List[str]],
+ height: int = 512,
+ width: int = 512,
+ num_inference_steps: int = 50,
+ guidance_scale: float = 7.5,
+ negative_prompt: Optional[Union[str, List[str]]] = None,
+ num_images_per_prompt: Optional[int] = 1,
+ eta: float = 0.0,
+ seed: Optional[int] = None,
+ latents: Optional[paddle.Tensor] = None,
+ output_type: Optional[str] = "pil",
+ return_dict: bool = True,
+ callback: Optional[Callable[[int, int, paddle.Tensor], None]] = None,
+ callback_steps: Optional[int] = 1,
+ # new add
+ max_embeddings_multiples: Optional[int] = 1,
+ no_boseos_middle: Optional[bool] = False,
+ skip_parsing: Optional[bool] = False,
+ skip_weighting: Optional[bool] = False,
+ **kwargs,
+ ):
+ r"""
+ Function invoked when calling the pipeline for generation.
+
+ Args:
+ prompt (`str` or `List[str]`):
+ The prompt or prompts to guide the image generation.
+ height (`int`, *optional*, defaults to 512):
+ The height in pixels of the generated image.
+ width (`int`, *optional*, defaults to 512):
+ The width in pixels of the generated image.
+ num_inference_steps (`int`, *optional*, defaults to 50):
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
+ expense of slower inference.
+ guidance_scale (`float`, *optional*, defaults to 7.5):
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
+ usually at the expense of lower image quality.
+ negative_prompt (`str` or `List[str]`, *optional*):
+ The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
+ if `guidance_scale` is less than `1`).
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
+ The number of images to generate per prompt.
+ eta (`float`, *optional*, defaults to 0.0):
+ Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
+ [`schedulers.DDIMScheduler`], will be ignored for others.
+ seed (`int`, *optional*):
+ Random number seed.
+ latents (`paddle.Tensor`, *optional*):
+ Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
+ tensor will ge generated by sampling using the supplied random `seed`.
+ output_type (`str`, *optional*, defaults to `"pil"`):
+ The output format of the generate image. Choose between
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
+ return_dict (`bool`, *optional*, defaults to `True`):
+ Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
+ plain tuple.
+ callback (`Callable`, *optional*):
+ A function that will be called every `callback_steps` steps during inference. The function will be
+ called with the following arguments: `callback(step: int, timestep: int, latents: paddle.Tensor)`.
+ callback_steps (`int`, *optional*, defaults to 1):
+ The frequency at which the `callback` function will be called. If not specified, the callback will be
+ called at every step.
+
+ Returns:
+ [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
+ [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
+ When returning a tuple, the first element is a list with the generated images, and the second element is a
+ list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
+ (nsfw) content, according to the `safety_checker`.
+ """
+ seed = random.randint(0, 2**32) if seed is None else seed
+ argument = dict(
+ prompt=prompt,
+ negative_prompt=negative_prompt,
+ height=height,
+ width=width,
+ num_inference_steps=num_inference_steps,
+ guidance_scale=guidance_scale,
+ num_images_per_prompt=num_images_per_prompt,
+ eta=eta,
+ seed=seed,
+ latents=latents,
+ max_embeddings_multiples=max_embeddings_multiples,
+ no_boseos_middle=no_boseos_middle,
+ skip_parsing=skip_parsing,
+ skip_weighting=skip_weighting,
+ epoch_time=time.time(),
+ )
+ paddle.seed(seed)
+ # 1. Check inputs. Raise error if not correct
+ self.check_inputs_text2img(prompt, height, width, callback_steps)
+
+ # 2. Define call parameters
+ batch_size = 1 if isinstance(prompt, str) else len(prompt)
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
+ # corresponds to doing no classifier free guidance.
+ do_classifier_free_guidance = guidance_scale > 1.0
+
+ # 3. Encode input prompt
+ text_embeddings = self._encode_prompt(
+ prompt,
+ negative_prompt,
+ max_embeddings_multiples,
+ no_boseos_middle,
+ skip_parsing,
+ skip_weighting,
+ do_classifier_free_guidance,
+ num_images_per_prompt,
+ )
+
+ # 4. Prepare timesteps
+ self.scheduler.set_timesteps(num_inference_steps)
+ timesteps = self.scheduler.timesteps
+
+ # 5. Prepare latent variables
+ num_channels_latents = self.unet.in_channels
+ latents = self.prepare_latents_text2img(
+ batch_size * num_images_per_prompt,
+ num_channels_latents,
+ height,
+ width,
+ text_embeddings.dtype,
+ latents,
+ )
+
+ # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
+ extra_step_kwargs = self.prepare_extra_step_kwargs(eta)
+
+ # 7. Denoising loop
+ for i, t in enumerate(self.progress_bar(timesteps)):
+ # expand the latents if we are doing classifier free guidance
+ latent_model_input = paddle.concat([latents] * 2) if do_classifier_free_guidance else latents
+ latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
+
+ # predict the noise residual
+ noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample
+
+ # perform guidance
+ if do_classifier_free_guidance:
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
+ noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
+
+ # compute the previous noisy sample x_t -> x_t-1
+ latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
+
+ # call the callback, if provided
+ if callback is not None and i % callback_steps == 0:
+ callback(i, t, latents)
+
+ # 8. Post-processing
+ image = self.decode_latents(latents)
+
+ # 9. Run safety checker
+ image, has_nsfw_concept = self.run_safety_checker(image, text_embeddings.dtype)
+
+ # 10. Convert to PIL
+ if output_type == "pil":
+ image = self.numpy_to_pil(image, argument=argument)
+
+ if not return_dict:
+ return (image, has_nsfw_concept)
+
+ return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
+
+ @paddle.no_grad()
+ def img2img(
+ self,
+ prompt: Union[str, List[str]],
+ image: Union[paddle.Tensor, PIL.Image.Image],
+ strength: float = 0.8,
+ height=None,
+ width=None,
+ num_inference_steps: Optional[int] = 50,
+ guidance_scale: Optional[float] = 7.5,
+ negative_prompt: Optional[Union[str, List[str]]] = None,
+ num_images_per_prompt: Optional[int] = 1,
+ eta: Optional[float] = 0.0,
+ seed: Optional[int] = None,
+ output_type: Optional[str] = "pil",
+ return_dict: bool = True,
+ callback: Optional[Callable[[int, int, paddle.Tensor], None]] = None,
+ callback_steps: Optional[int] = 1,
+ # new add
+ max_embeddings_multiples: Optional[int] = 1,
+ no_boseos_middle: Optional[bool] = False,
+ skip_parsing: Optional[bool] = False,
+ skip_weighting: Optional[bool] = False,
+ **kwargs,
+ ):
+ r"""
+ Function invoked when calling the pipeline for generation.
+
+ Args:
+ prompt (`str` or `List[str]`):
+ The prompt or prompts to guide the image generation.
+ image (`paddle.Tensor` or `PIL.Image.Image`):
+ `Image`, or tensor representing an image batch, that will be used as the starting point for the
+ process.
+ strength (`float`, *optional*, defaults to 0.8):
+ Conceptually, indicates how much to transform the reference `image`. Must be between 0 and 1.
+ `image` will be used as a starting point, adding more noise to it the larger the `strength`. The
+ number of denoising steps depends on the amount of noise initially added. When `strength` is 1, added
+ noise will be maximum and the denoising process will run for the full number of iterations specified in
+ `num_inference_steps`. A value of 1, therefore, essentially ignores `image`.
+ num_inference_steps (`int`, *optional*, defaults to 50):
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
+ expense of slower inference. This parameter will be modulated by `strength`.
+ guidance_scale (`float`, *optional*, defaults to 7.5):
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
+ usually at the expense of lower image quality.
+ negative_prompt (`str` or `List[str]`, *optional*):
+ The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
+ if `guidance_scale` is less than `1`).
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
+ The number of images to generate per prompt.
+ eta (`float`, *optional*, defaults to 0.0):
+ Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
+ [`schedulers.DDIMScheduler`], will be ignored for others.
+ seed (`int`, *optional*):
+ A random seed.
+ output_type (`str`, *optional*, defaults to `"pil"`):
+ The output format of the generate image. Choose between
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
+ return_dict (`bool`, *optional*, defaults to `True`):
+ Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
+ plain tuple.
+ callback (`Callable`, *optional*):
+ A function that will be called every `callback_steps` steps during inference. The function will be
+ called with the following arguments: `callback(step: int, timestep: int, latents: paddle.Tensor)`.
+ callback_steps (`int`, *optional*, defaults to 1):
+ The frequency at which the `callback` function will be called. If not specified, the callback will be
+ called at every step.
+
+ Returns:
+ [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
+ [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
+ When returning a tuple, the first element is a list with the generated images, and the second element is a
+ list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
+ (nsfw) content, according to the `safety_checker`.
+ """
+ seed = random.randint(0, 2**32) if seed is None else seed
+ image_str = image
+ if isinstance(image_str, str):
+ image = load_image(image_str)
+
+ if height is None and width is None:
+ width = (image.size[0] // 8) * 8
+ height = (image.size[1] // 8) * 8
+ elif height is None and width is not None:
+ height = (image.size[1] // 8) * 8
+ elif width is None and height is not None:
+ width = (image.size[0] // 8) * 8
+ else:
+ height = height
+ width = width
+
+ argument = dict(
+ prompt=prompt,
+ image=image_str,
+ negative_prompt=negative_prompt,
+ height=height,
+ width=width,
+ strength=strength,
+ num_inference_steps=num_inference_steps,
+ guidance_scale=guidance_scale,
+ num_images_per_prompt=num_images_per_prompt,
+ eta=eta,
+ seed=seed,
+ max_embeddings_multiples=max_embeddings_multiples,
+ no_boseos_middle=no_boseos_middle,
+ skip_parsing=skip_parsing,
+ skip_weighting=skip_weighting,
+ epoch_time=time.time(),
+ )
+ paddle.seed(seed)
+
+ # 1. Check inputs
+ self.check_inputs_img2img_inpaint(prompt, strength, callback_steps)
+
+ # 2. Define call parameters
+ batch_size = 1 if isinstance(prompt, str) else len(prompt)
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
+ # corresponds to doing no classifier free guidance.
+ do_classifier_free_guidance = guidance_scale > 1.0
+
+ # 3. Encode input prompt
+ text_embeddings = self._encode_prompt(
+ prompt,
+ negative_prompt,
+ max_embeddings_multiples,
+ no_boseos_middle,
+ skip_parsing,
+ skip_weighting,
+ do_classifier_free_guidance,
+ num_images_per_prompt,
+ )
+
+ # 4. Preprocess image
+ if isinstance(image, PIL.Image.Image):
+ image = image.resize((width, height))
+ image = preprocess_image(image)
+
+ # 5. set timesteps
+ self.scheduler.set_timesteps(num_inference_steps)
+ timesteps = self.get_timesteps(num_inference_steps, strength)
+ latent_timestep = timesteps[:1].tile([batch_size * num_images_per_prompt])
+
+ # 6. Prepare latent variables
+ latents = self.prepare_latents_img2img(image, latent_timestep, num_images_per_prompt, text_embeddings.dtype)
+
+ # 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
+ extra_step_kwargs = self.prepare_extra_step_kwargs(eta)
+
+ # 8. Denoising loop
+ for i, t in enumerate(self.progress_bar(timesteps)):
+ # expand the latents if we are doing classifier free guidance
+ latent_model_input = paddle.concat([latents] * 2) if do_classifier_free_guidance else latents
+ latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
+
+ # predict the noise residual
+ noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample
+
+ # perform guidance
+ if do_classifier_free_guidance:
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
+ noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
+
+ # compute the previous noisy sample x_t -> x_t-1
+ latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
+
+ # call the callback, if provided
+ if callback is not None and i % callback_steps == 0:
+ callback(i, t, latents)
+
+ # 9. Post-processing
+ image = self.decode_latents(latents)
+
+ # 10. Run safety checker
+ image, has_nsfw_concept = self.run_safety_checker(image, text_embeddings.dtype)
+
+ # 11. Convert to PIL
+ if output_type == "pil":
+ image = self.numpy_to_pil(image, argument=argument)
+
+ if not return_dict:
+ return (image, has_nsfw_concept)
+
+ return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
+
+ @paddle.no_grad()
+ def inpaint(
+ self,
+ prompt: Union[str, List[str]],
+ image: Union[paddle.Tensor, PIL.Image.Image],
+ mask_image: Union[paddle.Tensor, PIL.Image.Image],
+ height=None,
+ width=None,
+ strength: float = 0.8,
+ num_inference_steps: Optional[int] = 50,
+ guidance_scale: Optional[float] = 7.5,
+ negative_prompt: Optional[Union[str, List[str]]] = None,
+ num_images_per_prompt: Optional[int] = 1,
+ eta: Optional[float] = 0.0,
+ seed: Optional[int] = None,
+ output_type: Optional[str] = "pil",
+ return_dict: bool = True,
+ callback: Optional[Callable[[int, int, paddle.Tensor], None]] = None,
+ callback_steps: Optional[int] = 1,
+ # new add
+ max_embeddings_multiples: Optional[int] = 1,
+ no_boseos_middle: Optional[bool] = False,
+ skip_parsing: Optional[bool] = False,
+ skip_weighting: Optional[bool] = False,
+ **kwargs,
+ ):
+ r"""
+ Function invoked when calling the pipeline for generation.
+
+ Args:
+ prompt (`str` or `List[str]`):
+ The prompt or prompts to guide the image generation.
+ image (`paddle.Tensor` or `PIL.Image.Image`):
+ `Image`, or tensor representing an image batch, that will be used as the starting point for the
+ process. This is the image whose masked region will be inpainted.
+ mask_image (`paddle.Tensor` or `PIL.Image.Image`):
+ `Image`, or tensor representing an image batch, to mask `image`. White pixels in the mask will be
+ replaced by noise and therefore repainted, while black pixels will be preserved. If `mask_image` is a
+ PIL image, it will be converted to a single channel (luminance) before use. If it's a tensor, it should
+ contain one color channel (L) instead of 3, so the expected shape would be `(B, H, W, 1)`.
+ strength (`float`, *optional*, defaults to 0.8):
+ Conceptually, indicates how much to inpaint the masked area. Must be between 0 and 1. When `strength`
+ is 1, the denoising process will be run on the masked area for the full number of iterations specified
+ in `num_inference_steps`. `image` will be used as a reference for the masked area, adding more
+ noise to that region the larger the `strength`. If `strength` is 0, no inpainting will occur.
+ num_inference_steps (`int`, *optional*, defaults to 50):
+ The reference number of denoising steps. More denoising steps usually lead to a higher quality image at
+ the expense of slower inference. This parameter will be modulated by `strength`, as explained above.
+ guidance_scale (`float`, *optional*, defaults to 7.5):
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
+ usually at the expense of lower image quality.
+ negative_prompt (`str` or `List[str]`, *optional*):
+ The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
+ if `guidance_scale` is less than `1`).
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
+ The number of images to generate per prompt.
+ eta (`float`, *optional*, defaults to 0.0):
+ Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
+ [`schedulers.DDIMScheduler`], will be ignored for others.
+ seed (`int`, *optional*):
+ A random seed.
+ output_type (`str`, *optional*, defaults to `"pil"`):
+ The output format of the generate image. Choose between
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
+ return_dict (`bool`, *optional*, defaults to `True`):
+ Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
+ plain tuple.
+ callback (`Callable`, *optional*):
+ A function that will be called every `callback_steps` steps during inference. The function will be
+ called with the following arguments: `callback(step: int, timestep: int, latents: paddle.Tensor)`.
+ callback_steps (`int`, *optional*, defaults to 1):
+ The frequency at which the `callback` function will be called. If not specified, the callback will be
+ called at every step.
+
+ Returns:
+ [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
+ [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
+ When returning a tuple, the first element is a list with the generated images, and the second element is a
+ list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
+ (nsfw) content, according to the `safety_checker`.
+ """
+ seed = random.randint(0, 2**32) if seed is None else seed
+ image_str = image
+ mask_image_str = mask_image
+
+ if isinstance(image_str, str):
+ image = load_image(image_str)
+ if isinstance(mask_image_str, str):
+ mask_image = load_image(mask_image_str)
+
+ if height is None and width is None:
+ width = (image.size[0] // 8) * 8
+ height = (image.size[1] // 8) * 8
+ elif height is None and width is not None:
+ height = (image.size[1] // 8) * 8
+ elif width is None and height is not None:
+ width = (image.size[0] // 8) * 8
+ else:
+ height = height
+ width = width
+
+ argument = dict(
+ prompt=prompt,
+ image=image_str,
+ mask_image=mask_image_str,
+ negative_prompt=negative_prompt,
+ height=height,
+ width=width,
+ strength=strength,
+ num_inference_steps=num_inference_steps,
+ guidance_scale=guidance_scale,
+ num_images_per_prompt=num_images_per_prompt,
+ eta=eta,
+ seed=seed,
+ max_embeddings_multiples=max_embeddings_multiples,
+ no_boseos_middle=no_boseos_middle,
+ skip_parsing=skip_parsing,
+ skip_weighting=skip_weighting,
+ epoch_time=time.time(),
+ )
+ paddle.seed(seed)
+
+ # 1. Check inputs
+ self.check_inputs_img2img_inpaint(prompt, strength, callback_steps)
+
+ # 2. Define call parameters
+ batch_size = 1 if isinstance(prompt, str) else len(prompt)
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
+ # corresponds to doing no classifier free guidance.
+ do_classifier_free_guidance = guidance_scale > 1.0
+
+ # 3. Encode input prompt
+ text_embeddings = self._encode_prompt(
+ prompt,
+ negative_prompt,
+ max_embeddings_multiples,
+ no_boseos_middle,
+ skip_parsing,
+ skip_weighting,
+ do_classifier_free_guidance,
+ num_images_per_prompt,
+ )
+
+ if not isinstance(image, paddle.Tensor):
+ image = image.resize((width, height))
+ image = preprocess_image(image)
+
+ if not isinstance(mask_image, paddle.Tensor):
+ mask_image = mask_image.resize((width, height))
+ mask_image = preprocess_mask(mask_image)
+
+ # 5. set timesteps
+ self.scheduler.set_timesteps(num_inference_steps)
+ timesteps = self.get_timesteps(num_inference_steps, strength)
+ latent_timestep = timesteps[:1].tile([batch_size * num_images_per_prompt])
+
+ # 6. Prepare latent variables
+ # encode the init image into latents and scale the latents
+ latents, init_latents_orig, noise = self.prepare_latents_inpaint(
+ image, latent_timestep, num_images_per_prompt, text_embeddings.dtype
+ )
+
+ # 7. Prepare mask latent
+ mask = mask_image.cast(latents.dtype)
+ mask = paddle.concat([mask] * batch_size * num_images_per_prompt)
+
+ # 8. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
+ extra_step_kwargs = self.prepare_extra_step_kwargs(eta)
+
+ # 9. Denoising loop
+ for i, t in enumerate(self.progress_bar(timesteps)):
+ # expand the latents if we are doing classifier free guidance
+ latent_model_input = paddle.concat([latents] * 2) if do_classifier_free_guidance else latents
+ latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
+
+ # predict the noise residual
+ noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample
+
+ # perform guidance
+ if do_classifier_free_guidance:
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
+ noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
+
+ # compute the previous noisy sample x_t -> x_t-1
+ latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
+ # masking
+ init_latents_proper = self.scheduler.add_noise(init_latents_orig, noise, t)
+
+ latents = (init_latents_proper * mask) + (latents * (1 - mask))
+
+ # call the callback, if provided
+ if callback is not None and i % callback_steps == 0:
+ callback(i, t, latents)
+
+ # 10. Post-processing
+ image = self.decode_latents(latents)
+
+ # 11. Run safety checker
+ image, has_nsfw_concept = self.run_safety_checker(image, text_embeddings.dtype)
+
+ # 12. Convert to PIL
+ if output_type == "pil":
+ image = self.numpy_to_pil(image, argument=argument)
+
+ if not return_dict:
+ return (image, has_nsfw_concept)
+
+ return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
+
+ @staticmethod
+ def numpy_to_pil(images, **kwargs):
+ """
+ Convert a numpy image or a batch of images to a PIL image.
+ """
+ if images.ndim == 3:
+ images = images[None, ...]
+ images = (images * 255).round().astype("uint8")
+ pil_images = []
+ argument = kwargs.pop("argument", None)
+ for image in images:
+ image = PIL.Image.fromarray(image)
+ if argument is not None:
+ image.argument = argument
+ pil_images.append(image)
+
+ return pil_images
diff --git a/ppdiffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py b/ppdiffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py
new file mode 100644
index 0000000000000000000000000000000000000000..518d3e80aa31e05b020da8c9f3766d542d34f3da
--- /dev/null
+++ b/ppdiffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py
@@ -0,0 +1,553 @@
+# Copyright 2022 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import inspect
+from typing import Callable, List, Optional, Union
+
+import numpy as np
+import paddle
+import PIL
+from packaging import version
+
+from paddlenlp.transformers import (
+ CLIPTextModel,
+ CLIPTokenizer,
+ DPTForDepthEstimation,
+ DPTImageProcessor,
+)
+
+from ...configuration_utils import FrozenDict
+from ...models import AutoencoderKL, UNet2DConditionModel
+from ...pipeline_utils import DiffusionPipeline, ImagePipelineOutput
+from ...schedulers import (
+ DDIMScheduler,
+ DPMSolverMultistepScheduler,
+ EulerAncestralDiscreteScheduler,
+ EulerDiscreteScheduler,
+ LMSDiscreteScheduler,
+ PNDMScheduler,
+)
+from ...utils import PIL_INTERPOLATION, deprecate, logging
+
+logger = logging.get_logger(__name__) # pylint: disable=invalid-name
+
+
+# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.preprocess
+def preprocess(image):
+ if isinstance(image, paddle.Tensor):
+ return image
+ elif isinstance(image, PIL.Image.Image):
+ image = [image]
+
+ if isinstance(image[0], PIL.Image.Image):
+ w, h = image[0].size
+ w, h = map(lambda x: x - x % 32, (w, h)) # resize to integer multiple of 32
+
+ image = [np.array(i.resize((w, h), resample=PIL_INTERPOLATION["lanczos"]))[None, :] for i in image]
+ image = np.concatenate(image, axis=0)
+ image = np.array(image).astype(np.float32) / 255.0
+ image = image.transpose(0, 3, 1, 2)
+ image = 2.0 * image - 1.0
+ image = paddle.to_tensor(image)
+ elif isinstance(image[0], paddle.Tensor):
+ image = paddle.concat(image, axis=0)
+ return image
+
+
+class StableDiffusionDepth2ImgPipeline(DiffusionPipeline):
+ r"""
+ Pipeline for text-guided image to image generation using Stable Diffusion.
+
+ This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
+ library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
+
+ Args:
+ vae ([`AutoencoderKL`]):
+ Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
+ text_encoder ([`CLIPTextModel`]):
+ Frozen text-encoder. Stable Diffusion uses the text portion of
+ [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
+ the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
+ tokenizer (`CLIPTokenizer`):
+ Tokenizer of class
+ [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
+ unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
+ scheduler ([`SchedulerMixin`]):
+ A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
+ [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
+ """
+
+ def __init__(
+ self,
+ vae: AutoencoderKL,
+ text_encoder: CLIPTextModel,
+ tokenizer: CLIPTokenizer,
+ unet: UNet2DConditionModel,
+ scheduler: Union[
+ DDIMScheduler,
+ PNDMScheduler,
+ LMSDiscreteScheduler,
+ EulerDiscreteScheduler,
+ EulerAncestralDiscreteScheduler,
+ DPMSolverMultistepScheduler,
+ ],
+ depth_estimator: DPTForDepthEstimation,
+ feature_extractor: DPTImageProcessor,
+ ):
+ super().__init__()
+
+ is_unet_version_less_0_9_0 = hasattr(unet.config, "_ppdiffusers_version") and version.parse(
+ version.parse(unet.config._ppdiffusers_version).base_version
+ ) < version.parse("0.9.0.dev0")
+ is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64
+ if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64:
+ deprecation_message = (
+ "The configuration file of the unet has set the default `sample_size` to smaller than"
+ " 64 which seems highly unlikely .If you're checkpoint is a fine-tuned version of any of the"
+ " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
+ " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
+ " \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
+ " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
+ " in the config might lead to incorrect results in future versions. If you have downloaded this"
+ " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
+ " the `unet/config.json` file"
+ )
+ deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False)
+ new_config = dict(unet.config)
+ new_config["sample_size"] = 64
+ unet._internal_dict = FrozenDict(new_config)
+
+ self.register_modules(
+ vae=vae,
+ text_encoder=text_encoder,
+ tokenizer=tokenizer,
+ unet=unet,
+ scheduler=scheduler,
+ depth_estimator=depth_estimator,
+ feature_extractor=feature_extractor,
+ )
+ self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
+
+ def _encode_prompt(self, prompt, num_images_per_prompt, do_classifier_free_guidance, negative_prompt):
+ r"""
+ Encodes the prompt into text encoder hidden states.
+
+ Args:
+ prompt (`str` or `list(int)`):
+ prompt to be encoded
+ num_images_per_prompt (`int`):
+ number of images that should be generated per prompt
+ do_classifier_free_guidance (`bool`):
+ whether to use classifier free guidance or not
+ negative_prompt (`str` or `List[str]`):
+ The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
+ if `guidance_scale` is less than `1`).
+ """
+ batch_size = len(prompt) if isinstance(prompt, list) else 1
+
+ text_inputs = self.tokenizer(
+ prompt,
+ padding="max_length",
+ max_length=self.tokenizer.model_max_length,
+ truncation=True,
+ return_tensors="pd",
+ )
+ text_input_ids = text_inputs.input_ids
+ untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pd").input_ids
+
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not paddle.equal_all(
+ text_input_ids, untruncated_ids
+ ):
+ removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1])
+ logger.warning(
+ "The following part of your input was truncated because CLIP can only handle sequences up to"
+ f" {self.tokenizer.model_max_length} tokens: {removed_text}"
+ )
+
+ config = (
+ self.text_encoder.config
+ if isinstance(self.text_encoder.config, dict)
+ else self.text_encoder.config.to_dict()
+ )
+ if config.get("use_attention_mask", None) is not None and config["use_attention_mask"]:
+ attention_mask = text_inputs.attention_mask
+ else:
+ attention_mask = None
+
+ text_embeddings = self.text_encoder(
+ text_input_ids,
+ attention_mask=attention_mask,
+ )
+ text_embeddings = text_embeddings[0]
+
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
+ bs_embed, seq_len, _ = text_embeddings.shape
+ text_embeddings = text_embeddings.tile([1, num_images_per_prompt, 1])
+ text_embeddings = text_embeddings.reshape([bs_embed * num_images_per_prompt, seq_len, -1])
+
+ # get unconditional embeddings for classifier free guidance
+ if do_classifier_free_guidance:
+ uncond_tokens: List[str]
+ if negative_prompt is None:
+ uncond_tokens = [""] * batch_size
+ elif type(prompt) is not type(negative_prompt):
+ raise TypeError(
+ f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
+ f" {type(prompt)}."
+ )
+ elif isinstance(negative_prompt, str):
+ uncond_tokens = [negative_prompt]
+ elif batch_size != len(negative_prompt):
+ raise ValueError(
+ f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
+ f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
+ " the batch size of `prompt`."
+ )
+ else:
+ uncond_tokens = negative_prompt
+
+ max_length = text_input_ids.shape[-1]
+ uncond_input = self.tokenizer(
+ uncond_tokens,
+ padding="max_length",
+ max_length=max_length,
+ truncation=True,
+ return_tensors="pd",
+ )
+
+ if config.get("use_attention_mask", None) is not None and config["use_attention_mask"]:
+ attention_mask = uncond_input.attention_mask
+ else:
+ attention_mask = None
+
+ uncond_embeddings = self.text_encoder(
+ uncond_input.input_ids,
+ attention_mask=attention_mask,
+ )
+ uncond_embeddings = uncond_embeddings[0]
+
+ # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
+ seq_len = uncond_embeddings.shape[1]
+ uncond_embeddings = uncond_embeddings.tile([1, num_images_per_prompt, 1])
+ uncond_embeddings = uncond_embeddings.reshape([batch_size * num_images_per_prompt, seq_len, -1])
+
+ # For classifier free guidance, we need to do two forward passes.
+ # Here we concatenate the unconditional and text embeddings into a single batch
+ # to avoid doing two forward passes
+ text_embeddings = paddle.concat([uncond_embeddings, text_embeddings])
+
+ return text_embeddings
+
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker
+ def run_safety_checker(self, image, dtype):
+ if self.safety_checker is not None:
+ safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pd")
+ image, has_nsfw_concept = self.safety_checker(
+ images=image, clip_input=safety_checker_input.pixel_values.cast(dtype)
+ )
+ else:
+ has_nsfw_concept = None
+ return image, has_nsfw_concept
+
+ def decode_latents(self, latents):
+ latents = 1 / 0.18215 * latents
+ image = self.vae.decode(latents).sample
+ image = (image / 2 + 0.5).clip(0, 1)
+ # we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
+ image = image.transpose([0, 2, 3, 1]).cast("float32").numpy()
+ return image
+
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
+ def prepare_extra_step_kwargs(self, generator, eta):
+ # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
+ # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
+ # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
+ # and should be between [0, 1]
+
+ accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
+ extra_step_kwargs = {}
+ if accepts_eta:
+ extra_step_kwargs["eta"] = eta
+
+ # check if the scheduler accepts generator
+ accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
+ if accepts_generator:
+ extra_step_kwargs["generator"] = generator
+ return extra_step_kwargs
+
+ def check_inputs(self, prompt, strength, callback_steps):
+ if not isinstance(prompt, str) and not isinstance(prompt, list):
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
+
+ if strength < 0 or strength > 1:
+ raise ValueError(f"The value of strength should in [1.0, 1.0] but is {strength}")
+
+ if (callback_steps is None) or (
+ callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
+ ):
+ raise ValueError(
+ f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
+ f" {type(callback_steps)}."
+ )
+
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.StableDiffusionImg2ImgPipeline.get_timesteps
+ def get_timesteps(self, num_inference_steps, strength):
+ # get the original timestep using init_timestep
+ init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
+
+ t_start = max(num_inference_steps - init_timestep, 0)
+ timesteps = self.scheduler.timesteps[t_start:]
+
+ return timesteps, num_inference_steps - t_start
+
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.StableDiffusionImg2ImgPipeline.prepare_latents
+ def prepare_latents(self, image, timestep, batch_size, num_images_per_prompt, dtype, generator=None):
+ image = image.cast(dtype=dtype)
+
+ batch_size = batch_size * num_images_per_prompt
+ if isinstance(generator, list) and len(generator) != batch_size:
+ raise ValueError(
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
+ )
+
+ if isinstance(generator, list):
+ init_latents = [
+ self.vae.encode(image[i : i + 1]).latent_dist.sample(generator[i]) for i in range(batch_size)
+ ]
+ init_latents = paddle.concat(init_latents, axis=0)
+ else:
+ init_latents = self.vae.encode(image).latent_dist.sample(generator)
+ init_latents = 0.18215 * init_latents
+
+ if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] == 0:
+ # expand init_latents for batch_size
+ deprecation_message = (
+ f"You have passed {batch_size} text prompts (`prompt`), but only {init_latents.shape[0]} initial"
+ " images (`image`). Initial images are now duplicating to match the number of text prompts. Note"
+ " that this behavior is deprecated and will be removed in a version 1.0.0. Please make sure to update"
+ " your script to pass as many initial images as text prompts to suppress this warning."
+ )
+ deprecate("len(prompt) != len(image)", "1.0.0", deprecation_message, standard_warn=False)
+ additional_image_per_prompt = batch_size // init_latents.shape[0]
+ init_latents = paddle.concat([init_latents] * additional_image_per_prompt, axis=0)
+ elif batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] != 0:
+ raise ValueError(
+ f"Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts."
+ )
+ else:
+ init_latents = paddle.concat([init_latents], axis=0)
+
+ shape = init_latents.shape
+ if isinstance(generator, list):
+ shape = [
+ 1,
+ ] + shape[1:]
+ noise = [paddle.randn(shape, generator=generator[i], dtype=dtype) for i in range(batch_size)]
+ noise = paddle.concat(noise, axis=0)
+ else:
+ noise = paddle.randn(shape, generator=generator, dtype=dtype)
+
+ # get latents
+ init_latents = self.scheduler.add_noise(init_latents, noise, timestep)
+ latents = init_latents
+
+ return latents
+
+ def prepare_depth_map(self, image, depth_map, batch_size, do_classifier_free_guidance, dtype):
+ if isinstance(image, PIL.Image.Image):
+ image = [image]
+ else:
+ image = [img for img in image]
+
+ if isinstance(image[0], PIL.Image.Image):
+ width, height = image[0].size
+ else:
+ width, height = image[0].shape[-2:]
+
+ if depth_map is None:
+ pixel_values = self.feature_extractor(images=image, return_tensors="pd").pixel_values
+ # The DPT-Hybrid model uses batch-norm layers which are not compatible with fp16.
+ # TODO junnyu, we donot use fp16.
+ depth_map = self.depth_estimator(pixel_values).predicted_depth
+ else:
+ depth_map = depth_map.cast(dtype)
+
+ depth_map = paddle.nn.functional.interpolate(
+ depth_map.unsqueeze(1),
+ size=(height // self.vae_scale_factor, width // self.vae_scale_factor),
+ mode="bicubic",
+ align_corners=False,
+ )
+
+ depth_min = paddle.amin(depth_map, axis=[1, 2, 3], keepdim=True)
+ depth_max = paddle.amax(depth_map, axis=[1, 2, 3], keepdim=True)
+ depth_map = 2.0 * (depth_map - depth_min) / (depth_max - depth_min) - 1.0
+ depth_map = depth_map.cast(dtype)
+
+ # duplicate mask and masked_image_latents for each generation per prompt, using mps friendly method
+ if depth_map.shape[0] < batch_size:
+ depth_map = depth_map.tile([batch_size, 1, 1, 1])
+
+ depth_map = paddle.concat([depth_map] * 2) if do_classifier_free_guidance else depth_map
+ return depth_map
+
+ @paddle.no_grad()
+ def __call__(
+ self,
+ prompt: Union[str, List[str]],
+ image: Union[paddle.Tensor, PIL.Image.Image],
+ depth_map: Optional[paddle.Tensor] = None,
+ strength: float = 0.8,
+ num_inference_steps: Optional[int] = 50,
+ guidance_scale: Optional[float] = 7.5,
+ negative_prompt: Optional[Union[str, List[str]]] = None,
+ num_images_per_prompt: Optional[int] = 1,
+ eta: Optional[float] = 0.0,
+ generator: Optional[Union[paddle.Generator, List[paddle.Generator]]] = None,
+ output_type: Optional[str] = "pil",
+ return_dict: bool = True,
+ callback: Optional[Callable[[int, int, paddle.Tensor], None]] = None,
+ callback_steps: Optional[int] = 1,
+ ):
+ r"""
+ Function invoked when calling the pipeline for generation.
+
+ Args:
+ prompt (`str` or `List[str]`):
+ The prompt or prompts to guide the image generation.
+ image (`paddle.Tensor` or `PIL.Image.Image`):
+ `Image`, or tensor representing an image batch, that will be used as the starting point for the
+ process.
+ strength (`float`, *optional*, defaults to 0.8):
+ Conceptually, indicates how much to transform the reference `image`. Must be between 0 and 1. `image`
+ will be used as a starting point, adding more noise to it the larger the `strength`. The number of
+ denoising steps depends on the amount of noise initially added. When `strength` is 1, added noise will
+ be maximum and the denoising process will run for the full number of iterations specified in
+ `num_inference_steps`. A value of 1, therefore, essentially ignores `image`.
+ num_inference_steps (`int`, *optional*, defaults to 50):
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
+ expense of slower inference. This parameter will be modulated by `strength`.
+ guidance_scale (`float`, *optional*, defaults to 7.5):
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
+ usually at the expense of lower image quality.
+ negative_prompt (`str` or `List[str]`, *optional*):
+ The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
+ if `guidance_scale` is less than `1`).
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
+ The number of images to generate per prompt.
+ eta (`float`, *optional*, defaults to 0.0):
+ Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
+ [`schedulers.DDIMScheduler`], will be ignored for others.
+ generator (`torch.Generator`, *optional*):
+ One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
+ to make generation deterministic.
+ output_type (`str`, *optional*, defaults to `"pil"`):
+ The output format of the generate image. Choose between
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
+ return_dict (`bool`, *optional*, defaults to `True`):
+ Whether or not to return a [`~pipelines.pipeline_utils.ImagePipelineOutput`] instead of a
+ plain tuple.
+ callback (`Callable`, *optional*):
+ A function that will be called every `callback_steps` steps during inference. The function will be
+ called with the following arguments: `callback(step: int, timestep: int, latents: paddle.Tensor)`.
+ callback_steps (`int`, *optional*, defaults to 1):
+ The frequency at which the `callback` function will be called. If not specified, the callback will be
+ called at every step.
+
+ Returns:
+ [`~pipelines.pipeline_utils.ImagePipelineOutput`] or `tuple`:
+ [`~pipelines.pipeline_utils.ImagePipelineOutput`] if `return_dict` is True, otherwise a `tuple.
+ When returning a tuple, the first element is a list with the generated images.
+ """
+ # 1. Check inputs
+ self.check_inputs(prompt, strength, callback_steps)
+
+ # 2. Define call parameters
+ batch_size = 1 if isinstance(prompt, str) else len(prompt)
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
+ # corresponds to doing no classifier free guidance.
+ do_classifier_free_guidance = guidance_scale > 1.0
+
+ # 3. Encode input prompt
+ text_embeddings = self._encode_prompt(
+ prompt, num_images_per_prompt, do_classifier_free_guidance, negative_prompt
+ )
+
+ # 4. Preprocess image
+ depth_mask = self.prepare_depth_map(
+ image,
+ depth_map,
+ batch_size * num_images_per_prompt,
+ do_classifier_free_guidance,
+ text_embeddings.dtype,
+ )
+
+ # 5. Prepare depth mask
+ image = preprocess(image)
+
+ # 6. set timesteps
+ self.scheduler.set_timesteps(num_inference_steps)
+ timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength)
+ latent_timestep = timesteps[:1].tile([batch_size * num_images_per_prompt])
+
+ # 7. Prepare latent variables
+ latents = self.prepare_latents(
+ image, latent_timestep, batch_size, num_images_per_prompt, text_embeddings.dtype, generator
+ )
+
+ # 8. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
+ extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
+
+ # 9. Denoising loop
+ num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
+ for i, t in enumerate(timesteps):
+ # expand the latents if we are doing classifier free guidance
+ latent_model_input = paddle.concat([latents] * 2) if do_classifier_free_guidance else latents
+ latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
+ latent_model_input = paddle.concat([latent_model_input, depth_mask], axis=1)
+
+ # predict the noise residual
+ noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample
+
+ # perform guidance
+ if do_classifier_free_guidance:
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
+ noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
+
+ # compute the previous noisy sample x_t -> x_t-1
+ latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
+
+ # call the callback, if provided
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
+ progress_bar.update()
+ if callback is not None and i % callback_steps == 0:
+ callback(i, t, latents)
+
+ # 10. Post-processing
+ image = self.decode_latents(latents)
+
+ # 11. Convert to PIL
+ if output_type == "pil":
+ image = self.numpy_to_pil(image)
+
+ if not return_dict:
+ return (image,)
+
+ return ImagePipelineOutput(images=image)
diff --git a/ppdiffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py b/ppdiffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py
new file mode 100644
index 0000000000000000000000000000000000000000..ad8b9a3c54248869158bbc3a62901ef6c45e8099
--- /dev/null
+++ b/ppdiffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py
@@ -0,0 +1,394 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+# Copyright 2022 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import inspect
+from typing import Callable, List, Optional, Union
+
+import paddle
+import PIL
+from packaging import version
+
+from paddlenlp.transformers import CLIPFeatureExtractor, CLIPVisionModelWithProjection
+
+from ...configuration_utils import FrozenDict
+from ...models import AutoencoderKL, UNet2DConditionModel
+from ...pipeline_utils import DiffusionPipeline
+from ...schedulers import (
+ DDIMScheduler,
+ DPMSolverMultistepScheduler,
+ EulerAncestralDiscreteScheduler,
+ EulerDiscreteScheduler,
+ LMSDiscreteScheduler,
+ PNDMScheduler,
+)
+from ...utils import deprecate, logging
+from . import StableDiffusionPipelineOutput
+from .safety_checker import StableDiffusionSafetyChecker
+
+logger = logging.get_logger(__name__) # pylint: disable=invalid-name
+
+
+class StableDiffusionImageVariationPipeline(DiffusionPipeline):
+ r"""
+ Pipeline to generate variations from an input image using Stable Diffusion.
+
+ This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
+ library implements for all the pipelines (such as downloading or saving etc.)
+
+ Args:
+ vae ([`AutoencoderKL`]):
+ Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
+ image_encoder ([`CLIPVisionModelWithProjection`]):
+ Frozen CLIP image-encoder. Stable Diffusion Image Variation uses the vision portion of
+ [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPVisionModelWithProjection),
+ specifically the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
+ unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
+ scheduler ([`SchedulerMixin`]):
+ A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
+ [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
+ safety_checker ([`StableDiffusionSafetyChecker`]):
+ Classification module that estimates whether generated images could be considered offensive or harmful.
+ Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
+ feature_extractor ([`CLIPFeatureExtractor`]):
+ Model that extracts features from generated images to be used as inputs for the `safety_checker`.
+ """
+ _optional_components = ["safety_checker"]
+
+ def __init__(
+ self,
+ vae: AutoencoderKL,
+ image_encoder: CLIPVisionModelWithProjection,
+ unet: UNet2DConditionModel,
+ scheduler: Union[
+ DDIMScheduler,
+ PNDMScheduler,
+ LMSDiscreteScheduler,
+ EulerDiscreteScheduler,
+ EulerAncestralDiscreteScheduler,
+ DPMSolverMultistepScheduler,
+ ],
+ safety_checker: StableDiffusionSafetyChecker,
+ feature_extractor: CLIPFeatureExtractor,
+ requires_safety_checker: bool = True,
+ ):
+ super().__init__()
+
+ if safety_checker is None and requires_safety_checker:
+ logger.warn(
+ f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
+ " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
+ " results in services or applications open to the public. Both the diffusers team and Hugging Face"
+ " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
+ " it only for use-cases that involve analyzing network behavior or auditing its results. For more"
+ " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
+ )
+ if safety_checker is not None and feature_extractor is None:
+ raise ValueError(
+ "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
+ " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
+ )
+ is_unet_version_less_0_9_0 = hasattr(unet.config, "_ppdiffusers_version") and version.parse(
+ version.parse(unet.config._ppdiffusers_version).base_version
+ ) < version.parse("0.9.0.dev0")
+ is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64
+ if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64:
+ deprecation_message = (
+ "The configuration file of the unet has set the default `sample_size` to smaller than"
+ " 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the"
+ " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
+ " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
+ " \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
+ " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
+ " in the config might lead to incorrect results in future versions. If you have downloaded this"
+ " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
+ " the `unet/config.json` file"
+ )
+ deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False)
+ new_config = dict(unet.config)
+ new_config["sample_size"] = 64
+ unet._internal_dict = FrozenDict(new_config)
+ self.register_modules(
+ vae=vae,
+ image_encoder=image_encoder,
+ unet=unet,
+ scheduler=scheduler,
+ safety_checker=safety_checker,
+ feature_extractor=feature_extractor,
+ )
+ self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
+ self.register_to_config(requires_safety_checker=requires_safety_checker)
+
+ def _encode_image(self, image, num_images_per_prompt, do_classifier_free_guidance):
+ dtype = self.image_encoder.dtype
+
+ if not isinstance(image, paddle.Tensor):
+ image = self.feature_extractor(images=image, return_tensors="pd").pixel_values
+
+ image = image.cast(dtype)
+ image_embeddings = self.image_encoder(image, return_dict=True).image_embeds
+ image_embeddings = image_embeddings.unsqueeze(1)
+
+ # duplicate image embeddings for each generation per prompt, using mps friendly method
+ bs_embed, seq_len, _ = image_embeddings.shape
+ image_embeddings = image_embeddings.tile([1, num_images_per_prompt, 1])
+ image_embeddings = image_embeddings.reshape([bs_embed * num_images_per_prompt, seq_len, -1])
+
+ if do_classifier_free_guidance:
+ uncond_embeddings = paddle.zeros_like(image_embeddings)
+
+ # For classifier free guidance, we need to do two forward passes.
+ # Here we concatenate the unconditional and text embeddings into a single batch
+ # to avoid doing two forward passes
+ image_embeddings = paddle.concat([uncond_embeddings, image_embeddings])
+
+ return image_embeddings
+
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker
+ def run_safety_checker(self, image, dtype):
+ if self.safety_checker is not None:
+ safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pd")
+ image, has_nsfw_concept = self.safety_checker(
+ images=image, clip_input=safety_checker_input.pixel_values.cast(dtype)
+ )
+ else:
+ has_nsfw_concept = None
+ return image, has_nsfw_concept
+
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents
+ def decode_latents(self, latents):
+ latents = 1 / 0.18215 * latents
+ image = self.vae.decode(latents).sample
+ image = (image / 2 + 0.5).clip(0, 1)
+ # we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
+ image = image.transpose([0, 2, 3, 1]).cast("float32").numpy()
+ return image
+
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
+ def prepare_extra_step_kwargs(self, generator, eta):
+ # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
+ # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
+ # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
+ # and should be between [0, 1]
+
+ accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
+ extra_step_kwargs = {}
+ if accepts_eta:
+ extra_step_kwargs["eta"] = eta
+
+ # check if the scheduler accepts generator
+ accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
+ if accepts_generator:
+ extra_step_kwargs["generator"] = generator
+ return extra_step_kwargs
+
+ def check_inputs(self, image, height, width, callback_steps):
+ if (
+ not isinstance(image, paddle.Tensor)
+ and not isinstance(image, PIL.Image.Image)
+ and not isinstance(image, list)
+ ):
+ raise ValueError(
+ "`image` has to be of type `paddle.Tensor` or `PIL.Image.Image` or `List[PIL.Image.Image]` but is"
+ f" {type(image)}"
+ )
+
+ if height % 8 != 0 or width % 8 != 0:
+ raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
+
+ if (callback_steps is None) or (
+ callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
+ ):
+ raise ValueError(
+ f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
+ f" {type(callback_steps)}."
+ )
+
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
+ def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, generator, latents=None):
+ shape = [batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor]
+ if isinstance(generator, list) and len(generator) != batch_size:
+ raise ValueError(
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
+ )
+
+ if latents is None:
+ if isinstance(generator, list):
+ shape = [
+ 1,
+ ] + shape[1:]
+ latents = [paddle.randn(shape, generator=generator[i], dtype=dtype) for i in range(batch_size)]
+ latents = paddle.concat(latents, axis=0)
+ else:
+ latents = paddle.randn(shape, generator=generator, dtype=dtype)
+ else:
+ if latents.shape != shape:
+ raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}")
+
+ # scale the initial noise by the standard deviation required by the scheduler
+ latents = latents * self.scheduler.init_noise_sigma
+ return latents
+
+ @paddle.no_grad()
+ def __call__(
+ self,
+ image: Union[PIL.Image.Image, List[PIL.Image.Image], paddle.Tensor],
+ height: Optional[int] = None,
+ width: Optional[int] = None,
+ num_inference_steps: int = 50,
+ guidance_scale: float = 7.5,
+ num_images_per_prompt: Optional[int] = 1,
+ eta: float = 0.0,
+ generator: Optional[Union[paddle.Generator, List[paddle.Generator]]] = None,
+ latents: Optional[paddle.Tensor] = None,
+ output_type: Optional[str] = "pil",
+ return_dict: bool = True,
+ callback: Optional[Callable[[int, int, paddle.Tensor], None]] = None,
+ callback_steps: Optional[int] = 1,
+ ):
+ r"""
+ Function invoked when calling the pipeline for generation.
+
+ Args:
+ image (`PIL.Image.Image` or `List[PIL.Image.Image]` or `paddle.Tensor`):
+ The image or images to guide the image generation. If you provide a tensor, it needs to comply with the
+ configuration of
+ [this](https://huggingface.co/lambdalabs/sd-image-variations-diffusers/blob/main/feature_extractor/preprocessor_config.json)
+ `CLIPFeatureExtractor`
+ height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
+ The height in pixels of the generated image.
+ width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
+ The width in pixels of the generated image.
+ num_inference_steps (`int`, *optional*, defaults to 50):
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
+ expense of slower inference.
+ guidance_scale (`float`, *optional*, defaults to 7.5):
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
+ usually at the expense of lower image quality.
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
+ The number of images to generate per prompt.
+ eta (`float`, *optional*, defaults to 0.0):
+ Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
+ [`schedulers.DDIMScheduler`], will be ignored for others.
+ generator (`paddle.Generator`, *optional*):
+ A [paddle generator] to make generation
+ deterministic.
+ latents (`paddle.Tensor`, *optional*):
+ Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
+ tensor will ge generated by sampling using the supplied random `generator`.
+ output_type (`str`, *optional*, defaults to `"pil"`):
+ The output format of the generate image. Choose between
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
+ return_dict (`bool`, *optional*, defaults to `True`):
+ Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
+ plain tuple.
+ callback (`Callable`, *optional*):
+ A function that will be called every `callback_steps` steps during inference. The function will be
+ called with the following arguments: `callback(step: int, timestep: int, latents: paddle.Tensor)`.
+ callback_steps (`int`, *optional*, defaults to 1):
+ The frequency at which the `callback` function will be called. If not specified, the callback will be
+ called at every step.
+
+ Returns:
+ [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
+ [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
+ When returning a tuple, the first element is a list with the generated images, and the second element is a
+ list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
+ (nsfw) content, according to the `safety_checker`.
+ """
+ # 0. Default height and width to unet
+ height = height or self.unet.config.sample_size * self.vae_scale_factor
+ width = width or self.unet.config.sample_size * self.vae_scale_factor
+
+ # 1. Check inputs. Raise error if not correct
+ self.check_inputs(image, height, width, callback_steps)
+
+ # 2. Define call parameters
+ if isinstance(image, PIL.Image.Image):
+ batch_size = 1
+ elif isinstance(image, list):
+ batch_size = len(image)
+ else:
+ batch_size = image.shape[0]
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
+ # corresponds to doing no classifier free guidance.
+ do_classifier_free_guidance = guidance_scale > 1.0
+
+ # 3. Encode input image
+ image_embeddings = self._encode_image(image, num_images_per_prompt, do_classifier_free_guidance)
+
+ # 4. Prepare timesteps
+ self.scheduler.set_timesteps(num_inference_steps)
+ timesteps = self.scheduler.timesteps
+
+ # 5. Prepare latent variables
+ num_channels_latents = self.unet.in_channels
+ latents = self.prepare_latents(
+ batch_size * num_images_per_prompt,
+ num_channels_latents,
+ height,
+ width,
+ image_embeddings.dtype,
+ generator,
+ latents,
+ )
+
+ # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
+ extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
+
+ # 7. Denoising loop
+ num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
+ for i, t in enumerate(timesteps):
+ # expand the latents if we are doing classifier free guidance
+ latent_model_input = paddle.concat([latents] * 2) if do_classifier_free_guidance else latents
+ latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
+
+ # predict the noise residual
+ noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=image_embeddings).sample
+
+ # perform guidance
+ if do_classifier_free_guidance:
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
+ noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
+
+ # compute the previous noisy sample x_t -> x_t-1
+ latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
+
+ # call the callback, if provided
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
+ progress_bar.update()
+ if callback is not None and i % callback_steps == 0:
+ callback(i, t, latents)
+
+ # 8. Post-processing
+ image = self.decode_latents(latents)
+
+ # 9. Run safety checker
+ image, has_nsfw_concept = self.run_safety_checker(image, image_embeddings.dtype)
+
+ # 10. Convert to PIL
+ if output_type == "pil":
+ image = self.numpy_to_pil(image)
+
+ if not return_dict:
+ return (image, has_nsfw_concept)
+
+ return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
diff --git a/ppdiffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py b/ppdiffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py
new file mode 100644
index 0000000000000000000000000000000000000000..bca486f8fad435b45540af6227cf1b834bead108
--- /dev/null
+++ b/ppdiffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py
@@ -0,0 +1,555 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+# Copyright 2022 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import inspect
+from typing import Callable, List, Optional, Union
+
+import numpy as np
+import paddle
+import PIL
+from packaging import version
+
+from paddlenlp.transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
+
+from ...configuration_utils import FrozenDict
+from ...models import AutoencoderKL, UNet2DConditionModel
+from ...pipeline_utils import DiffusionPipeline
+from ...schedulers import (
+ DDIMScheduler,
+ DPMSolverMultistepScheduler,
+ EulerAncestralDiscreteScheduler,
+ EulerDiscreteScheduler,
+ LMSDiscreteScheduler,
+ PNDMScheduler,
+)
+from ...utils import PIL_INTERPOLATION, deprecate, logging
+from . import StableDiffusionPipelineOutput
+from .safety_checker import StableDiffusionSafetyChecker
+
+logger = logging.get_logger(__name__) # pylint: disable=invalid-name
+
+
+def preprocess(image):
+ if isinstance(image, paddle.Tensor):
+ return image
+ elif isinstance(image, PIL.Image.Image):
+ image = [image]
+
+ if isinstance(image[0], PIL.Image.Image):
+ w, h = image[0].size
+ w, h = map(lambda x: x - x % 32, (w, h)) # resize to integer multiple of 32
+
+ image = [np.array(i.resize((w, h), resample=PIL_INTERPOLATION["lanczos"]))[None, :] for i in image]
+ image = np.concatenate(image, axis=0)
+ image = np.array(image).astype(np.float32) / 255.0
+ image = image.transpose(0, 3, 1, 2)
+ image = 2.0 * image - 1.0
+ image = paddle.to_tensor(image)
+ elif isinstance(image[0], paddle.Tensor):
+ image = paddle.concat(image, axis=0)
+ return image
+
+
+class StableDiffusionImg2ImgPipeline(DiffusionPipeline):
+ r"""
+ Pipeline for text-guided image to image generation using Stable Diffusion.
+
+ This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
+ library implements for all the pipelines (such as downloading or saving, running on a particular xxxx, etc.)
+
+ Args:
+ vae ([`AutoencoderKL`]):
+ Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
+ text_encoder ([`CLIPTextModel`]):
+ Frozen text-encoder. Stable Diffusion uses the text portion of
+ [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
+ the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
+ tokenizer (`CLIPTokenizer`):
+ Tokenizer of class
+ [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
+ unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
+ scheduler ([`SchedulerMixin`]):
+ A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
+ [`DDIMScheduler`], [`LMSDiscreteScheduler`], [`PNDMScheduler`], [`EulerDiscreteScheduler`], [`EulerAncestralDiscreteScheduler`]
+ or [`DPMSolverMultistepScheduler`].
+ safety_checker ([`StableDiffusionSafetyChecker`]):
+ Classification module that estimates whether generated images could be considered offensive or harmful.
+ Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
+ feature_extractor ([`CLIPFeatureExtractor`]):
+ Model that extracts features from generated images to be used as inputs for the `safety_checker`.
+ """
+ _optional_components = ["safety_checker", "feature_extractor"]
+
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.__init__
+ def __init__(
+ self,
+ vae: AutoencoderKL,
+ text_encoder: CLIPTextModel,
+ tokenizer: CLIPTokenizer,
+ unet: UNet2DConditionModel,
+ scheduler: Union[
+ DDIMScheduler,
+ PNDMScheduler,
+ LMSDiscreteScheduler,
+ EulerDiscreteScheduler,
+ EulerAncestralDiscreteScheduler,
+ DPMSolverMultistepScheduler,
+ ],
+ safety_checker: StableDiffusionSafetyChecker,
+ feature_extractor: CLIPFeatureExtractor,
+ requires_safety_checker: bool = True,
+ ):
+ super().__init__()
+
+ if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
+ deprecation_message = (
+ f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
+ f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
+ "to update the config accordingly as leaving `steps_offset` might led to incorrect results"
+ " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
+ " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
+ " file"
+ )
+ deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False)
+ new_config = dict(scheduler.config)
+ new_config["steps_offset"] = 1
+ scheduler._internal_dict = FrozenDict(new_config)
+
+ if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True:
+ deprecation_message = (
+ f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`."
+ " `clip_sample` should be set to False in the configuration file. Please make sure to update the"
+ " config accordingly as not setting `clip_sample` in the config might lead to incorrect results in"
+ " future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very"
+ " nice if you could open a Pull request for the `scheduler/scheduler_config.json` file"
+ )
+ deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False)
+ new_config = dict(scheduler.config)
+ new_config["clip_sample"] = False
+ scheduler._internal_dict = FrozenDict(new_config)
+
+ if safety_checker is None and requires_safety_checker:
+ logger.warning(
+ f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
+ " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
+ " results in services or applications open to the public. PaddleNLP team, diffusers team and Hugging Face"
+ " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
+ " it only for use-cases that involve analyzing network behavior or auditing its results. For more"
+ " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
+ )
+ if safety_checker is not None and feature_extractor is None:
+ raise ValueError(
+ "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
+ " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
+ )
+ is_unet_version_less_0_9_0 = hasattr(unet.config, "_ppdiffusers_version") and version.parse(
+ version.parse(unet.config._ppdiffusers_version).base_version
+ ) < version.parse("0.9.0.dev0")
+ is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64
+ if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64:
+ deprecation_message = (
+ "The configuration file of the unet has set the default `sample_size` to smaller than"
+ " 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the"
+ " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
+ " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
+ " \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
+ " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
+ " in the config might lead to incorrect results in future versions. If you have downloaded this"
+ " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
+ " the `unet/config.json` file"
+ )
+ deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False)
+ new_config = dict(unet.config)
+ new_config["sample_size"] = 64
+ unet._internal_dict = FrozenDict(new_config)
+ self.register_modules(
+ vae=vae,
+ text_encoder=text_encoder,
+ tokenizer=tokenizer,
+ unet=unet,
+ scheduler=scheduler,
+ safety_checker=safety_checker,
+ feature_extractor=feature_extractor,
+ )
+ self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
+ self.register_to_config(requires_safety_checker=requires_safety_checker)
+
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._encode_prompt
+ def _encode_prompt(self, prompt, num_images_per_prompt, do_classifier_free_guidance, negative_prompt):
+ r"""
+ Encodes the prompt into text encoder hidden states.
+
+ Args:
+ prompt (`str` or `list(int)`):
+ prompt to be encoded
+ num_images_per_prompt (`int`):
+ number of images that should be generated per prompt
+ do_classifier_free_guidance (`bool`):
+ whether to use classifier free guidance or not
+ negative_prompt (`str` or `List[str]`):
+ The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
+ if `guidance_scale` is less than `1`).
+ """
+ batch_size = len(prompt) if isinstance(prompt, list) else 1
+
+ text_inputs = self.tokenizer(
+ prompt,
+ padding="max_length",
+ max_length=self.tokenizer.model_max_length,
+ truncation=True,
+ return_tensors="pd",
+ )
+ text_input_ids = text_inputs.input_ids
+ untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pd").input_ids
+
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not paddle.equal_all(
+ text_input_ids, untruncated_ids
+ ):
+ removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1])
+ logger.warning(
+ "The following part of your input was truncated because CLIP can only handle sequences up to"
+ f" {self.tokenizer.model_max_length} tokens: {removed_text}"
+ )
+
+ config = (
+ self.text_encoder.config
+ if isinstance(self.text_encoder.config, dict)
+ else self.text_encoder.config.to_dict()
+ )
+ if config.get("use_attention_mask", None) is not None and config["use_attention_mask"]:
+ attention_mask = text_inputs.attention_mask
+ else:
+ attention_mask = None
+
+ text_embeddings = self.text_encoder(
+ text_input_ids,
+ attention_mask=attention_mask,
+ )
+ text_embeddings = text_embeddings[0]
+
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
+ bs_embed, seq_len, _ = text_embeddings.shape
+ text_embeddings = text_embeddings.tile([1, num_images_per_prompt, 1])
+ text_embeddings = text_embeddings.reshape([bs_embed * num_images_per_prompt, seq_len, -1])
+
+ # get unconditional embeddings for classifier free guidance
+ if do_classifier_free_guidance:
+ uncond_tokens: List[str]
+ if negative_prompt is None:
+ uncond_tokens = [""] * batch_size
+ elif type(prompt) is not type(negative_prompt):
+ raise TypeError(
+ f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
+ f" {type(prompt)}."
+ )
+ elif isinstance(negative_prompt, str):
+ uncond_tokens = [negative_prompt]
+ elif batch_size != len(negative_prompt):
+ raise ValueError(
+ f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
+ f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
+ " the batch size of `prompt`."
+ )
+ else:
+ uncond_tokens = negative_prompt
+
+ max_length = text_input_ids.shape[-1]
+ uncond_input = self.tokenizer(
+ uncond_tokens,
+ padding="max_length",
+ max_length=max_length,
+ truncation=True,
+ return_tensors="pd",
+ )
+
+ if config.get("use_attention_mask", None) is not None and config["use_attention_mask"]:
+ attention_mask = uncond_input.attention_mask
+ else:
+ attention_mask = None
+
+ uncond_embeddings = self.text_encoder(
+ uncond_input.input_ids,
+ attention_mask=attention_mask,
+ )
+ uncond_embeddings = uncond_embeddings[0]
+
+ # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
+ seq_len = uncond_embeddings.shape[1]
+ uncond_embeddings = uncond_embeddings.tile([1, num_images_per_prompt, 1])
+ uncond_embeddings = uncond_embeddings.reshape([batch_size * num_images_per_prompt, seq_len, -1])
+
+ # For classifier free guidance, we need to do two forward passes.
+ # Here we concatenate the unconditional and text embeddings into a single batch
+ # to avoid doing two forward passes
+ text_embeddings = paddle.concat([uncond_embeddings, text_embeddings])
+
+ return text_embeddings
+
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker
+ def run_safety_checker(self, image, dtype):
+ if self.safety_checker is not None:
+ safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pd")
+ image, has_nsfw_concept = self.safety_checker(
+ images=image, clip_input=safety_checker_input.pixel_values.cast(dtype)
+ )
+ else:
+ has_nsfw_concept = None
+ return image, has_nsfw_concept
+
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents
+ def decode_latents(self, latents):
+ latents = 1 / 0.18215 * latents
+ image = self.vae.decode(latents).sample
+ image = (image / 2 + 0.5).clip(0, 1)
+ # we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
+ image = image.transpose([0, 2, 3, 1]).cast("float32").numpy()
+ return image
+
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
+ def prepare_extra_step_kwargs(self, generator, eta):
+ # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
+ # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
+ # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
+ # and should be between [0, 1]
+
+ accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
+ extra_step_kwargs = {}
+ if accepts_eta:
+ extra_step_kwargs["eta"] = eta
+
+ # check if the scheduler accepts generator
+ accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
+ if accepts_generator:
+ extra_step_kwargs["generator"] = generator
+ return extra_step_kwargs
+
+ def check_inputs(self, prompt, strength, callback_steps):
+ if not isinstance(prompt, str) and not isinstance(prompt, list):
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
+
+ if strength < 0 or strength > 1:
+ raise ValueError(f"The value of strength should in [1.0, 1.0] but is {strength}")
+
+ if (callback_steps is None) or (
+ callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
+ ):
+ raise ValueError(
+ f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
+ f" {type(callback_steps)}."
+ )
+
+ def get_timesteps(self, num_inference_steps, strength):
+ # get the original timestep using init_timestep
+ init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
+
+ t_start = max(num_inference_steps - init_timestep, 0)
+ timesteps = self.scheduler.timesteps[t_start:]
+
+ return timesteps, num_inference_steps - t_start
+
+ def prepare_latents(self, image, timestep, batch_size, num_images_per_prompt, dtype, generator=None):
+ image = image.cast(dtype=dtype)
+
+ batch_size = batch_size * num_images_per_prompt
+ if isinstance(generator, list) and len(generator) != batch_size:
+ raise ValueError(
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
+ )
+
+ if isinstance(generator, list):
+ init_latents = [
+ self.vae.encode(image[i : i + 1]).latent_dist.sample(generator[i]) for i in range(batch_size)
+ ]
+ init_latents = paddle.concat(init_latents, axis=0)
+ else:
+ init_latents = self.vae.encode(image).latent_dist.sample(generator)
+ init_latents = 0.18215 * init_latents
+
+ if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] == 0:
+ # expand init_latents for batch_size
+ deprecation_message = (
+ f"You have passed {batch_size} text prompts (`prompt`), but only {init_latents.shape[0]} initial"
+ " images (`image`). Initial images are now duplicating to match the number of text prompts. Note"
+ " that this behavior is deprecated and will be removed in a version 1.0.0. Please make sure to update"
+ " your script to pass as many initial images as text prompts to suppress this warning."
+ )
+ deprecate("len(prompt) != len(image)", "1.0.0", deprecation_message, standard_warn=False)
+ additional_image_per_prompt = batch_size // init_latents.shape[0]
+ init_latents = paddle.concat([init_latents] * additional_image_per_prompt, axis=0)
+ elif batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] != 0:
+ raise ValueError(
+ f"Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts."
+ )
+ else:
+ init_latents = paddle.concat([init_latents], axis=0)
+
+ shape = init_latents.shape
+ if isinstance(generator, list):
+ shape = [
+ 1,
+ ] + shape[1:]
+ noise = [paddle.randn(shape, generator=generator[i], dtype=dtype) for i in range(batch_size)]
+ noise = paddle.concat(noise, axis=0)
+ else:
+ noise = paddle.randn(shape, generator=generator, dtype=dtype)
+
+ # get latents
+ init_latents = self.scheduler.add_noise(init_latents, noise, timestep)
+ latents = init_latents
+
+ return latents
+
+ @paddle.no_grad()
+ def __call__(
+ self,
+ prompt: Union[str, List[str]],
+ image: Union[paddle.Tensor, PIL.Image.Image] = None,
+ strength: float = 0.8,
+ num_inference_steps: Optional[int] = 50,
+ guidance_scale: Optional[float] = 7.5,
+ negative_prompt: Optional[Union[str, List[str]]] = None,
+ num_images_per_prompt: Optional[int] = 1,
+ eta: Optional[float] = 0.0,
+ generator: Optional[Union[paddle.Generator, List[paddle.Generator]]] = None,
+ output_type: Optional[str] = "pil",
+ return_dict: bool = True,
+ callback: Optional[Callable[[int, int, paddle.Tensor], None]] = None,
+ callback_steps: Optional[int] = 1,
+ ):
+ r"""
+ Function invoked when calling the pipeline for generation.
+
+ Args:
+ prompt (`str` or `List[str]`):
+ The prompt or prompts to guide the image generation.
+ image (`paddle.Tensor` or `PIL.Image.Image`):
+ `Image`, or tensor representing an image batch, that will be used as the starting point for the
+ process.
+ strength (`float`, *optional*, defaults to 0.8):
+ Conceptually, indicates how much to transform the reference `image`. Must be between 0 and 1.
+ `image` will be used as a starting point, adding more noise to it the larger the `strength`. The
+ number of denoising steps depends on the amount of noise initially added. When `strength` is 1, added
+ noise will be maximum and the denoising process will run for the full number of iterations specified in
+ `num_inference_steps`. A value of 1, therefore, essentially ignores `image`.
+ num_inference_steps (`int`, *optional*, defaults to 50):
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
+ expense of slower inference. This parameter will be modulated by `strength`.
+ guidance_scale (`float`, *optional*, defaults to 7.5):
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
+ usually at the expense of lower image quality.
+ negative_prompt (`str` or `List[str]`, *optional*):
+ The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
+ if `guidance_scale` is less than `1`).
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
+ The number of images to generate per prompt.
+ eta (`float`, *optional*, defaults to 0.0):
+ Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
+ [`schedulers.DDIMScheduler`], will be ignored for others.
+ generator (`paddle.Generator`, *optional*):
+ One or a list of paddle generator(s) to make generation deterministic.
+ output_type (`str`, *optional*, defaults to `"pil"`):
+ The output format of the generate image. Choose between
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
+ return_dict (`bool`, *optional*, defaults to `True`):
+ Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
+ plain tuple.
+ callback (`Callable`, *optional*):
+ A function that will be called every `callback_steps` steps during inference. The function will be
+ called with the following arguments: `callback(step: int, timestep: int, latents: paddle.Tensor)`.
+ callback_steps (`int`, *optional*, defaults to 1):
+ The frequency at which the `callback` function will be called. If not specified, the callback will be
+ called at every step.
+
+ Returns:
+ [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
+ [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
+ When returning a tuple, the first element is a list with the generated images, and the second element is a
+ list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
+ (nsfw) content, according to the `safety_checker`.
+ """
+ # 1. Check inputs
+ self.check_inputs(prompt, strength, callback_steps)
+
+ # 2. Define call parameters
+ batch_size = 1 if isinstance(prompt, str) else len(prompt)
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
+ # corresponds to doing no classifier free guidance.
+ do_classifier_free_guidance = guidance_scale > 1.0
+
+ # 3. Encode input prompt
+ text_embeddings = self._encode_prompt(
+ prompt, num_images_per_prompt, do_classifier_free_guidance, negative_prompt
+ )
+
+ # 4. Preprocess image
+ image = preprocess(image)
+
+ # 5. set timesteps
+ self.scheduler.set_timesteps(num_inference_steps)
+ timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength)
+ latent_timestep = timesteps[:1].tile([batch_size * num_images_per_prompt])
+
+ # 6. Prepare latent variables
+ latents = self.prepare_latents(
+ image, latent_timestep, batch_size, num_images_per_prompt, text_embeddings.dtype, generator
+ )
+
+ # 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
+ extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
+
+ # 8. Denoising loop
+ num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
+ for i, t in enumerate(timesteps):
+ # expand the latents if we are doing classifier free guidance
+ latent_model_input = paddle.concat([latents] * 2) if do_classifier_free_guidance else latents
+ latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
+
+ # predict the noise residual
+ noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample
+
+ # perform guidance
+ if do_classifier_free_guidance:
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
+ noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
+
+ # compute the previous noisy sample x_t -> x_t-1
+ latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
+
+ # call the callback, if provided
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
+ progress_bar.update()
+ if callback is not None and i % callback_steps == 0:
+ callback(i, t, latents)
+
+ # 9. Post-processing
+ image = self.decode_latents(latents)
+
+ # 10. Run safety checker
+ image, has_nsfw_concept = self.run_safety_checker(image, text_embeddings.dtype)
+
+ # 11. Convert to PIL
+ if output_type == "pil":
+ image = self.numpy_to_pil(image)
+
+ if not return_dict:
+ return (image, has_nsfw_concept)
+
+ return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
diff --git a/ppdiffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py b/ppdiffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py
new file mode 100644
index 0000000000000000000000000000000000000000..6a9d5e8322d0ae060ec71314b3f7ed5476e83500
--- /dev/null
+++ b/ppdiffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py
@@ -0,0 +1,694 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+# Copyright 2022 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import inspect
+from typing import Callable, List, Optional, Union
+
+import numpy as np
+import paddle
+import paddle.nn.functional as F
+import PIL
+from packaging import version
+
+from paddlenlp.transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
+
+from ...configuration_utils import FrozenDict
+from ...models import AutoencoderKL, UNet2DConditionModel
+from ...pipeline_utils import DiffusionPipeline
+from ...schedulers import (
+ DDIMScheduler,
+ DPMSolverMultistepScheduler,
+ EulerAncestralDiscreteScheduler,
+ EulerDiscreteScheduler,
+ LMSDiscreteScheduler,
+ PNDMScheduler,
+)
+from ...utils import deprecate, logging
+from . import StableDiffusionPipelineOutput
+from .safety_checker import StableDiffusionSafetyChecker
+
+logger = logging.get_logger(__name__) # pylint: disable=invalid-name
+
+
+def prepare_mask_and_masked_image(image, mask):
+ """
+ Prepares a pair (image, mask) to be consumed by the Stable Diffusion pipeline. This means that those inputs will be
+ converted to ``paddle.Tensor`` with shapes ``batch x channels x height x width`` where ``channels`` is ``3`` for the
+ ``image`` and ``1`` for the ``mask``.
+ The ``image`` will be converted to ``paddle.float32`` and normalized to be in ``[-1, 1]``. The ``mask`` will be
+ binarized (``mask > 0.5``) and cast to ``paddle.float32`` too.
+ Args:
+ image (Union[np.array, PIL.Image, paddle.Tensor]): The image to inpaint.
+ It can be a ``PIL.Image``, or a ``height x width x 3`` ``np.array`` or a ``channels x height x width``
+ ``paddle.Tensor`` or a ``batch x channels x height x width`` ``paddle.Tensor``.
+ mask (_type_): The mask to apply to the image, i.e. regions to inpaint.
+ It can be a ``PIL.Image``, or a ``height x width`` ``np.array`` or a ``1 x height x width``
+ ``paddle.Tensor`` or a ``batch x 1 x height x width`` ``paddle.Tensor``.
+ Raises:
+ ValueError: ``paddle.Tensor`` images should be in the ``[-1, 1]`` range. ValueError: ``paddle.Tensor`` mask
+ should be in the ``[0, 1]`` range. ValueError: ``mask`` and ``image`` should have the same spatial dimensions.
+ TypeError: ``mask`` is a ``paddle.Tensor`` but ``image`` is not
+ (ot the other way around).
+ Returns:
+ tuple[paddle.Tensor]: The pair (mask, masked_image) as ``paddle.Tensor`` with 4
+ dimensions: ``batch x channels x height x width``.
+ """
+ if isinstance(image, paddle.Tensor):
+ if not isinstance(mask, paddle.Tensor):
+ raise TypeError(f"`image` is a paddle.Tensor but `mask` (type: {type(mask)} is not")
+
+ # Batch single image
+ if image.ndim == 3:
+ assert image.shape[0] == 3, "Image outside a batch should be of shape (3, H, W)"
+ image = image.unsqueeze(0)
+
+ # Batch and add channel dim for single mask
+ if mask.ndim == 2:
+ mask = mask.unsqueeze(0).unsqueeze(0)
+
+ # Batch single mask or add channel dim
+ if mask.ndim == 3:
+ # Single batched mask, no channel dim or single mask not batched but channel dim
+ if mask.shape[0] == 1:
+ mask = mask.unsqueeze(0)
+
+ # Batched masks no channel dim
+ else:
+ mask = mask.unsqueeze(1)
+
+ assert image.ndim == 4 and mask.ndim == 4, "Image and Mask must have 4 dimensions"
+ assert image.shape[-2:] == mask.shape[-2:], "Image and Mask must have the same spatial dimensions"
+ assert image.shape[0] == mask.shape[0], "Image and Mask must have the same batch size"
+
+ # Check image is in [-1, 1]
+ if image.min() < -1 or image.max() > 1:
+ raise ValueError("Image should be in [-1, 1] range")
+
+ # Check mask is in [0, 1]
+ if mask.min() < 0 or mask.max() > 1:
+ raise ValueError("Mask should be in [0, 1] range")
+
+ # Binarize mask
+ mask[mask < 0.5] = 0
+ mask[mask >= 0.5] = 1
+
+ # Image as float32
+ image = image.cast(paddle.float32)
+ elif isinstance(mask, paddle.Tensor):
+ raise TypeError(f"`mask` is a paddle.Tensor but `image` (type: {type(image)} is not")
+ else:
+ # preprocess image
+ if isinstance(image, (PIL.Image.Image, np.ndarray)):
+ image = [image]
+
+ if isinstance(image, list) and isinstance(image[0], PIL.Image.Image):
+ image = [np.array(i.convert("RGB"))[None, :] for i in image]
+ image = np.concatenate(image, axis=0)
+ elif isinstance(image, list) and isinstance(image[0], np.ndarray):
+ image = np.concatenate([i[None, :] for i in image], axis=0)
+
+ image = image.transpose(0, 3, 1, 2)
+ image = paddle.to_tensor(image).cast(paddle.float32) / 127.5 - 1.0
+
+ # preprocess mask
+ if isinstance(mask, (PIL.Image.Image, np.ndarray)):
+ mask = [mask]
+
+ if isinstance(mask, list) and isinstance(mask[0], PIL.Image.Image):
+ mask = np.concatenate([np.array(m.convert("L"))[None, None, :] for m in mask], axis=0)
+ mask = mask.astype(np.float32) / 255.0
+ elif isinstance(mask, list) and isinstance(mask[0], np.ndarray):
+ mask = np.concatenate([m[None, None, :] for m in mask], axis=0)
+
+ mask[mask < 0.5] = 0
+ mask[mask >= 0.5] = 1
+ mask = paddle.to_tensor(mask)
+
+ masked_image = image * (mask < 0.5)
+
+ return mask, masked_image
+
+
+class StableDiffusionInpaintPipeline(DiffusionPipeline):
+ r"""
+ Pipeline for text-guided image inpainting using Stable Diffusion. *This is an experimental feature*.
+
+ This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
+ library implements for all the pipelines (such as downloading or saving, running on a particular xxxx, etc.)
+
+ Args:
+ vae ([`AutoencoderKL`]):
+ Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
+ text_encoder ([`CLIPTextModel`]):
+ Frozen text-encoder. Stable Diffusion uses the text portion of
+ [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
+ the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
+ tokenizer (`CLIPTokenizer`):
+ Tokenizer of class
+ [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
+ unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
+ scheduler ([`SchedulerMixin`]):
+ A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
+ [`DDIMScheduler`], [`LMSDiscreteScheduler`], [`PNDMScheduler`], [`EulerDiscreteScheduler`], [`EulerAncestralDiscreteScheduler`]
+ or [`DPMSolverMultistepScheduler`].
+ safety_checker ([`StableDiffusionSafetyChecker`]):
+ Classification module that estimates whether generated images could be considered offensive or harmful.
+ Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
+ feature_extractor ([`CLIPFeatureExtractor`]):
+ Model that extracts features from generated images to be used as inputs for the `safety_checker`.
+ """
+ _optional_components = ["safety_checker", "feature_extractor"]
+
+ def __init__(
+ self,
+ vae: AutoencoderKL,
+ text_encoder: CLIPTextModel,
+ tokenizer: CLIPTokenizer,
+ unet: UNet2DConditionModel,
+ scheduler: Union[
+ DDIMScheduler,
+ PNDMScheduler,
+ LMSDiscreteScheduler,
+ EulerDiscreteScheduler,
+ EulerAncestralDiscreteScheduler,
+ DPMSolverMultistepScheduler,
+ ],
+ safety_checker: StableDiffusionSafetyChecker,
+ feature_extractor: CLIPFeatureExtractor,
+ requires_safety_checker: bool = True,
+ ):
+ super().__init__()
+
+ if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
+ deprecation_message = (
+ f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
+ f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
+ "to update the config accordingly as leaving `steps_offset` might led to incorrect results"
+ " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
+ " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
+ " file"
+ )
+ deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False)
+ new_config = dict(scheduler.config)
+ new_config["steps_offset"] = 1
+ scheduler._internal_dict = FrozenDict(new_config)
+
+ if hasattr(scheduler.config, "skip_prk_steps") and scheduler.config.skip_prk_steps is False:
+ deprecation_message = (
+ f"The configuration file of this scheduler: {scheduler} has not set the configuration"
+ " `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make"
+ " sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to"
+ " incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face"
+ " Hub, it would be very nice if you could open a Pull request for the"
+ " `scheduler/scheduler_config.json` file"
+ )
+ deprecate("skip_prk_steps not set", "1.0.0", deprecation_message, standard_warn=False)
+ new_config = dict(scheduler.config)
+ new_config["skip_prk_steps"] = True
+ scheduler._internal_dict = FrozenDict(new_config)
+
+ if safety_checker is None and requires_safety_checker:
+ logger.warning(
+ f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
+ " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
+ " results in services or applications open to the public. PaddleNLP team, diffusers team and Hugging Face"
+ " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
+ " it only for use-cases that involve analyzing network behavior or auditing its results. For more"
+ " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
+ )
+ if safety_checker is not None and feature_extractor is None:
+ raise ValueError(
+ "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
+ " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
+ )
+ is_unet_version_less_0_9_0 = hasattr(unet.config, "_ppdiffusers_version") and version.parse(
+ version.parse(unet.config._ppdiffusers_version).base_version
+ ) < version.parse("0.9.0.dev0")
+ is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64
+ if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64:
+ deprecation_message = (
+ "The configuration file of the unet has set the default `sample_size` to smaller than"
+ " 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the"
+ " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
+ " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
+ " \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
+ " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
+ " in the config might lead to incorrect results in future versions. If you have downloaded this"
+ " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
+ " the `unet/config.json` file"
+ )
+ deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False)
+ new_config = dict(unet.config)
+ new_config["sample_size"] = 64
+ unet._internal_dict = FrozenDict(new_config)
+ self.register_modules(
+ vae=vae,
+ text_encoder=text_encoder,
+ tokenizer=tokenizer,
+ unet=unet,
+ scheduler=scheduler,
+ safety_checker=safety_checker,
+ feature_extractor=feature_extractor,
+ )
+ self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
+ self.register_to_config(requires_safety_checker=requires_safety_checker)
+
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._encode_prompt
+ def _encode_prompt(self, prompt, num_images_per_prompt, do_classifier_free_guidance, negative_prompt):
+ r"""
+ Encodes the prompt into text encoder hidden states.
+
+ Args:
+ prompt (`str` or `list(int)`):
+ prompt to be encoded
+ num_images_per_prompt (`int`):
+ number of images that should be generated per prompt
+ do_classifier_free_guidance (`bool`):
+ whether to use classifier free guidance or not
+ negative_prompt (`str` or `List[str]`):
+ The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
+ if `guidance_scale` is less than `1`).
+ """
+ batch_size = len(prompt) if isinstance(prompt, list) else 1
+
+ text_inputs = self.tokenizer(
+ prompt,
+ padding="max_length",
+ max_length=self.tokenizer.model_max_length,
+ truncation=True,
+ return_tensors="pd",
+ )
+ text_input_ids = text_inputs.input_ids
+ untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pd").input_ids
+
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not paddle.equal_all(
+ text_input_ids, untruncated_ids
+ ):
+ removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1])
+ logger.warning(
+ "The following part of your input was truncated because CLIP can only handle sequences up to"
+ f" {self.tokenizer.model_max_length} tokens: {removed_text}"
+ )
+
+ config = (
+ self.text_encoder.config
+ if isinstance(self.text_encoder.config, dict)
+ else self.text_encoder.config.to_dict()
+ )
+ if config.get("use_attention_mask", None) is not None and config["use_attention_mask"]:
+ attention_mask = text_inputs.attention_mask
+ else:
+ attention_mask = None
+
+ text_embeddings = self.text_encoder(
+ text_input_ids,
+ attention_mask=attention_mask,
+ )
+ text_embeddings = text_embeddings[0]
+
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
+ bs_embed, seq_len, _ = text_embeddings.shape
+ text_embeddings = text_embeddings.tile([1, num_images_per_prompt, 1])
+ text_embeddings = text_embeddings.reshape([bs_embed * num_images_per_prompt, seq_len, -1])
+
+ # get unconditional embeddings for classifier free guidance
+ if do_classifier_free_guidance:
+ uncond_tokens: List[str]
+ if negative_prompt is None:
+ uncond_tokens = [""] * batch_size
+ elif type(prompt) is not type(negative_prompt):
+ raise TypeError(
+ f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
+ f" {type(prompt)}."
+ )
+ elif isinstance(negative_prompt, str):
+ uncond_tokens = [negative_prompt]
+ elif batch_size != len(negative_prompt):
+ raise ValueError(
+ f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
+ f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
+ " the batch size of `prompt`."
+ )
+ else:
+ uncond_tokens = negative_prompt
+
+ max_length = text_input_ids.shape[-1]
+ uncond_input = self.tokenizer(
+ uncond_tokens,
+ padding="max_length",
+ max_length=max_length,
+ truncation=True,
+ return_tensors="pd",
+ )
+
+ if config.get("use_attention_mask", None) is not None and config["use_attention_mask"]:
+ attention_mask = uncond_input.attention_mask
+ else:
+ attention_mask = None
+
+ uncond_embeddings = self.text_encoder(
+ uncond_input.input_ids,
+ attention_mask=attention_mask,
+ )
+ uncond_embeddings = uncond_embeddings[0]
+
+ # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
+ seq_len = uncond_embeddings.shape[1]
+ uncond_embeddings = uncond_embeddings.tile([1, num_images_per_prompt, 1])
+ uncond_embeddings = uncond_embeddings.reshape([batch_size * num_images_per_prompt, seq_len, -1])
+
+ # For classifier free guidance, we need to do two forward passes.
+ # Here we concatenate the unconditional and text embeddings into a single batch
+ # to avoid doing two forward passes
+ text_embeddings = paddle.concat([uncond_embeddings, text_embeddings])
+
+ return text_embeddings
+
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker
+ def run_safety_checker(self, image, dtype):
+ if self.safety_checker is not None:
+ safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pd")
+ image, has_nsfw_concept = self.safety_checker(
+ images=image, clip_input=safety_checker_input.pixel_values.cast(dtype)
+ )
+ else:
+ has_nsfw_concept = None
+ return image, has_nsfw_concept
+
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
+ def prepare_extra_step_kwargs(self, generator, eta):
+ # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
+ # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
+ # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
+ # and should be between [0, 1]
+
+ accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
+ extra_step_kwargs = {}
+ if accepts_eta:
+ extra_step_kwargs["eta"] = eta
+
+ # check if the scheduler accepts generator
+ accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
+ if accepts_generator:
+ extra_step_kwargs["generator"] = generator
+ return extra_step_kwargs
+
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents
+ def decode_latents(self, latents):
+ latents = 1 / 0.18215 * latents
+ image = self.vae.decode(latents).sample
+ image = (image / 2 + 0.5).clip(0, 1)
+ # we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
+ image = image.transpose([0, 2, 3, 1]).cast("float32").numpy()
+ return image
+
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.check_inputs
+ def check_inputs(self, prompt, height, width, callback_steps):
+ if not isinstance(prompt, str) and not isinstance(prompt, list):
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
+
+ if height % 8 != 0 or width % 8 != 0:
+ raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
+
+ if (callback_steps is None) or (
+ callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
+ ):
+ raise ValueError(
+ f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
+ f" {type(callback_steps)}."
+ )
+
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
+ def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, generator, latents=None):
+ shape = [batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor]
+ if isinstance(generator, list) and len(generator) != batch_size:
+ raise ValueError(
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
+ )
+
+ if latents is None:
+ if isinstance(generator, list):
+ shape = [
+ 1,
+ ] + shape[1:]
+ latents = [paddle.randn(shape, generator=generator[i], dtype=dtype) for i in range(batch_size)]
+ latents = paddle.concat(latents, axis=0)
+ else:
+ latents = paddle.randn(shape, generator=generator, dtype=dtype)
+ else:
+ if latents.shape != shape:
+ raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}")
+
+ # scale the initial noise by the standard deviation required by the scheduler
+ latents = latents * self.scheduler.init_noise_sigma
+ return latents
+
+ def prepare_mask_latents(
+ self, mask, masked_image, batch_size, height, width, dtype, generator, do_classifier_free_guidance
+ ):
+ # resize the mask to latents shape as we concatenate the mask to the latents
+ # we do that before converting to dtype to avoid breaking in case we're using cpu_offload
+ # and half precision
+ mask = F.interpolate(mask, size=(height // self.vae_scale_factor, width // self.vae_scale_factor))
+ mask = mask.cast(dtype=dtype)
+
+ masked_image = masked_image.cast(dtype)
+
+ # encode the mask image into latents space so we can concatenate it to the latents
+ if isinstance(generator, list):
+ masked_image_latents = [
+ self.vae.encode(masked_image[i : i + 1]).latent_dist.sample(generator=generator[i])
+ for i in range(batch_size)
+ ]
+ masked_image_latents = paddle.concat(masked_image_latents, axis=0)
+ else:
+ masked_image_latents = self.vae.encode(masked_image).latent_dist.sample(generator=generator)
+ masked_image_latents = 0.18215 * masked_image_latents
+
+ # duplicate mask and masked_image_latents for each generation per prompt, using mps friendly method
+ if mask.shape[0] < batch_size:
+ if not batch_size % mask.shape[0] == 0:
+ raise ValueError(
+ "The passed mask and the required batch size don't match. Masks are supposed to be duplicated to"
+ f" a total batch size of {batch_size}, but {mask.shape[0]} masks were passed. Make sure the number"
+ " of masks that you pass is divisible by the total requested batch size."
+ )
+ mask = mask.tile([batch_size // mask.shape[0], 1, 1, 1])
+ if masked_image_latents.shape[0] < batch_size:
+ if not batch_size % masked_image_latents.shape[0] == 0:
+ raise ValueError(
+ "The passed images and the required batch size don't match. Images are supposed to be duplicated"
+ f" to a total batch size of {batch_size}, but {masked_image_latents.shape[0]} images were passed."
+ " Make sure the number of images that you pass is divisible by the total requested batch size."
+ )
+ masked_image_latents = masked_image_latents.tile([batch_size // masked_image_latents.shape[0], 1, 1, 1])
+
+ mask = paddle.concat([mask] * 2) if do_classifier_free_guidance else mask
+ masked_image_latents = (
+ paddle.concat([masked_image_latents] * 2) if do_classifier_free_guidance else masked_image_latents
+ )
+
+ masked_image_latents = masked_image_latents.cast(dtype)
+ return mask, masked_image_latents
+
+ @paddle.no_grad()
+ def __call__(
+ self,
+ prompt: Union[str, List[str]],
+ image: Union[paddle.Tensor, PIL.Image.Image],
+ mask_image: Union[paddle.Tensor, PIL.Image.Image],
+ height: Optional[int] = None,
+ width: Optional[int] = None,
+ num_inference_steps: int = 50,
+ guidance_scale: float = 7.5,
+ negative_prompt: Optional[Union[str, List[str]]] = None,
+ num_images_per_prompt: Optional[int] = 1,
+ eta: float = 0.0,
+ generator: Optional[Union[paddle.Generator, List[paddle.Generator]]] = None,
+ latents: Optional[paddle.Tensor] = None,
+ output_type: Optional[str] = "pil",
+ return_dict: bool = True,
+ callback: Optional[Callable[[int, int, paddle.Tensor], None]] = None,
+ callback_steps: Optional[int] = 1,
+ ):
+ r"""
+ Function invoked when calling the pipeline for generation.
+
+ Args:
+ prompt (`str` or `List[str]`):
+ The prompt or prompts to guide the image generation.
+ image (`PIL.Image.Image`):
+ `Image`, or tensor representing an image batch which will be inpainted, *i.e.* parts of the image will
+ be masked out with `mask_image` and repainted according to `prompt`.
+ mask_image (`PIL.Image.Image`):
+ `Image`, or tensor representing an image batch, to mask `image`. White pixels in the mask will be
+ repainted, while black pixels will be preserved. If `mask_image` is a PIL image, it will be converted
+ to a single channel (luminance) before use. If it's a tensor, it should contain one color channel (L)
+ instead of 3, so the expected shape would be `(B, H, W, 1)`.
+ height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
+ The height in pixels of the generated image.
+ width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
+ The width in pixels of the generated image.
+ num_inference_steps (`int`, *optional*, defaults to 50):
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
+ expense of slower inference.
+ guidance_scale (`float`, *optional*, defaults to 7.5):
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
+ usually at the expense of lower image quality.
+ negative_prompt (`str` or `List[str]`, *optional*):
+ The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
+ if `guidance_scale` is less than `1`).
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
+ The number of images to generate per prompt.
+ eta (`float`, *optional*, defaults to 0.0):
+ Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
+ [`schedulers.DDIMScheduler`], will be ignored for others.
+ generator (`paddle.Generator`, *optional*):
+ One or a list of paddle generator(s) to make generation deterministic.
+ latents (`paddle.Tensor`, *optional*):
+ Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
+ tensor will ge generated by sampling using the supplied random `generator`.
+ output_type (`str`, *optional*, defaults to `"pil"`):
+ The output format of the generate image. Choose between
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
+ return_dict (`bool`, *optional*, defaults to `True`):
+ Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
+ plain tuple.
+ callback (`Callable`, *optional*):
+ A function that will be called every `callback_steps` steps during inference. The function will be
+ called with the following arguments: `callback(step: int, timestep: int, latents: paddle.Tensor)`.
+ callback_steps (`int`, *optional*, defaults to 1):
+ The frequency at which the `callback` function will be called. If not specified, the callback will be
+ called at every step.
+
+ Returns:
+ [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
+ [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
+ When returning a tuple, the first element is a list with the generated images, and the second element is a
+ list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
+ (nsfw) content, according to the `safety_checker`.
+ """
+ # 0. Default height and width to unet
+ height = height or self.unet.config.sample_size * self.vae_scale_factor
+ width = width or self.unet.config.sample_size * self.vae_scale_factor
+
+ # 1. Check inputs
+ self.check_inputs(prompt, height, width, callback_steps)
+
+ # 2. Define call parameters
+ batch_size = 1 if isinstance(prompt, str) else len(prompt)
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
+ # corresponds to doing no classifier free guidance.
+ do_classifier_free_guidance = guidance_scale > 1.0
+
+ # 3. Encode input prompt
+ text_embeddings = self._encode_prompt(
+ prompt, num_images_per_prompt, do_classifier_free_guidance, negative_prompt
+ )
+
+ # 4. Preprocess mask and image
+ mask, masked_image = prepare_mask_and_masked_image(image, mask_image)
+
+ # 5. set timesteps
+ self.scheduler.set_timesteps(num_inference_steps)
+ timesteps = self.scheduler.timesteps
+
+ # 6. Prepare latent variables
+ num_channels_latents = self.vae.config.latent_channels
+ latents = self.prepare_latents(
+ batch_size * num_images_per_prompt,
+ num_channels_latents,
+ height,
+ width,
+ text_embeddings.dtype,
+ generator,
+ latents,
+ )
+
+ # 7. Prepare mask latent variables
+ mask, masked_image_latents = self.prepare_mask_latents(
+ mask,
+ masked_image,
+ batch_size * num_images_per_prompt,
+ height,
+ width,
+ text_embeddings.dtype,
+ generator,
+ do_classifier_free_guidance,
+ )
+
+ # 8. Check that sizes of mask, masked image and latents match
+ num_channels_mask = mask.shape[1]
+ num_channels_masked_image = masked_image_latents.shape[1]
+ if num_channels_latents + num_channels_mask + num_channels_masked_image != self.unet.config.in_channels:
+ raise ValueError(
+ f"Incorrect configuration settings! The config of `pipeline.unet`: {self.unet.config} expects"
+ f" {self.unet.config.in_channels} but received `num_channels_latents`: {num_channels_latents} +"
+ f" `num_channels_mask`: {num_channels_mask} + `num_channels_masked_image`: {num_channels_masked_image}"
+ f" = {num_channels_latents+num_channels_masked_image+num_channels_mask}. Please verify the config of"
+ " `pipeline.unet` or your `mask_image` or `image` input."
+ )
+
+ # 9. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
+ extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
+
+ # 10. Denoising loop
+ num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
+ for i, t in enumerate(timesteps):
+ # expand the latents if we are doing classifier free guidance
+ latent_model_input = paddle.concat([latents] * 2) if do_classifier_free_guidance else latents
+
+ # concat latents, mask, masked_image_latents in the channel dimension
+ latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
+ latent_model_input = paddle.concat([latent_model_input, mask, masked_image_latents], axis=1)
+
+ # predict the noise residual
+ noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample
+
+ # perform guidance
+ if do_classifier_free_guidance:
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
+ noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
+
+ # compute the previous noisy sample x_t -> x_t-1
+ latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
+
+ # call the callback, if provided
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
+ progress_bar.update()
+ if callback is not None and i % callback_steps == 0:
+ callback(i, t, latents)
+
+ # 11. Post-processing
+ image = self.decode_latents(latents)
+
+ # 12. Run safety checker
+ image, has_nsfw_concept = self.run_safety_checker(image, text_embeddings.dtype)
+
+ # 13. Convert to PIL
+ if output_type == "pil":
+ image = self.numpy_to_pil(image)
+
+ if not return_dict:
+ return (image, has_nsfw_concept)
+
+ return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
diff --git a/ppdiffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint_legacy.py b/ppdiffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint_legacy.py
new file mode 100644
index 0000000000000000000000000000000000000000..19a2e526372515520df679ff6e1ef6674dd2e95c
--- /dev/null
+++ b/ppdiffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint_legacy.py
@@ -0,0 +1,527 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+# Copyright 2022 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import inspect
+from typing import Callable, List, Optional, Union
+
+import numpy as np
+import paddle
+import PIL
+
+from paddlenlp.transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
+
+from ...configuration_utils import FrozenDict
+from ...models import AutoencoderKL, UNet2DConditionModel
+from ...pipeline_utils import DiffusionPipeline
+from ...schedulers import (
+ DDIMScheduler,
+ DPMSolverMultistepScheduler,
+ EulerAncestralDiscreteScheduler,
+ EulerDiscreteScheduler,
+ LMSDiscreteScheduler,
+ PNDMScheduler,
+)
+from ...utils import PIL_INTERPOLATION, deprecate, logging
+from . import StableDiffusionPipelineOutput
+from .safety_checker import StableDiffusionSafetyChecker
+
+logger = logging.get_logger(__name__)
+
+
+def preprocess_image(image):
+ w, h = image.size
+ w, h = map(lambda x: x - x % 32, (w, h)) # resize to integer multiple of 32
+ image = image.resize((w, h), resample=PIL_INTERPOLATION["lanczos"])
+ image = np.array(image).astype(np.float32) / 255.0
+ image = image[None].transpose(0, 3, 1, 2)
+ image = paddle.to_tensor(image)
+ return 2.0 * image - 1.0
+
+
+def preprocess_mask(mask, scale_factor=8):
+ mask = mask.convert("L")
+ w, h = mask.size
+ w, h = map(lambda x: x - x % 32, (w, h)) # resize to integer multiple of 32
+ mask = mask.resize((w // scale_factor, h // scale_factor), resample=PIL_INTERPOLATION["nearest"])
+ mask = np.array(mask).astype(np.float32) / 255.0
+ mask = np.tile(mask, (4, 1, 1))
+ mask = mask[None].transpose(0, 1, 2, 3) # what does this step do?
+ mask = 1 - mask # repaint white, keep black
+ mask = paddle.to_tensor(mask)
+ return mask
+
+
+class StableDiffusionInpaintPipelineLegacy(DiffusionPipeline):
+ r"""
+ Pipeline for text-guided image inpainting using Stable Diffusion. *This is an experimental feature*.
+
+ This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
+ library implements for all the pipelines (such as downloading or saving, running on a particular xxxx, etc.)
+
+ Args:
+ vae ([`AutoencoderKL`]):
+ Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
+ text_encoder ([`CLIPTextModel`]):
+ Frozen text-encoder. Stable Diffusion uses the text portion of
+ [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
+ the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
+ tokenizer (`CLIPTokenizer`):
+ Tokenizer of class
+ [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
+ unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
+ scheduler ([`SchedulerMixin`]):
+ A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
+ [`DDIMScheduler`], [`LMSDiscreteScheduler`], [`PNDMScheduler`], [`EulerDiscreteScheduler`], [`EulerAncestralDiscreteScheduler`]
+ or [`DPMSolverMultistepScheduler`].
+ safety_checker ([`StableDiffusionSafetyChecker`]):
+ Classification module that estimates whether generated images could be considered offensive or harmful.
+ Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
+ feature_extractor ([`CLIPFeatureExtractor`]):
+ Model that extracts features from generated images to be used as inputs for the `safety_checker`.
+ """
+ _optional_components = ["safety_checker", "feature_extractor"]
+
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.__init__
+ def __init__(
+ self,
+ vae: AutoencoderKL,
+ text_encoder: CLIPTextModel,
+ tokenizer: CLIPTokenizer,
+ unet: UNet2DConditionModel,
+ scheduler: Union[
+ DDIMScheduler,
+ PNDMScheduler,
+ LMSDiscreteScheduler,
+ EulerDiscreteScheduler,
+ EulerAncestralDiscreteScheduler,
+ DPMSolverMultistepScheduler,
+ ],
+ safety_checker: StableDiffusionSafetyChecker,
+ feature_extractor: CLIPFeatureExtractor,
+ requires_safety_checker: bool = True,
+ ):
+ super().__init__()
+
+ if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
+ deprecation_message = (
+ f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
+ f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
+ "to update the config accordingly as leaving `steps_offset` might led to incorrect results"
+ " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
+ " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
+ " file"
+ )
+ deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False)
+ new_config = dict(scheduler.config)
+ new_config["steps_offset"] = 1
+ scheduler._internal_dict = FrozenDict(new_config)
+
+ if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True:
+ deprecation_message = (
+ f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`."
+ " `clip_sample` should be set to False in the configuration file. Please make sure to update the"
+ " config accordingly as not setting `clip_sample` in the config might lead to incorrect results in"
+ " future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very"
+ " nice if you could open a Pull request for the `scheduler/scheduler_config.json` file"
+ )
+ deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False)
+ new_config = dict(scheduler.config)
+ new_config["clip_sample"] = False
+ scheduler._internal_dict = FrozenDict(new_config)
+
+ if safety_checker is None and requires_safety_checker:
+ logger.warning(
+ f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
+ " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
+ " results in services or applications open to the public. PaddleNLP team, diffusers team and Hugging Face"
+ " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
+ " it only for use-cases that involve analyzing network behavior or auditing its results. For more"
+ " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
+ )
+ if safety_checker is not None and feature_extractor is None:
+ raise ValueError(
+ "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
+ " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
+ )
+
+ self.register_modules(
+ vae=vae,
+ text_encoder=text_encoder,
+ tokenizer=tokenizer,
+ unet=unet,
+ scheduler=scheduler,
+ safety_checker=safety_checker,
+ feature_extractor=feature_extractor,
+ )
+ self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
+ self.register_to_config(requires_safety_checker=requires_safety_checker)
+
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._encode_prompt
+ def _encode_prompt(self, prompt, num_images_per_prompt, do_classifier_free_guidance, negative_prompt):
+ r"""
+ Encodes the prompt into text encoder hidden states.
+
+ Args:
+ prompt (`str` or `list(int)`):
+ prompt to be encoded
+ num_images_per_prompt (`int`):
+ number of images that should be generated per prompt
+ do_classifier_free_guidance (`bool`):
+ whether to use classifier free guidance or not
+ negative_prompt (`str` or `List[str]`):
+ The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
+ if `guidance_scale` is less than `1`).
+ """
+ batch_size = len(prompt) if isinstance(prompt, list) else 1
+
+ text_inputs = self.tokenizer(
+ prompt,
+ padding="max_length",
+ max_length=self.tokenizer.model_max_length,
+ truncation=True,
+ return_tensors="pd",
+ )
+ text_input_ids = text_inputs.input_ids
+ untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pd").input_ids
+
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not paddle.equal_all(
+ text_input_ids, untruncated_ids
+ ):
+ removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1])
+ logger.warning(
+ "The following part of your input was truncated because CLIP can only handle sequences up to"
+ f" {self.tokenizer.model_max_length} tokens: {removed_text}"
+ )
+
+ config = (
+ self.text_encoder.config
+ if isinstance(self.text_encoder.config, dict)
+ else self.text_encoder.config.to_dict()
+ )
+ if config.get("use_attention_mask", None) is not None and config["use_attention_mask"]:
+ attention_mask = text_inputs.attention_mask
+ else:
+ attention_mask = None
+
+ text_embeddings = self.text_encoder(
+ text_input_ids,
+ attention_mask=attention_mask,
+ )
+ text_embeddings = text_embeddings[0]
+
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
+ bs_embed, seq_len, _ = text_embeddings.shape
+ text_embeddings = text_embeddings.tile([1, num_images_per_prompt, 1])
+ text_embeddings = text_embeddings.reshape([bs_embed * num_images_per_prompt, seq_len, -1])
+
+ # get unconditional embeddings for classifier free guidance
+ if do_classifier_free_guidance:
+ uncond_tokens: List[str]
+ if negative_prompt is None:
+ uncond_tokens = [""] * batch_size
+ elif type(prompt) is not type(negative_prompt):
+ raise TypeError(
+ f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
+ f" {type(prompt)}."
+ )
+ elif isinstance(negative_prompt, str):
+ uncond_tokens = [negative_prompt] * batch_size
+ elif batch_size != len(negative_prompt):
+ raise ValueError(
+ f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
+ f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
+ " the batch size of `prompt`."
+ )
+ else:
+ uncond_tokens = negative_prompt
+
+ max_length = text_input_ids.shape[-1]
+ uncond_input = self.tokenizer(
+ uncond_tokens,
+ padding="max_length",
+ max_length=max_length,
+ truncation=True,
+ return_tensors="pd",
+ )
+
+ if config.get("use_attention_mask", None) is not None and config["use_attention_mask"]:
+ attention_mask = uncond_input.attention_mask
+ else:
+ attention_mask = None
+
+ uncond_embeddings = self.text_encoder(
+ uncond_input.input_ids,
+ attention_mask=attention_mask,
+ )
+ uncond_embeddings = uncond_embeddings[0]
+
+ # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
+ seq_len = uncond_embeddings.shape[1]
+ uncond_embeddings = uncond_embeddings.tile([1, num_images_per_prompt, 1])
+ uncond_embeddings = uncond_embeddings.reshape([batch_size * num_images_per_prompt, seq_len, -1])
+
+ # For classifier free guidance, we need to do two forward passes.
+ # Here we concatenate the unconditional and text embeddings into a single batch
+ # to avoid doing two forward passes
+ text_embeddings = paddle.concat([uncond_embeddings, text_embeddings])
+
+ return text_embeddings
+
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker
+ def run_safety_checker(self, image, dtype):
+ if self.safety_checker is not None:
+ safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pd")
+ image, has_nsfw_concept = self.safety_checker(
+ images=image, clip_input=safety_checker_input.pixel_values.cast(dtype)
+ )
+ else:
+ has_nsfw_concept = None
+ return image, has_nsfw_concept
+
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents
+ def decode_latents(self, latents):
+ latents = 1 / 0.18215 * latents
+ image = self.vae.decode(latents).sample
+ image = (image / 2 + 0.5).clip(0, 1)
+ # we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
+ image = image.transpose([0, 2, 3, 1]).cast("float32").numpy()
+ return image
+
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
+ def prepare_extra_step_kwargs(self, generator, eta):
+ # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
+ # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
+ # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
+ # and should be between [0, 1]
+
+ accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
+ extra_step_kwargs = {}
+ if accepts_eta:
+ extra_step_kwargs["eta"] = eta
+
+ # check if the scheduler accepts generator
+ accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
+ if accepts_generator:
+ extra_step_kwargs["generator"] = generator
+ return extra_step_kwargs
+
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.StableDiffusionImg2ImgPipeline.check_inputs
+ def check_inputs(self, prompt, strength, callback_steps):
+ if not isinstance(prompt, str) and not isinstance(prompt, list):
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
+
+ if strength < 0 or strength > 1:
+ raise ValueError(f"The value of strength should in [1.0, 1.0] but is {strength}")
+
+ if (callback_steps is None) or (
+ callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
+ ):
+ raise ValueError(
+ f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
+ f" {type(callback_steps)}."
+ )
+
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.StableDiffusionImg2ImgPipeline.get_timesteps
+ def get_timesteps(self, num_inference_steps, strength):
+ # get the original timestep using init_timestep
+ init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
+
+ t_start = max(num_inference_steps - init_timestep, 0)
+ timesteps = self.scheduler.timesteps[t_start:]
+
+ return timesteps, num_inference_steps - t_start
+
+ def prepare_latents(self, image, timestep, batch_size, num_images_per_prompt, dtype, generator):
+ image = image.cast(dtype)
+ init_latent_dist = self.vae.encode(image).latent_dist
+ init_latents = init_latent_dist.sample(generator=generator)
+ init_latents = 0.18215 * init_latents
+
+ # Expand init_latents for batch_size and num_images_per_prompt
+ init_latents = paddle.concat([init_latents] * batch_size * num_images_per_prompt, axis=0)
+ init_latents_orig = init_latents
+
+ # add noise to latents using the timesteps
+ noise = paddle.randn(init_latents.shape, generator=generator, dtype=dtype)
+ init_latents = self.scheduler.add_noise(init_latents, noise, timestep)
+ latents = init_latents
+ return latents, init_latents_orig, noise
+
+ @paddle.no_grad()
+ def __call__(
+ self,
+ prompt: Union[str, List[str]],
+ image: Union[paddle.Tensor, PIL.Image.Image] = None,
+ mask_image: Union[paddle.Tensor, PIL.Image.Image] = None,
+ strength: float = 0.8,
+ num_inference_steps: Optional[int] = 50,
+ guidance_scale: Optional[float] = 7.5,
+ negative_prompt: Optional[Union[str, List[str]]] = None,
+ num_images_per_prompt: Optional[int] = 1,
+ add_predicted_noise: Optional[bool] = False,
+ eta: Optional[float] = 0.0,
+ generator: Optional[Union[paddle.Generator, List[paddle.Generator]]] = None,
+ output_type: Optional[str] = "pil",
+ return_dict: bool = True,
+ callback: Optional[Callable[[int, int, paddle.Tensor], None]] = None,
+ callback_steps: Optional[int] = 1,
+ ):
+ r"""
+ Function invoked when calling the pipeline for generation.
+
+ Args:
+ prompt (`str` or `List[str]`):
+ The prompt or prompts to guide the image generation.
+ image (`paddle.Tensor` or `PIL.Image.Image`):
+ `Image`, or tensor representing an image batch, that will be used as the starting point for the
+ process. This is the image whose masked region will be inpainted.
+ mask_image (`paddle.Tensor` or `PIL.Image.Image`):
+ `Image`, or tensor representing an image batch, to mask `image`. White pixels in the mask will be
+ replaced by noise and therefore repainted, while black pixels will be preserved. If `mask_image` is a
+ PIL image, it will be converted to a single channel (luminance) before use. If it's a tensor, it should
+ contain one color channel (L) instead of 3, so the expected shape would be `(B, H, W, 1)`.
+ strength (`float`, *optional*, defaults to 0.8):
+ Conceptually, indicates how much to inpaint the masked area. Must be between 0 and 1. When `strength`
+ is 1, the denoising process will be run on the masked area for the full number of iterations specified
+ in `num_inference_steps`. `image` will be used as a reference for the masked area, adding more
+ noise to that region the larger the `strength`. If `strength` is 0, no inpainting will occur.
+ num_inference_steps (`int`, *optional*, defaults to 50):
+ The reference number of denoising steps. More denoising steps usually lead to a higher quality image at
+ the expense of slower inference. This parameter will be modulated by `strength`, as explained above.
+ guidance_scale (`float`, *optional*, defaults to 7.5):
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
+ usually at the expense of lower image quality.
+ negative_prompt (`str` or `List[str]`, *optional*):
+ The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
+ if `guidance_scale` is less than `1`).
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
+ The number of images to generate per prompt.
+ add_predicted_noise (`bool`, *optional*, defaults to True):
+ Use predicted noise instead of random noise when constructing noisy versions of the original image in
+ the reverse diffusion process
+ eta (`float`, *optional*, defaults to 0.0):
+ Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
+ [`schedulers.DDIMScheduler`], will be ignored for others.
+ generator (`paddle.Generator`, *optional*):
+ One or a list of paddle generator(s) to make generation deterministic.
+ output_type (`str`, *optional*, defaults to `"pil"`):
+ The output format of the generate image. Choose between
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
+ return_dict (`bool`, *optional*, defaults to `True`):
+ Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
+ plain tuple.
+ callback (`Callable`, *optional*):
+ A function that will be called every `callback_steps` steps during inference. The function will be
+ called with the following arguments: `callback(step: int, timestep: int, latents: paddle.Tensor)`.
+ callback_steps (`int`, *optional*, defaults to 1):
+ The frequency at which the `callback` function will be called. If not specified, the callback will be
+ called at every step.
+
+ Returns:
+ [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
+ [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
+ When returning a tuple, the first element is a list with the generated images, and the second element is a
+ list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
+ (nsfw) content, according to the `safety_checker`.
+ """
+ # 1. Check inputs
+ self.check_inputs(prompt, strength, callback_steps)
+
+ # 2. Define call parameters
+ batch_size = 1 if isinstance(prompt, str) else len(prompt)
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
+ # corresponds to doing no classifier free guidance.
+ do_classifier_free_guidance = guidance_scale > 1.0
+
+ # 3. Encode input prompt
+ text_embeddings = self._encode_prompt(
+ prompt, num_images_per_prompt, do_classifier_free_guidance, negative_prompt
+ )
+
+ # 4. Preprocess image and mask
+ if not isinstance(image, paddle.Tensor):
+ image = preprocess_image(image)
+
+ if not isinstance(mask_image, paddle.Tensor):
+ mask_image = preprocess_mask(mask_image, self.vae_scale_factor)
+
+ # 5. set timesteps
+ self.scheduler.set_timesteps(num_inference_steps)
+ timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength)
+ latent_timestep = timesteps[:1].tile([batch_size * num_images_per_prompt])
+
+ # 6. Prepare latent variables
+ # encode the init image into latents and scale the latents
+ latents, init_latents_orig, noise = self.prepare_latents(
+ image, latent_timestep, batch_size, num_images_per_prompt, text_embeddings.dtype, generator
+ )
+
+ # 7. Prepare mask latent
+ mask = mask_image.cast(latents.dtype)
+ mask = paddle.concat([mask] * batch_size * num_images_per_prompt)
+
+ # 8. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
+ extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
+
+ # 9. Denoising loop
+ num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
+ for i, t in enumerate(timesteps):
+ # expand the latents if we are doing classifier free guidance
+ latent_model_input = paddle.concat([latents] * 2) if do_classifier_free_guidance else latents
+ latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
+
+ # predict the noise residual
+ noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample
+
+ # perform guidance
+ if do_classifier_free_guidance:
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
+ noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
+
+ # compute the previous noisy sample x_t -> x_t-1
+ latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
+ # masking
+ if add_predicted_noise:
+ init_latents_proper = self.scheduler.add_noise(init_latents_orig, noise_pred_uncond, t)
+ else:
+ init_latents_proper = self.scheduler.add_noise(init_latents_orig, noise, t)
+
+ latents = (init_latents_proper * mask) + (latents * (1 - mask))
+
+ # call the callback, if provided
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
+ progress_bar.update()
+ if callback is not None and i % callback_steps == 0:
+ callback(i, t, latents)
+
+ # 10. Post-processing
+ image = self.decode_latents(latents)
+
+ # 11. Run safety checker
+ image, has_nsfw_concept = self.run_safety_checker(image, text_embeddings.dtype)
+
+ # 12. Convert to PIL
+ if output_type == "pil":
+ image = self.numpy_to_pil(image)
+
+ if not return_dict:
+ return (image, has_nsfw_concept)
+
+ return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
diff --git a/ppdiffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_k_diffusion.py b/ppdiffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_k_diffusion.py
new file mode 100644
index 0000000000000000000000000000000000000000..3976a4546551eefb38dfb99251ad004dcf2cf0f9
--- /dev/null
+++ b/ppdiffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_k_diffusion.py
@@ -0,0 +1,16 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+# NOT IMPLEMENT YET!
+StableDiffusionKDiffusionPipeline = None
diff --git a/ppdiffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_mega.py b/ppdiffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_mega.py
new file mode 100644
index 0000000000000000000000000000000000000000..18ae43f55933b62c5ca0fbbd2deadd6af4c28f27
--- /dev/null
+++ b/ppdiffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_mega.py
@@ -0,0 +1,183 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import inspect
+from typing import Callable, List, Optional, Union
+
+import numpy as np
+import PIL.Image
+
+from ...utils import logging
+from .pipeline_stable_diffusion import StableDiffusionPipeline
+from .pipeline_stable_diffusion_img2img import StableDiffusionImg2ImgPipeline
+from .pipeline_stable_diffusion_inpaint_legacy import (
+ StableDiffusionInpaintPipelineLegacy,
+)
+
+logger = logging.get_logger(__name__) # pylint: disable=invalid-name
+
+
+class StableDiffusionMegaPipeline(StableDiffusionPipeline):
+ r"""
+ Pipeline for generation using Stable Diffusion.
+
+ This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
+ library implements for all the pipelines (such as downloading or saving, running on a particular xxxx, etc.)
+
+ Args:
+ vae ([`AutoencoderKL`]):
+ Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
+ text_encoder ([`CLIPTextModel`]):
+ Frozen text-encoder. Stable Diffusion uses the text portion of
+ [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
+ the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
+ tokenizer (`CLIPTokenizer`):
+ Tokenizer of class
+ [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
+ unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
+ scheduler ([`SchedulerMixin`]):
+ A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
+ [`DDIMScheduler`], [`LMSDiscreteScheduler`], [`PNDMScheduler`], [`EulerDiscreteScheduler`], [`EulerAncestralDiscreteScheduler`]
+ or [`DPMSolverMultistepScheduler`].
+ safety_checker ([`StableDiffusionSafetyChecker`]):
+ Classification module that estimates whether generated images could be considered offensive or harmful.
+ Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
+ feature_extractor ([`CLIPFeatureExtractor`]):
+ Model that extracts features from generated images to be used as inputs for the `safety_checker`.
+ """
+ _optional_components = ["safety_checker", "feature_extractor"]
+
+ def __call__(self, *args, **kwargs):
+ return self.text2img(*args, **kwargs)
+
+ def text2img(
+ self,
+ prompt: Union[str, List[str]],
+ height: Optional[int] = 512,
+ width: Optional[int] = 512,
+ num_inference_steps: Optional[int] = 50,
+ guidance_scale: Optional[float] = 7.5,
+ negative_prompt: Optional[Union[str, List[str]]] = None,
+ num_images_per_prompt: Optional[int] = 1,
+ eta: Optional[float] = 0.0,
+ generator: Optional[np.random.RandomState] = None,
+ latents: Optional[np.ndarray] = None,
+ output_type: Optional[str] = "pil",
+ return_dict: bool = True,
+ callback: Optional[Callable[[int, int, np.ndarray], None]] = None,
+ callback_steps: Optional[int] = 1,
+ ):
+
+ expected_components = inspect.signature(StableDiffusionPipeline.__init__).parameters.keys()
+ components = {name: component for name, component in self.components.items() if name in expected_components}
+ temp_pipeline = StableDiffusionPipeline(
+ **components, requires_safety_checker=self.config.requires_safety_checker
+ )
+ output = temp_pipeline(
+ prompt=prompt,
+ height=height,
+ width=width,
+ num_inference_steps=num_inference_steps,
+ guidance_scale=guidance_scale,
+ negative_prompt=negative_prompt,
+ num_images_per_prompt=num_images_per_prompt,
+ eta=eta,
+ generator=generator,
+ latents=latents,
+ output_type=output_type,
+ return_dict=return_dict,
+ callback=callback,
+ callback_steps=callback_steps,
+ )
+ return output
+
+ def img2img(
+ self,
+ prompt: Union[str, List[str]],
+ image: Union[np.ndarray, PIL.Image.Image],
+ strength: float = 0.8,
+ num_inference_steps: Optional[int] = 50,
+ guidance_scale: Optional[float] = 7.5,
+ negative_prompt: Optional[Union[str, List[str]]] = None,
+ num_images_per_prompt: Optional[int] = 1,
+ eta: Optional[float] = 0.0,
+ generator: Optional[np.random.RandomState] = None,
+ output_type: Optional[str] = "pil",
+ return_dict: bool = True,
+ callback: Optional[Callable[[int, int, np.ndarray], None]] = None,
+ callback_steps: Optional[int] = 1,
+ ):
+ expected_components = inspect.signature(StableDiffusionImg2ImgPipeline.__init__).parameters.keys()
+ components = {name: component for name, component in self.components.items() if name in expected_components}
+ temp_pipeline = StableDiffusionImg2ImgPipeline(
+ **components, requires_safety_checker=self.config.requires_safety_checker
+ )
+ output = temp_pipeline(
+ prompt=prompt,
+ image=image,
+ strength=strength,
+ num_inference_steps=num_inference_steps,
+ guidance_scale=guidance_scale,
+ negative_prompt=negative_prompt,
+ num_images_per_prompt=num_images_per_prompt,
+ eta=eta,
+ generator=generator,
+ output_type=output_type,
+ return_dict=return_dict,
+ callback=callback,
+ callback_steps=callback_steps,
+ )
+
+ return output
+
+ def inpaint_legacy(
+ self,
+ prompt: Union[str, List[str]],
+ image: Union[np.ndarray, PIL.Image.Image],
+ mask_image: Union[np.ndarray, PIL.Image.Image],
+ strength: float = 0.8,
+ num_inference_steps: Optional[int] = 50,
+ guidance_scale: Optional[float] = 7.5,
+ negative_prompt: Optional[Union[str, List[str]]] = None,
+ num_images_per_prompt: Optional[int] = 1,
+ eta: Optional[float] = 0.0,
+ generator: Optional[np.random.RandomState] = None,
+ output_type: Optional[str] = "pil",
+ return_dict: bool = True,
+ callback: Optional[Callable[[int, int, np.ndarray], None]] = None,
+ callback_steps: Optional[int] = 1,
+ ):
+ expected_components = inspect.signature(StableDiffusionInpaintPipelineLegacy.__init__).parameters.keys()
+ components = {name: component for name, component in self.components.items() if name in expected_components}
+ temp_pipeline = StableDiffusionInpaintPipelineLegacy(
+ **components, requires_safety_checker=self.config.requires_safety_checker
+ )
+ output = temp_pipeline(
+ prompt=prompt,
+ image=image,
+ mask_image=mask_image,
+ strength=strength,
+ num_inference_steps=num_inference_steps,
+ guidance_scale=guidance_scale,
+ negative_prompt=negative_prompt,
+ num_images_per_prompt=num_images_per_prompt,
+ eta=eta,
+ generator=generator,
+ output_type=output_type,
+ return_dict=return_dict,
+ callback=callback,
+ callback_steps=callback_steps,
+ )
+
+ return output
diff --git a/ppdiffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py b/ppdiffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py
new file mode 100644
index 0000000000000000000000000000000000000000..1a4ceea3c8d72ab29bcea1dd64af58e17cdc9dcf
--- /dev/null
+++ b/ppdiffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py
@@ -0,0 +1,469 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+# Copyright 2022 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import inspect
+from typing import Callable, List, Optional, Union
+
+import numpy as np
+import paddle
+import PIL
+
+from paddlenlp.transformers import CLIPTextModel, CLIPTokenizer
+
+from ...models import AutoencoderKL, UNet2DConditionModel
+from ...pipeline_utils import DiffusionPipeline, ImagePipelineOutput
+from ...schedulers import (
+ DDIMScheduler,
+ DDPMScheduler,
+ LMSDiscreteScheduler,
+ PNDMScheduler,
+)
+from ...utils import logging
+
+logger = logging.get_logger(__name__) # pylint: disable=invalid-name
+
+
+def preprocess(image):
+ if isinstance(image, paddle.Tensor):
+ return image
+ elif isinstance(image, PIL.Image.Image):
+ image = [image]
+
+ if isinstance(image[0], PIL.Image.Image):
+ w, h = image[0].size
+ w, h = map(lambda x: x - x % 64, (w, h)) # resize to integer multiple of 32
+
+ image = [np.array(i.resize((w, h)))[None, :] for i in image]
+ image = np.concatenate(image, axis=0)
+ image = np.array(image).astype(np.float32) / 255.0
+ image = image.transpose(0, 3, 1, 2)
+ image = 2.0 * image - 1.0
+ image = paddle.to_tensor(image)
+ elif isinstance(image[0], paddle.Tensor):
+ image = paddle.concat(image, axis=0)
+ return image
+
+
+class StableDiffusionUpscalePipeline(DiffusionPipeline):
+ r"""
+ Pipeline for text-guided image super-resolution using Stable Diffusion 2.
+
+ This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
+ library implements for all the pipelines (such as downloading or saving etc.)
+
+ Args:
+ vae ([`AutoencoderKL`]):
+ Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
+ text_encoder ([`CLIPTextModel`]):
+ Frozen text-encoder. Stable Diffusion uses the text portion of
+ [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
+ the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
+ tokenizer (`CLIPTokenizer`):
+ Tokenizer of class
+ [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
+ unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
+ low_res_scheduler ([`SchedulerMixin`]):
+ A scheduler used to add initial noise to the low res conditioning image. It must be an instance of
+ [`DDPMScheduler`].
+ scheduler ([`SchedulerMixin`]):
+ A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
+ [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
+ """
+
+ def __init__(
+ self,
+ vae: AutoencoderKL,
+ text_encoder: CLIPTextModel,
+ tokenizer: CLIPTokenizer,
+ unet: UNet2DConditionModel,
+ low_res_scheduler: DDPMScheduler,
+ scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler],
+ max_noise_level: int = 350,
+ ):
+ super().__init__()
+
+ self.register_modules(
+ vae=vae,
+ text_encoder=text_encoder,
+ tokenizer=tokenizer,
+ unet=unet,
+ low_res_scheduler=low_res_scheduler,
+ scheduler=scheduler,
+ )
+ self.register_to_config(max_noise_level=max_noise_level)
+
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._encode_prompt
+ def _encode_prompt(self, prompt, num_images_per_prompt, do_classifier_free_guidance, negative_prompt):
+ r"""
+ Encodes the prompt into text encoder hidden states.
+
+ Args:
+ prompt (`str` or `list(int)`):
+ prompt to be encoded
+ num_images_per_prompt (`int`):
+ number of images that should be generated per prompt
+ do_classifier_free_guidance (`bool`):
+ whether to use classifier free guidance or not
+ negative_prompt (`str` or `List[str]`):
+ The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
+ if `guidance_scale` is less than `1`).
+ """
+ batch_size = len(prompt) if isinstance(prompt, list) else 1
+
+ text_inputs = self.tokenizer(
+ prompt,
+ padding="max_length",
+ max_length=self.tokenizer.model_max_length,
+ truncation=True,
+ return_tensors="pd",
+ )
+ text_input_ids = text_inputs.input_ids
+ untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pd").input_ids
+
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not paddle.equal_all(
+ text_input_ids, untruncated_ids
+ ):
+ removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1])
+ logger.warning(
+ "The following part of your input was truncated because CLIP can only handle sequences up to"
+ f" {self.tokenizer.model_max_length} tokens: {removed_text}"
+ )
+
+ config = (
+ self.text_encoder.config
+ if isinstance(self.text_encoder.config, dict)
+ else self.text_encoder.config.to_dict()
+ )
+ if config.get("use_attention_mask", None) is not None and config["use_attention_mask"]:
+ attention_mask = text_inputs.attention_mask
+ else:
+ attention_mask = None
+
+ text_embeddings = self.text_encoder(
+ text_input_ids,
+ attention_mask=attention_mask,
+ )
+ text_embeddings = text_embeddings[0]
+
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
+ bs_embed, seq_len, _ = text_embeddings.shape
+ text_embeddings = text_embeddings.tile([1, num_images_per_prompt, 1])
+ text_embeddings = text_embeddings.reshape([bs_embed * num_images_per_prompt, seq_len, -1])
+
+ # get unconditional embeddings for classifier free guidance
+ if do_classifier_free_guidance:
+ uncond_tokens: List[str]
+ if negative_prompt is None:
+ uncond_tokens = [""] * batch_size
+ elif type(prompt) is not type(negative_prompt):
+ raise TypeError(
+ f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
+ f" {type(prompt)}."
+ )
+ elif isinstance(negative_prompt, str):
+ uncond_tokens = [negative_prompt]
+ elif batch_size != len(negative_prompt):
+ raise ValueError(
+ f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
+ f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
+ " the batch size of `prompt`."
+ )
+ else:
+ uncond_tokens = negative_prompt
+
+ max_length = text_input_ids.shape[-1]
+ uncond_input = self.tokenizer(
+ uncond_tokens,
+ padding="max_length",
+ max_length=max_length,
+ truncation=True,
+ return_tensors="pd",
+ )
+
+ if config.get("use_attention_mask", None) is not None and config["use_attention_mask"]:
+ attention_mask = uncond_input.attention_mask
+ else:
+ attention_mask = None
+
+ uncond_embeddings = self.text_encoder(
+ uncond_input.input_ids,
+ attention_mask=attention_mask,
+ )
+ uncond_embeddings = uncond_embeddings[0]
+
+ # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
+ seq_len = uncond_embeddings.shape[1]
+ uncond_embeddings = uncond_embeddings.tile([1, num_images_per_prompt, 1])
+ uncond_embeddings = uncond_embeddings.reshape([batch_size * num_images_per_prompt, seq_len, -1])
+
+ # For classifier free guidance, we need to do two forward passes.
+ # Here we concatenate the unconditional and text embeddings into a single batch
+ # to avoid doing two forward passes
+ text_embeddings = paddle.concat([uncond_embeddings, text_embeddings])
+
+ return text_embeddings
+
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
+ def prepare_extra_step_kwargs(self, generator, eta):
+ # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
+ # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
+ # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
+ # and should be between [0, 1]
+
+ accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
+ extra_step_kwargs = {}
+ if accepts_eta:
+ extra_step_kwargs["eta"] = eta
+
+ # check if the scheduler accepts generator
+ accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
+ if accepts_generator:
+ extra_step_kwargs["generator"] = generator
+ return extra_step_kwargs
+
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents with 0.18215->0.08333
+ def decode_latents(self, latents):
+ latents = 1 / 0.08333 * latents
+ image = self.vae.decode(latents).sample
+ image = (image / 2 + 0.5).clip(0, 1)
+ # we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
+ image = image.transpose([0, 2, 3, 1]).cast("float32").numpy()
+ return image
+
+ def check_inputs(self, prompt, image, noise_level, callback_steps):
+ if not isinstance(prompt, str) and not isinstance(prompt, list):
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
+
+ if (
+ not isinstance(image, paddle.Tensor)
+ and not isinstance(image, PIL.Image.Image)
+ and not isinstance(image, list)
+ ):
+ raise ValueError(
+ f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or `list` but is {type(image)}"
+ )
+
+ # verify batch size of prompt and image are same if image is a list or tensor
+ if isinstance(image, list) or isinstance(image, paddle.Tensor):
+ if isinstance(prompt, str):
+ batch_size = 1
+ else:
+ batch_size = len(prompt)
+ if isinstance(image, list):
+ image_batch_size = len(image)
+ else:
+ image_batch_size = image.shape[0]
+ if batch_size != image_batch_size:
+ raise ValueError(
+ f"`prompt` has batch size {batch_size} and `image` has batch size {image_batch_size}."
+ " Please make sure that passed `prompt` matches the batch size of `image`."
+ )
+
+ # check noise level
+ if noise_level > self.config.max_noise_level:
+ raise ValueError(f"`noise_level` has to be <= {self.config.max_noise_level} but is {noise_level}")
+
+ if (callback_steps is None) or (
+ callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
+ ):
+ raise ValueError(
+ f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
+ f" {type(callback_steps)}."
+ )
+
+ def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, generator, latents=None):
+ shape = [batch_size, num_channels_latents, height, width]
+ if latents is None:
+ latents = paddle.randn(shape, generator=generator, dtype=dtype)
+ else:
+ if latents.shape != shape:
+ raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}")
+
+ # scale the initial noise by the standard deviation required by the scheduler
+ latents = latents * self.scheduler.init_noise_sigma
+ return latents
+
+ @paddle.no_grad()
+ def __call__(
+ self,
+ prompt: Union[str, List[str]],
+ image: Union[paddle.Tensor, PIL.Image.Image, List[PIL.Image.Image]],
+ num_inference_steps: int = 75,
+ guidance_scale: float = 9.0,
+ noise_level: int = 20,
+ negative_prompt: Optional[Union[str, List[str]]] = None,
+ num_images_per_prompt: Optional[int] = 1,
+ eta: float = 0.0,
+ generator: Optional[Union[paddle.Generator, List[paddle.Generator]]] = None,
+ latents: Optional[paddle.Tensor] = None,
+ output_type: Optional[str] = "pil",
+ return_dict: bool = True,
+ callback: Optional[Callable[[int, int, paddle.Tensor], None]] = None,
+ callback_steps: Optional[int] = 1,
+ ):
+ r"""
+ Function invoked when calling the pipeline for generation.
+
+ Args:
+ prompt (`str` or `List[str]`):
+ The prompt or prompts to guide the image generation.
+ image (`PIL.Image.Image` or List[`PIL.Image.Image`] or `paddle.Tensor`):
+ `Image`, or tensor representing an image batch which will be upscaled. *
+ num_inference_steps (`int`, *optional*, defaults to 50):
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
+ expense of slower inference.
+ guidance_scale (`float`, *optional*, defaults to 7.5):
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
+ usually at the expense of lower image quality.
+ negative_prompt (`str` or `List[str]`, *optional*):
+ The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
+ if `guidance_scale` is less than `1`).
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
+ The number of images to generate per prompt.
+ eta (`float`, *optional*, defaults to 0.0):
+ Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
+ [`schedulers.DDIMScheduler`], will be ignored for others.
+ generator (`paddle.Generator`, *optional*):
+ A [paddle generator] to make generation
+ deterministic.
+ latents (`paddle.Tensor`, *optional*):
+ Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
+ tensor will ge generated by sampling using the supplied random `generator`.
+ output_type (`str`, *optional*, defaults to `"pil"`):
+ The output format of the generate image. Choose between
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
+ return_dict (`bool`, *optional*, defaults to `True`):
+ Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
+ plain tuple.
+ callback (`Callable`, *optional*):
+ A function that will be called every `callback_steps` steps during inference. The function will be
+ called with the following arguments: `callback(step: int, timestep: int, latents: paddle.Tensor)`.
+ callback_steps (`int`, *optional*, defaults to 1):
+ The frequency at which the `callback` function will be called. If not specified, the callback will be
+ called at every step.
+
+ Returns:
+ [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
+ [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
+ When returning a tuple, the first element is a list with the generated images, and the second element is a
+ list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
+ (nsfw) content, according to the `safety_checker`.
+ """
+
+ # 1. Check inputs
+ self.check_inputs(prompt, image, noise_level, callback_steps)
+
+ # 2. Define call parameters
+ batch_size = 1 if isinstance(prompt, str) else len(prompt)
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
+ # corresponds to doing no classifier free guidance.
+ do_classifier_free_guidance = guidance_scale > 1.0
+
+ # 3. Encode input prompt
+ text_embeddings = self._encode_prompt(
+ prompt, num_images_per_prompt, do_classifier_free_guidance, negative_prompt
+ )
+
+ # 4. Preprocess image
+ image = preprocess(image)
+ image = image.cast(text_embeddings.dtype)
+
+ # 5. set timesteps
+ self.scheduler.set_timesteps(num_inference_steps)
+ timesteps = self.scheduler.timesteps
+
+ # 5. Add noise to image
+ noise_level = paddle.to_tensor([noise_level], dtype="int64")
+ noise = paddle.randn(image.shape, generator=generator, dtype=text_embeddings.dtype)
+ image = self.low_res_scheduler.add_noise(image, noise, noise_level)
+ batch_multiplier = 2 if do_classifier_free_guidance else 1
+ image = paddle.concat([image] * batch_multiplier * num_images_per_prompt)
+ noise_level = paddle.concat([noise_level] * image.shape[0])
+
+ # 6. Prepare latent variables
+ height, width = image.shape[2:]
+ num_channels_latents = self.vae.config.latent_channels
+ latents = self.prepare_latents(
+ batch_size * num_images_per_prompt,
+ num_channels_latents,
+ height,
+ width,
+ text_embeddings.dtype,
+ generator,
+ latents,
+ )
+
+ # 7. Check that sizes of image and latents match
+ num_channels_image = image.shape[1]
+ if num_channels_latents + num_channels_image != self.unet.config.in_channels:
+ raise ValueError(
+ f"Incorrect configuration settings! The config of `pipeline.unet`: {self.unet.config} expects"
+ f" {self.unet.config.in_channels} but received `num_channels_latents`: {num_channels_latents} +"
+ f" `num_channels_image`: {num_channels_image} "
+ f" = {num_channels_latents+num_channels_image}. Please verify the config of"
+ " `pipeline.unet` or your `image` input."
+ )
+
+ # 8. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
+ extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
+
+ # 9. Denoising loop
+ num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
+ for i, t in enumerate(timesteps):
+ # expand the latents if we are doing classifier free guidance
+ latent_model_input = paddle.concat([latents] * 2) if do_classifier_free_guidance else latents
+
+ # concat latents, mask, masked_image_latents in the channel dimension
+ latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
+ latent_model_input = paddle.concat([latent_model_input, image], axis=1)
+
+ # predict the noise residual
+ noise_pred = self.unet(
+ latent_model_input, t, encoder_hidden_states=text_embeddings, class_labels=noise_level
+ ).sample
+
+ # perform guidance
+ if do_classifier_free_guidance:
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
+ noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
+
+ # compute the previous noisy sample x_t -> x_t-1
+ latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
+
+ # call the callback, if provided
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
+ progress_bar.update()
+ if callback is not None and i % callback_steps == 0:
+ callback(i, t, latents)
+
+ # 10. Post-processing
+ # make sure the VAE is in float32 mode, as it overflows in float16
+ # self.vae.to(dtype=paddle.float32)
+ image = self.decode_latents(latents.cast("float32"))
+
+ # 11. Convert to PIL
+ if output_type == "pil":
+ image = self.numpy_to_pil(image)
+
+ if not return_dict:
+ return (image,)
+
+ return ImagePipelineOutput(images=image)
diff --git a/ppdiffusers/pipelines/stable_diffusion/safety_checker.py b/ppdiffusers/pipelines/stable_diffusion/safety_checker.py
new file mode 100644
index 0000000000000000000000000000000000000000..c9820cce25ce9eb77c2d0c11810c05aba81bebcd
--- /dev/null
+++ b/ppdiffusers/pipelines/stable_diffusion/safety_checker.py
@@ -0,0 +1,125 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+# Copyright 2022 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import numpy as np
+import paddle
+import paddle.nn.functional as F
+
+from paddlenlp.transformers import (
+ CLIPPretrainedModel,
+ CLIPVisionConfig,
+ CLIPVisionModel,
+)
+
+from ...utils import logging
+
+logger = logging.get_logger(__name__)
+
+
+def cosine_distance(image_embeds, text_embeds):
+ normalized_image_embeds = F.normalize(image_embeds)
+ normalized_text_embeds = F.normalize(text_embeds)
+ return paddle.matmul(normalized_image_embeds, normalized_text_embeds, transpose_y=True)
+
+
+class StableDiffusionSafetyChecker(CLIPPretrainedModel):
+ config_class = CLIPVisionConfig
+
+ def __init__(self, config: CLIPVisionConfig):
+ super().__init__(config)
+ self.clip = CLIPVisionModel(config)
+ self.vision_projection = paddle.create_parameter(
+ (config.hidden_size, config.projection_dim), dtype=paddle.get_default_dtype()
+ )
+
+ self.register_buffer("concept_embeds", paddle.ones([17, config.projection_dim]))
+ self.register_buffer("special_care_embeds", paddle.ones([3, config.projection_dim]))
+
+ self.register_buffer("concept_embeds_weights", paddle.ones([17]))
+ self.register_buffer("special_care_embeds_weights", paddle.ones([3]))
+
+ @paddle.no_grad()
+ def forward(self, clip_input, images):
+ pooled_output = self.clip(clip_input)[1] # pooled_output
+ image_embeds = paddle.matmul(pooled_output, self.vision_projection)
+
+ # we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
+ special_cos_dist = cosine_distance(image_embeds, self.special_care_embeds).astype("float32").numpy()
+ cos_dist = cosine_distance(image_embeds, self.concept_embeds).astype("float32").numpy()
+
+ result = []
+ batch_size = image_embeds.shape[0]
+ for i in range(batch_size):
+ result_img = {"special_scores": {}, "special_care": [], "concept_scores": {}, "bad_concepts": []}
+
+ # increase this value to create a stronger `nfsw` filter
+ # at the cost of increasing the possibility of filtering benign images
+ adjustment = 0.0
+
+ for concept_idx in range(len(special_cos_dist[0])):
+ concept_cos = special_cos_dist[i][concept_idx]
+ concept_threshold = self.special_care_embeds_weights[concept_idx].item()
+ result_img["special_scores"][concept_idx] = round(concept_cos - concept_threshold + adjustment, 3)
+ if result_img["special_scores"][concept_idx] > 0:
+ result_img["special_care"].append({concept_idx, result_img["special_scores"][concept_idx]})
+ adjustment = 0.01
+
+ for concept_idx in range(len(cos_dist[0])):
+ concept_cos = cos_dist[i][concept_idx]
+ concept_threshold = self.concept_embeds_weights[concept_idx].item()
+ result_img["concept_scores"][concept_idx] = round(concept_cos - concept_threshold + adjustment, 3)
+ if result_img["concept_scores"][concept_idx] > 0:
+ result_img["bad_concepts"].append(concept_idx)
+
+ result.append(result_img)
+
+ has_nsfw_concepts = [len(res["bad_concepts"]) > 0 for res in result]
+
+ for idx, has_nsfw_concept in enumerate(has_nsfw_concepts):
+ if has_nsfw_concept:
+ images[idx] = np.zeros(images[idx].shape) # black image
+
+ if any(has_nsfw_concepts):
+ logger.warning(
+ "Potential NSFW content was detected in one or more images. A black image will be returned instead."
+ " Try again with a different prompt and/or seed."
+ )
+
+ return images, has_nsfw_concepts
+
+ def forward_fastdeploy(self, clip_input: paddle.Tensor, images: paddle.Tensor):
+ pooled_output = self.clip(clip_input)[1] # pooled_output
+ image_embeds = paddle.matmul(pooled_output, self.vision_projection)
+
+ special_cos_dist = cosine_distance(image_embeds, self.special_care_embeds)
+ cos_dist = cosine_distance(image_embeds, self.concept_embeds)
+
+ # increase this value to create a stronger `nsfw` filter
+ # at the cost of increasing the possibility of filtering benign images
+ adjustment = 0.0
+
+ special_scores = special_cos_dist - self.special_care_embeds_weights + adjustment
+ # special_scores = special_scores.round(decimals=3)
+ special_care = paddle.any(special_scores > 0, axis=1)
+ special_adjustment = special_care * 0.01
+ special_adjustment = special_adjustment.unsqueeze(1).expand([-1, cos_dist.shape[1]])
+
+ concept_scores = (cos_dist - self.concept_embeds_weights) + special_adjustment
+ # concept_scores = concept_scores.round(decimals=3)
+ has_nsfw_concepts = paddle.any(concept_scores > 0, axis=1)
+
+ images[has_nsfw_concepts] = 0.0 # black image
+
+ return images, has_nsfw_concepts
diff --git a/ppdiffusers/pipelines/stable_diffusion_safe/__init__.py b/ppdiffusers/pipelines/stable_diffusion_safe/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..944420c47c0e0047df5e8bfdf707c75381c985ac
--- /dev/null
+++ b/ppdiffusers/pipelines/stable_diffusion_safe/__init__.py
@@ -0,0 +1,85 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+# flake8: noqa
+
+from dataclasses import dataclass
+from enum import Enum
+from typing import List, Optional, Union
+
+import numpy as np
+import PIL
+from PIL import Image
+
+from ...utils import BaseOutput, is_paddle_available, is_paddlenlp_available
+
+
+@dataclass
+class SafetyConfig(object):
+ WEAK = {
+ "sld_warmup_steps": 15,
+ "sld_guidance_scale": 20,
+ "sld_threshold": 0.0,
+ "sld_momentum_scale": 0.0,
+ "sld_mom_beta": 0.0,
+ }
+ MEDIUM = {
+ "sld_warmup_steps": 10,
+ "sld_guidance_scale": 1000,
+ "sld_threshold": 0.01,
+ "sld_momentum_scale": 0.3,
+ "sld_mom_beta": 0.4,
+ }
+ STRONG = {
+ "sld_warmup_steps": 7,
+ "sld_guidance_scale": 2000,
+ "sld_threshold": 0.025,
+ "sld_momentum_scale": 0.5,
+ "sld_mom_beta": 0.7,
+ }
+ MAX = {
+ "sld_warmup_steps": 0,
+ "sld_guidance_scale": 5000,
+ "sld_threshold": 1.0,
+ "sld_momentum_scale": 0.5,
+ "sld_mom_beta": 0.7,
+ }
+
+
+@dataclass
+class StableDiffusionSafePipelineOutput(BaseOutput):
+ """
+ Output class for Safe Stable Diffusion pipelines.
+ Args:
+ images (`List[PIL.Image.Image]` or `np.ndarray`)
+ List of denoised PIL images of length `batch_size` or numpy array of shape `(batch_size, height, width,
+ num_channels)`. PIL images or numpy array present the denoised images of the diffusion pipeline.
+ nsfw_content_detected (`List[bool]`)
+ List of flags denoting whether the corresponding generated image likely represents "not-safe-for-work"
+ (nsfw) content, or `None` if safety checking could not be performed.
+ images (`List[PIL.Image.Image]` or `np.ndarray`)
+ List of denoised PIL images that were flagged by the safety checker any may contain "not-safe-for-work"
+ (nsfw) content, or `None` if no safety check was performed or no images were flagged.
+ applied_safety_concept (`str`)
+ The safety concept that was applied for safety guidance, or `None` if safety guidance was disabled
+ """
+
+ images: Union[List[PIL.Image.Image], np.ndarray]
+ nsfw_content_detected: Optional[List[bool]]
+ unsafe_images: Optional[Union[List[PIL.Image.Image], np.ndarray]]
+ applied_safety_concept: Optional[str]
+
+
+if is_paddle_available() and is_paddlenlp_available():
+ from .pipeline_stable_diffusion_safe import StableDiffusionPipelineSafe
+ from .safety_checker import SafeStableDiffusionSafetyChecker
diff --git a/ppdiffusers/pipelines/stable_diffusion_safe/__pycache__/__init__.cpython-37.pyc b/ppdiffusers/pipelines/stable_diffusion_safe/__pycache__/__init__.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..632a8de4a4a0cde4ad94c74e86ed31a2143656b8
Binary files /dev/null and b/ppdiffusers/pipelines/stable_diffusion_safe/__pycache__/__init__.cpython-37.pyc differ
diff --git a/ppdiffusers/pipelines/stable_diffusion_safe/__pycache__/pipeline_stable_diffusion_safe.cpython-37.pyc b/ppdiffusers/pipelines/stable_diffusion_safe/__pycache__/pipeline_stable_diffusion_safe.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..b353d24345c127026c9664f958144cb715df4830
Binary files /dev/null and b/ppdiffusers/pipelines/stable_diffusion_safe/__pycache__/pipeline_stable_diffusion_safe.cpython-37.pyc differ
diff --git a/ppdiffusers/pipelines/stable_diffusion_safe/__pycache__/safety_checker.cpython-37.pyc b/ppdiffusers/pipelines/stable_diffusion_safe/__pycache__/safety_checker.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..39bdd24d51a635c5f0ea6d732c57a14ef7807d55
Binary files /dev/null and b/ppdiffusers/pipelines/stable_diffusion_safe/__pycache__/safety_checker.cpython-37.pyc differ
diff --git a/ppdiffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py b/ppdiffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py
new file mode 100644
index 0000000000000000000000000000000000000000..cb6a7711b86fa273ef7cf51f743a3b07bc9a7340
--- /dev/null
+++ b/ppdiffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py
@@ -0,0 +1,702 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import inspect
+import warnings
+from typing import Callable, List, Optional, Union
+
+import numpy as np
+import paddle
+from packaging import version
+
+from paddlenlp.transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
+
+from ...configuration_utils import FrozenDict
+from ...models import AutoencoderKL, UNet2DConditionModel
+from ...pipeline_utils import DiffusionPipeline
+from ...schedulers import (
+ DDIMScheduler,
+ DPMSolverMultistepScheduler,
+ EulerAncestralDiscreteScheduler,
+ EulerDiscreteScheduler,
+ LMSDiscreteScheduler,
+ PNDMScheduler,
+)
+from ...utils import deprecate, logging
+from . import StableDiffusionSafePipelineOutput
+from .safety_checker import SafeStableDiffusionSafetyChecker
+
+logger = logging.get_logger(__name__) # pylint: disable=invalid-name
+
+
+class StableDiffusionPipelineSafe(DiffusionPipeline):
+ r"""
+ Pipeline for text-to-image generation using Safe Latent Diffusion.
+
+ The implementation is based on the [`StableDiffusionPipeline`]
+
+ This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
+ library implements for all the pipelines (such as downloading or saving, etc.)
+
+ Args:
+ vae ([`AutoencoderKL`]):
+ Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
+ text_encoder ([`CLIPTextModel`]):
+ Frozen text-encoder. Stable Diffusion uses the text portion of
+ [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
+ the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
+ tokenizer (`CLIPTokenizer`):
+ Tokenizer of class
+ [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
+ unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
+ scheduler ([`SchedulerMixin`]):
+ A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
+ [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
+ safety_checker ([`StableDiffusionSafetyChecker`]):
+ Classification module that estimates whether generated images could be considered offensive or harmful.
+ Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
+ feature_extractor ([`CLIPFeatureExtractor`]):
+ Model that extracts features from generated images to be used as inputs for the `safety_checker`.
+ """
+ _optional_components = ["safety_checker", "feature_extractor"]
+
+ def __init__(
+ self,
+ vae: AutoencoderKL,
+ text_encoder: CLIPTextModel,
+ tokenizer: CLIPTokenizer,
+ unet: UNet2DConditionModel,
+ scheduler: Union[
+ DDIMScheduler,
+ DPMSolverMultistepScheduler,
+ EulerAncestralDiscreteScheduler,
+ EulerDiscreteScheduler,
+ LMSDiscreteScheduler,
+ PNDMScheduler,
+ ],
+ safety_checker: SafeStableDiffusionSafetyChecker,
+ feature_extractor: CLIPFeatureExtractor,
+ requires_safety_checker: bool = True,
+ ):
+ super().__init__()
+ safety_concept: Optional[str] = (
+ "an image showing hate, harassment, violence, suffering, humiliation, harm, suicide, sexual, nudity,"
+ " bodily fluids, blood, obscene gestures, illegal activity, drug use, theft, vandalism, weapons, child"
+ " abuse, brutality, cruelty"
+ )
+
+ if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
+ deprecation_message = (
+ f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
+ f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
+ "to update the config accordingly as leaving `steps_offset` might led to incorrect results"
+ " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
+ " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
+ " file"
+ )
+ deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False)
+ new_config = dict(scheduler.config)
+ new_config["steps_offset"] = 1
+ scheduler._internal_dict = FrozenDict(new_config)
+
+ if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True:
+ deprecation_message = (
+ f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`."
+ " `clip_sample` should be set to False in the configuration file. Please make sure to update the"
+ " config accordingly as not setting `clip_sample` in the config might lead to incorrect results in"
+ " future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very"
+ " nice if you could open a Pull request for the `scheduler/scheduler_config.json` file"
+ )
+ deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False)
+ new_config = dict(scheduler.config)
+ new_config["clip_sample"] = False
+ scheduler._internal_dict = FrozenDict(new_config)
+
+ if safety_checker is None and requires_safety_checker:
+ logger.warning(
+ f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
+ " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
+ " results in services or applications open to the public. Both the diffusers team and Hugging Face"
+ " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
+ " it only for use-cases that involve analyzing network behavior or auditing its results. For more"
+ " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
+ )
+ if safety_checker is not None and feature_extractor is None:
+ raise ValueError(
+ "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
+ " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
+ )
+ is_unet_version_less_0_9_0 = hasattr(unet.config, "_ppdiffusers_version") and version.parse(
+ version.parse(unet.config._ppdiffusers_version).base_version
+ ) < version.parse("0.9.0.dev0")
+ is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64
+ if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64:
+ deprecation_message = (
+ "The configuration file of the unet has set the default `sample_size` to smaller than"
+ " 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the"
+ " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
+ " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
+ " \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
+ " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
+ " in the config might lead to incorrect results in future versions. If you have downloaded this"
+ " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
+ " the `unet/config.json` file"
+ )
+ deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False)
+ new_config = dict(unet.config)
+ new_config["sample_size"] = 64
+ unet._internal_dict = FrozenDict(new_config)
+ self.register_modules(
+ vae=vae,
+ text_encoder=text_encoder,
+ tokenizer=tokenizer,
+ unet=unet,
+ scheduler=scheduler,
+ safety_checker=safety_checker,
+ feature_extractor=feature_extractor,
+ )
+ self._safety_text_concept = safety_concept
+ self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
+ self.register_to_config(requires_safety_checker=requires_safety_checker)
+
+ @property
+ def safety_concept(self):
+ r"""
+ Getter method for the safety concept used with SLD
+
+ Returns:
+ `str`: The text describing the safety concept
+ """
+ return self._safety_text_concept
+
+ @safety_concept.setter
+ def safety_concept(self, concept):
+ r"""
+ Setter method for the safety concept used with SLD
+
+ Args:
+ concept (`str`):
+ The text of the new safety concept
+ """
+ self._safety_text_concept = concept
+
+ def _encode_prompt(
+ self,
+ prompt,
+ num_images_per_prompt,
+ do_classifier_free_guidance,
+ negative_prompt,
+ enable_safety_guidance,
+ ):
+ r"""
+ Encodes the prompt into text encoder hidden states.
+
+ Args:
+ prompt (`str` or `list(int)`):
+ prompt to be encoded
+ num_images_per_prompt (`int`):
+ number of images that should be generated per prompt
+ do_classifier_free_guidance (`bool`):
+ whether to use classifier free guidance or not
+ negative_prompt (`str` or `List[str]`):
+ The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
+ if `guidance_scale` is less than `1`).
+ """
+ batch_size = len(prompt) if isinstance(prompt, list) else 1
+
+ text_inputs = self.tokenizer(
+ prompt,
+ padding="max_length",
+ max_length=self.tokenizer.model_max_length,
+ truncation=True,
+ return_tensors="pd",
+ )
+ text_input_ids = text_inputs.input_ids
+ untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pd").input_ids
+
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not paddle.equal_all(
+ text_input_ids, untruncated_ids
+ ):
+ removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1])
+ logger.warning(
+ "The following part of your input was truncated because CLIP can only handle sequences up to"
+ f" {self.tokenizer.model_max_length} tokens: {removed_text}"
+ )
+
+ if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
+ attention_mask = text_inputs.attention_mask
+ else:
+ attention_mask = None
+
+ text_embeddings = self.text_encoder(
+ text_input_ids,
+ attention_mask=attention_mask,
+ )
+ text_embeddings = text_embeddings[0]
+
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
+ bs_embed, seq_len, _ = text_embeddings.shape
+ text_embeddings = text_embeddings.tile([1, num_images_per_prompt, 1])
+ text_embeddings = text_embeddings.reshape([bs_embed * num_images_per_prompt, seq_len, -1])
+
+ # get unconditional embeddings for classifier free guidance
+ if do_classifier_free_guidance:
+ uncond_tokens: List[str]
+ if negative_prompt is None:
+ uncond_tokens = [""] * batch_size
+ elif type(prompt) is not type(negative_prompt):
+ raise TypeError(
+ f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
+ f" {type(prompt)}."
+ )
+ elif isinstance(negative_prompt, str):
+ uncond_tokens = [negative_prompt]
+ elif batch_size != len(negative_prompt):
+ raise ValueError(
+ f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
+ f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
+ " the batch size of `prompt`."
+ )
+ else:
+ uncond_tokens = negative_prompt
+
+ max_length = text_input_ids.shape[-1]
+ uncond_input = self.tokenizer(
+ uncond_tokens,
+ padding="max_length",
+ max_length=max_length,
+ truncation=True,
+ return_tensors="pd",
+ )
+
+ if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
+ attention_mask = uncond_input.attention_mask
+ else:
+ attention_mask = None
+
+ uncond_embeddings = self.text_encoder(
+ uncond_input.input_ids,
+ attention_mask=attention_mask,
+ )
+ uncond_embeddings = uncond_embeddings[0]
+
+ # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
+ seq_len = uncond_embeddings.shape[1]
+ uncond_embeddings = uncond_embeddings.tile([1, num_images_per_prompt, 1])
+ uncond_embeddings = uncond_embeddings.reshape([batch_size * num_images_per_prompt, seq_len, -1])
+
+ # Encode the safety concept text
+ if enable_safety_guidance:
+ safety_concept_input = self.tokenizer(
+ [self._safety_text_concept],
+ padding="max_length",
+ max_length=max_length,
+ truncation=True,
+ return_tensors="pd",
+ )
+ safety_embeddings = self.text_encoder(safety_concept_input.input_ids)[0]
+
+ # duplicate safety embeddings for each generation per prompt, using mps friendly method
+ seq_len = safety_embeddings.shape[1]
+ safety_embeddings = safety_embeddings.tile([batch_size, num_images_per_prompt, 1])
+ safety_embeddings = safety_embeddings.reshape([batch_size * num_images_per_prompt, seq_len, -1])
+
+ # For classifier free guidance + sld, we need to do three forward passes.
+ # Here we concatenate the unconditional and text embeddings into a single batch
+ # to avoid doing three forward passes
+ text_embeddings = paddle.concat([uncond_embeddings, text_embeddings, safety_embeddings])
+
+ else:
+ # For classifier free guidance, we need to do two forward passes.
+ # Here we concatenate the unconditional and text embeddings into a single batch
+ # to avoid doing two forward passes
+ text_embeddings = paddle.concat([uncond_embeddings, text_embeddings])
+
+ return text_embeddings
+
+ def run_safety_checker(self, image, dtype, enable_safety_guidance):
+ if self.safety_checker is not None:
+ safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pd")
+ image, has_nsfw_concept = self.safety_checker(
+ images=image, clip_input=safety_checker_input.pixel_values.cast(dtype)
+ )
+ flagged_images = None
+ if any(has_nsfw_concept):
+ logger.warning(
+ "Potential NSFW content was detected in one or more images. A black image will be returned"
+ " instead."
+ f" {'You may look at this images in the `unsafe_images` variable of the output at your own discretion.' if enable_safety_guidance else 'Try again with a different prompt and/or seed.'} "
+ )
+ flagged_images = np.zeros(image.shape)
+ for idx, has_nsfw_concept in enumerate(has_nsfw_concept):
+ if has_nsfw_concept:
+ flagged_images[idx] = image[idx]
+ image[idx] = np.zeros(image[idx].shape) # black image
+ else:
+ has_nsfw_concept = None
+ flagged_images = None
+ return image, has_nsfw_concept, flagged_images
+
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents
+ def decode_latents(self, latents):
+ latents = 1 / 0.18215 * latents
+ image = self.vae.decode(latents).sample
+ image = (image / 2 + 0.5).clip(0, 1)
+ # we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
+ image = image.transpose([0, 2, 3, 1]).cast("float32").numpy()
+ return image
+
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
+ def prepare_extra_step_kwargs(self, generator, eta):
+ # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
+ # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
+ # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
+ # and should be between [0, 1]
+
+ accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
+ extra_step_kwargs = {}
+ if accepts_eta:
+ extra_step_kwargs["eta"] = eta
+
+ # check if the scheduler accepts generator
+ accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
+ if accepts_generator:
+ extra_step_kwargs["generator"] = generator
+ return extra_step_kwargs
+
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.check_inputs
+ def check_inputs(self, prompt, height, width, callback_steps):
+ if not isinstance(prompt, str) and not isinstance(prompt, list):
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
+
+ if height % 8 != 0 or width % 8 != 0:
+ raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
+
+ if (callback_steps is None) or (
+ callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
+ ):
+ raise ValueError(
+ f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
+ f" {type(callback_steps)}."
+ )
+
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
+ def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, generator, latents=None):
+ shape = [batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor]
+ if isinstance(generator, list) and len(generator) != batch_size:
+ raise ValueError(
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
+ )
+
+ if latents is None:
+ if isinstance(generator, list):
+ shape = [
+ 1,
+ ] + shape[1:]
+ latents = [paddle.randn(shape, generator=generator[i], dtype=dtype) for i in range(batch_size)]
+ latents = paddle.concat(latents, axis=0)
+ else:
+ latents = paddle.randn(shape, generator=generator, dtype=dtype)
+ else:
+ if latents.shape != shape:
+ raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}")
+
+ # scale the initial noise by the standard deviation required by the scheduler
+ latents = latents * self.scheduler.init_noise_sigma
+ return latents
+
+ def perform_safety_guidance(
+ self,
+ enable_safety_guidance,
+ safety_momentum,
+ noise_guidance,
+ noise_pred_out,
+ i,
+ sld_guidance_scale,
+ sld_warmup_steps,
+ sld_threshold,
+ sld_momentum_scale,
+ sld_mom_beta,
+ ):
+ # Perform SLD guidance
+ if enable_safety_guidance:
+ if safety_momentum is None:
+ safety_momentum = paddle.zeros_like(noise_guidance)
+ noise_pred_text, noise_pred_uncond = noise_pred_out[0], noise_pred_out[1]
+ noise_pred_safety_concept = noise_pred_out[2]
+
+ # Equation 6
+ scale = paddle.clip(
+ paddle.abs((noise_pred_text - noise_pred_safety_concept)) * sld_guidance_scale, max=1.0
+ )
+
+ # Equation 6
+ safety_concept_scale = paddle.where(
+ (noise_pred_text - noise_pred_safety_concept) >= sld_threshold, paddle.zeros_like(scale), scale
+ )
+
+ # Equation 4
+ noise_guidance_safety = paddle.multiply(
+ (noise_pred_safety_concept - noise_pred_uncond), safety_concept_scale
+ )
+
+ # Equation 7
+ noise_guidance_safety = noise_guidance_safety + sld_momentum_scale * safety_momentum
+
+ # Equation 8
+ safety_momentum = sld_mom_beta * safety_momentum + (1 - sld_mom_beta) * noise_guidance_safety
+
+ if i >= sld_warmup_steps: # Warmup
+ # Equation 3
+ noise_guidance = noise_guidance - noise_guidance_safety
+ return noise_guidance, safety_momentum
+
+ @paddle.no_grad()
+ def __call__(
+ self,
+ prompt: Union[str, List[str]],
+ height: Optional[int] = None,
+ width: Optional[int] = None,
+ num_inference_steps: int = 50,
+ guidance_scale: float = 7.5,
+ negative_prompt: Optional[Union[str, List[str]]] = None,
+ num_images_per_prompt: Optional[int] = 1,
+ eta: float = 0.0,
+ generator: Optional[Union[paddle.Generator, List[paddle.Generator]]] = None,
+ latents: Optional[paddle.Tensor] = None,
+ output_type: Optional[str] = "pil",
+ return_dict: bool = True,
+ callback: Optional[Callable[[int, int, paddle.Tensor], None]] = None,
+ callback_steps: Optional[int] = 1,
+ sld_guidance_scale: Optional[float] = 1000,
+ sld_warmup_steps: Optional[int] = 10,
+ sld_threshold: Optional[float] = 0.01,
+ sld_momentum_scale: Optional[float] = 0.3,
+ sld_mom_beta: Optional[float] = 0.4,
+ **kwargs,
+ ):
+ r"""
+ Function invoked when calling the pipeline for generation.
+
+ Args:
+ prompt (`str` or `List[str]`):
+ The prompt or prompts to guide the image generation.
+ height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
+ The height in pixels of the generated image.
+ width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
+ The width in pixels of the generated image.
+ num_inference_steps (`int`, *optional*, defaults to 50):
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
+ expense of slower inference.
+ guidance_scale (`float`, *optional*, defaults to 7.5):
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
+ usually at the expense of lower image quality.
+ negative_prompt (`str` or `List[str]`, *optional*):
+ The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
+ if `guidance_scale` is less than `1`).
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
+ The number of images to generate per prompt.
+ eta (`float`, *optional*, defaults to 0.0):
+ Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
+ [`schedulers.DDIMScheduler`], will be ignored for others.
+ generator (`paddle.Generator`, *optional*):
+ A [paddle generator] to make generation
+ deterministic.
+ latents (`paddle.Tensor`, *optional*):
+ Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
+ tensor will ge generated by sampling using the supplied random `generator`.
+ output_type (`str`, *optional*, defaults to `"pil"`):
+ The output format of the generate image. Choose between
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
+ return_dict (`bool`, *optional*, defaults to `True`):
+ Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
+ plain tuple.
+ callback (`Callable`, *optional*):
+ A function that will be called every `callback_steps` steps during inference. The function will be
+ called with the following arguments: `callback(step: int, timestep: int, latents: paddle.Tensor)`.
+ callback_steps (`int`, *optional*, defaults to 1):
+ The frequency at which the `callback` function will be called. If not specified, the callback will be
+ called at every step.
+ sld_guidance_scale (`float`, *optional*, defaults to 1000):
+ Safe latent guidance as defined in [Safe Latent Diffusion](https://arxiv.org/abs/2211.05105).
+ `sld_guidance_scale` is defined as sS of Eq. 6. If set to be less than 1, safety guidance will be
+ disabled.
+ sld_warmup_steps (`int`, *optional*, defaults to 10):
+ Number of warmup steps for safety guidance. SLD will only be applied for diffusion steps greater than
+ `sld_warmup_steps`. `sld_warmup_steps` is defined as `delta` of [Safe Latent
+ Diffusion](https://arxiv.org/abs/2211.05105).
+ sld_threshold (`float`, *optional*, defaults to 0.01):
+ Threshold that separates the hyperplane between appropriate and inappropriate images. `sld_threshold`
+ is defined as `lamda` of Eq. 5 in [Safe Latent Diffusion](https://arxiv.org/abs/2211.05105).
+ sld_momentum_scale (`float`, *optional*, defaults to 0.3):
+ Scale of the SLD momentum to be added to the safety guidance at each diffusion step. If set to 0.0
+ momentum will be disabled. Momentum is already built up during warmup, i.e. for diffusion steps smaller
+ than `sld_warmup_steps`. `sld_momentum_scale` is defined as `sm` of Eq. 7 in [Safe Latent
+ Diffusion](https://arxiv.org/abs/2211.05105).
+ sld_mom_beta (`float`, *optional*, defaults to 0.4):
+ Defines how safety guidance momentum builds up. `sld_mom_beta` indicates how much of the previous
+ momentum will be kept. Momentum is already built up during warmup, i.e. for diffusion steps smaller
+ than `sld_warmup_steps`. `sld_mom_beta` is defined as `beta m` of Eq. 8 in [Safe Latent
+ Diffusion](https://arxiv.org/abs/2211.05105).
+ Returns:
+ [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
+ [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
+ When returning a tuple, the first element is a list with the generated images, and the second element is a
+ list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
+ (nsfw) content, according to the `safety_checker`.
+ """
+ # 0. Default height and width to unet
+ height = height or self.unet.config.sample_size * self.vae_scale_factor
+ width = width or self.unet.config.sample_size * self.vae_scale_factor
+
+ # 1. Check inputs. Raise error if not correct
+ self.check_inputs(prompt, height, width, callback_steps)
+
+ # 2. Define call parameters
+ batch_size = 1 if isinstance(prompt, str) else len(prompt)
+
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
+ # corresponds to doing no classifier free guidance.
+ do_classifier_free_guidance = guidance_scale > 1.0
+
+ enable_safety_guidance = sld_guidance_scale > 1.0 and do_classifier_free_guidance
+ if not enable_safety_guidance:
+ warnings.warn("Safety checker disabled!")
+
+ # 3. Encode input prompt
+ text_embeddings = self._encode_prompt(
+ prompt, num_images_per_prompt, do_classifier_free_guidance, negative_prompt, enable_safety_guidance
+ )
+
+ # 4. Prepare timesteps
+ self.scheduler.set_timesteps(num_inference_steps)
+ timesteps = self.scheduler.timesteps
+
+ # 5. Prepare latent variables
+ num_channels_latents = self.unet.in_channels
+ latents = self.prepare_latents(
+ batch_size * num_images_per_prompt,
+ num_channels_latents,
+ height,
+ width,
+ text_embeddings.dtype,
+ generator,
+ latents,
+ )
+
+ # 6. Prepare extra step kwargs.
+ extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
+
+ safety_momentum = None
+
+ num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
+ for i, t in enumerate(timesteps):
+ # expand the latents if we are doing classifier free guidance
+ latent_model_input = (
+ paddle.concat([latents] * (3 if enable_safety_guidance else 2))
+ if do_classifier_free_guidance
+ else latents
+ )
+ latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
+
+ # predict the noise residual
+ noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample
+
+ # perform guidance
+ if do_classifier_free_guidance:
+ noise_pred_out = noise_pred.chunk((3 if enable_safety_guidance else 2))
+ noise_pred_uncond, noise_pred_text = noise_pred_out[0], noise_pred_out[1]
+
+ # default classifier free guidance
+ noise_guidance = noise_pred_text - noise_pred_uncond
+
+ # Perform SLD guidance
+ if enable_safety_guidance:
+ if safety_momentum is None:
+ safety_momentum = paddle.zeros_like(noise_guidance)
+ noise_pred_safety_concept = noise_pred_out[2]
+
+ # Equation 6
+ scale = paddle.clip(
+ paddle.abs((noise_pred_text - noise_pred_safety_concept)) * sld_guidance_scale, max=1.0
+ )
+
+ # Equation 6
+ safety_concept_scale = paddle.where(
+ (noise_pred_text - noise_pred_safety_concept) >= sld_threshold,
+ paddle.zeros_like(scale),
+ scale,
+ )
+
+ # Equation 4
+ noise_guidance_safety = paddle.multiply(
+ (noise_pred_safety_concept - noise_pred_uncond), safety_concept_scale
+ )
+
+ # Equation 7
+ noise_guidance_safety = noise_guidance_safety + sld_momentum_scale * safety_momentum
+
+ # Equation 8
+ safety_momentum = sld_mom_beta * safety_momentum + (1 - sld_mom_beta) * noise_guidance_safety
+
+ if i >= sld_warmup_steps: # Warmup
+ # Equation 3
+ noise_guidance = noise_guidance - noise_guidance_safety
+
+ noise_pred = noise_pred_uncond + guidance_scale * noise_guidance
+
+ # compute the previous noisy sample x_t -> x_t-1
+ latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
+
+ # call the callback, if provided
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
+ progress_bar.update()
+ if callback is not None and i % callback_steps == 0:
+ callback(i, t, latents)
+
+ # 8. Post-processing
+ image = self.decode_latents(latents)
+
+ # 9. Run safety checker
+ image, has_nsfw_concept, flagged_images = self.run_safety_checker(
+ image, text_embeddings.dtype, enable_safety_guidance
+ )
+
+ # 10. Convert to PIL
+ if output_type == "pil":
+ image = self.numpy_to_pil(image)
+ if flagged_images is not None:
+ flagged_images = self.numpy_to_pil(flagged_images)
+
+ if not return_dict:
+ return (
+ image,
+ has_nsfw_concept,
+ self._safety_text_concept if enable_safety_guidance else None,
+ flagged_images,
+ )
+
+ return StableDiffusionSafePipelineOutput(
+ images=image,
+ nsfw_content_detected=has_nsfw_concept,
+ applied_safety_concept=self._safety_text_concept if enable_safety_guidance else None,
+ unsafe_images=flagged_images,
+ )
diff --git a/ppdiffusers/pipelines/stable_diffusion_safe/safety_checker.py b/ppdiffusers/pipelines/stable_diffusion_safe/safety_checker.py
new file mode 100644
index 0000000000000000000000000000000000000000..145c46179940e0b02e85171a2d052146f57ebaef
--- /dev/null
+++ b/ppdiffusers/pipelines/stable_diffusion_safe/safety_checker.py
@@ -0,0 +1,113 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+# Copyright 2022 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import paddle
+import paddle.nn.functional as F
+
+from paddlenlp.transformers import (
+ CLIPPretrainedModel,
+ CLIPVisionConfig,
+ CLIPVisionModel,
+)
+
+from ...utils import logging
+
+logger = logging.get_logger(__name__)
+
+
+def cosine_distance(image_embeds, text_embeds):
+ normalized_image_embeds = F.normalize(image_embeds)
+ normalized_text_embeds = F.normalize(text_embeds)
+ return paddle.matmul(normalized_image_embeds, normalized_text_embeds, transpose_y=True)
+
+
+class SafeStableDiffusionSafetyChecker(CLIPPretrainedModel):
+ config_class = CLIPVisionConfig
+
+ def __init__(self, config: CLIPVisionConfig):
+ super().__init__(config)
+ self.clip = CLIPVisionModel(config)
+
+ self.vision_projection = paddle.create_parameter(
+ (config.hidden_size, config.projection_dim), dtype=paddle.get_default_dtype()
+ )
+
+ self.register_buffer("concept_embeds", paddle.ones([17, config.projection_dim]))
+ self.register_buffer("special_care_embeds", paddle.ones([3, config.projection_dim]))
+
+ self.register_buffer("concept_embeds_weights", paddle.ones([17]))
+ self.register_buffer("special_care_embeds_weights", paddle.ones([3]))
+
+ @paddle.no_grad()
+ def forward(self, clip_input, images):
+ pooled_output = self.clip(clip_input)[1] # pooled_output
+ image_embeds = paddle.matmul(pooled_output, self.vision_projection)
+
+ # we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
+ special_cos_dist = cosine_distance(image_embeds, self.special_care_embeds).astype("float32").numpy()
+ cos_dist = cosine_distance(image_embeds, self.concept_embeds).astype("float32").numpy()
+
+ result = []
+ batch_size = image_embeds.shape[0]
+ for i in range(batch_size):
+ result_img = {"special_scores": {}, "special_care": [], "concept_scores": {}, "bad_concepts": []}
+
+ # increase this value to create a stronger `nfsw` filter
+ # at the cost of increasing the possibility of filtering benign images
+ adjustment = 0.0
+
+ for concept_idx in range(len(special_cos_dist[0])):
+ concept_cos = special_cos_dist[i][concept_idx]
+ concept_threshold = self.special_care_embeds_weights[concept_idx].item()
+ result_img["special_scores"][concept_idx] = round(concept_cos - concept_threshold + adjustment, 3)
+ if result_img["special_scores"][concept_idx] > 0:
+ result_img["special_care"].append({concept_idx, result_img["special_scores"][concept_idx]})
+ adjustment = 0.01
+
+ for concept_idx in range(len(cos_dist[0])):
+ concept_cos = cos_dist[i][concept_idx]
+ concept_threshold = self.concept_embeds_weights[concept_idx].item()
+ result_img["concept_scores"][concept_idx] = round(concept_cos - concept_threshold + adjustment, 3)
+ if result_img["concept_scores"][concept_idx] > 0:
+ result_img["bad_concepts"].append(concept_idx)
+
+ result.append(result_img)
+
+ has_nsfw_concepts = [len(res["bad_concepts"]) > 0 for res in result]
+
+ return images, has_nsfw_concepts
+
+ def forward_fastdeploy(self, clip_input: paddle.Tensor, images: paddle.Tensor):
+ pooled_output = self.clip(clip_input)[1] # pooled_output
+ image_embeds = paddle.matmul(pooled_output, self.vision_projection)
+
+ special_cos_dist = cosine_distance(image_embeds, self.special_care_embeds)
+ cos_dist = cosine_distance(image_embeds, self.concept_embeds)
+
+ # increase this value to create a stronger `nsfw` filter
+ # at the cost of increasing the possibility of filtering benign images
+ adjustment = 0.0
+
+ special_scores = special_cos_dist - self.special_care_embeds_weights + adjustment
+ # special_scores = special_scores.round(decimals=3)
+ special_care = paddle.any(special_scores > 0, axis=1)
+ special_adjustment = special_care * 0.01
+ special_adjustment = special_adjustment.unsqueeze(1).expand([-1, cos_dist.shape[1]])
+
+ concept_scores = (cos_dist - self.concept_embeds_weights) + special_adjustment
+ # concept_scores = concept_scores.round(decimals=3)
+ has_nsfw_concepts = paddle.any(concept_scores > 0, axis=1)
+
+ return images, has_nsfw_concepts
diff --git a/ppdiffusers/pipelines/stochastic_karras_ve/__init__.py b/ppdiffusers/pipelines/stochastic_karras_ve/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..38056beba33440ad094ed2819f14615d6e62d694
--- /dev/null
+++ b/ppdiffusers/pipelines/stochastic_karras_ve/__init__.py
@@ -0,0 +1,17 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+# Copyright 2022 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+# flake8: noqa
+from .pipeline_stochastic_karras_ve import KarrasVePipeline
diff --git a/ppdiffusers/pipelines/stochastic_karras_ve/__pycache__/__init__.cpython-37.pyc b/ppdiffusers/pipelines/stochastic_karras_ve/__pycache__/__init__.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..43c571fadfbedef61d3ea01465d6fc15b6ca392c
Binary files /dev/null and b/ppdiffusers/pipelines/stochastic_karras_ve/__pycache__/__init__.cpython-37.pyc differ
diff --git a/ppdiffusers/pipelines/stochastic_karras_ve/__pycache__/pipeline_stochastic_karras_ve.cpython-37.pyc b/ppdiffusers/pipelines/stochastic_karras_ve/__pycache__/pipeline_stochastic_karras_ve.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..aaf98373ee9117457924de6f379f9cc1d0de3e53
Binary files /dev/null and b/ppdiffusers/pipelines/stochastic_karras_ve/__pycache__/pipeline_stochastic_karras_ve.cpython-37.pyc differ
diff --git a/ppdiffusers/pipelines/stochastic_karras_ve/pipeline_stochastic_karras_ve.py b/ppdiffusers/pipelines/stochastic_karras_ve/pipeline_stochastic_karras_ve.py
new file mode 100644
index 0000000000000000000000000000000000000000..2efc32350fb7fe72f244c1f9f7b4cff045fef3ff
--- /dev/null
+++ b/ppdiffusers/pipelines/stochastic_karras_ve/pipeline_stochastic_karras_ve.py
@@ -0,0 +1,128 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+# Copyright 2022 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from typing import List, Optional, Tuple, Union
+
+import paddle
+
+from ...models import UNet2DModel
+from ...pipeline_utils import DiffusionPipeline, ImagePipelineOutput
+from ...schedulers import KarrasVeScheduler
+
+
+class KarrasVePipeline(DiffusionPipeline):
+ r"""
+ Stochastic sampling from Karras et al. [1] tailored to the Variance-Expanding (VE) models [2]. Use Algorithm 2 and
+ the VE column of Table 1 from [1] for reference.
+
+ [1] Karras, Tero, et al. "Elucidating the Design Space of Diffusion-Based Generative Models."
+ https://arxiv.org/abs/2206.00364 [2] Song, Yang, et al. "Score-based generative modeling through stochastic
+ differential equations." https://arxiv.org/abs/2011.13456
+
+ Parameters:
+ unet ([`UNet2DModel`]): U-Net architecture to denoise the encoded image.
+ scheduler ([`KarrasVeScheduler`]):
+ Scheduler for the diffusion process to be used in combination with `unet` to denoise the encoded image.
+ """
+
+ # add type hints for linting
+ unet: UNet2DModel
+ scheduler: KarrasVeScheduler
+
+ def __init__(self, unet: UNet2DModel, scheduler: KarrasVeScheduler):
+ super().__init__()
+ self.register_modules(unet=unet, scheduler=scheduler)
+
+ @paddle.no_grad()
+ def __call__(
+ self,
+ batch_size: int = 1,
+ num_inference_steps: int = 50,
+ generator: Optional[Union[paddle.Generator, List[paddle.Generator]]] = None,
+ output_type: Optional[str] = "pil",
+ return_dict: bool = True,
+ **kwargs,
+ ) -> Union[Tuple, ImagePipelineOutput]:
+ r"""
+ Args:
+ batch_size (`int`, *optional*, defaults to 1):
+ The number of images to generate.
+ generator (`paddle.Generator`, *optional*):
+ One or a list of paddle generator(s) to make generation deterministic.
+ num_inference_steps (`int`, *optional*, defaults to 50):
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
+ expense of slower inference.
+ output_type (`str`, *optional*, defaults to `"pil"`):
+ The output format of the generate image. Choose between
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
+ return_dict (`bool`, *optional*, defaults to `True`):
+ Whether or not to return a [`~pipeline_utils.ImagePipelineOutput`] instead of a plain tuple.
+
+ Returns:
+ [`~pipeline_utils.ImagePipelineOutput`] or `tuple`: [`~pipelines.utils.ImagePipelineOutput`] if
+ `return_dict` is True, otherwise a `tuple. When returning a tuple, the first element is a list with the
+ generated images.
+ """
+
+ img_size = self.unet.config.sample_size
+ shape = (batch_size, 3, img_size, img_size)
+
+ model = self.unet
+
+ # sample x_0 ~ N(0, sigma_0^2 * I)
+ sample = paddle.randn(shape, generator=generator) * self.scheduler.init_noise_sigma
+
+ self.scheduler.set_timesteps(num_inference_steps)
+
+ for t in self.progress_bar(self.scheduler.timesteps):
+ # here sigma_t == t_i from the paper
+ sigma = self.scheduler.schedule[t]
+ sigma_prev = self.scheduler.schedule[t - 1] if t > 0 else 0
+
+ # 1. Select temporarily increased noise level sigma_hat
+ # 2. Add new noise to move from sample_i to sample_hat
+ sample_hat, sigma_hat = self.scheduler.add_noise_to_input(sample, sigma, generator=generator)
+
+ # 3. Predict the noise residual given the noise magnitude `sigma_hat`
+ # The model inputs and output are adjusted by following eq. (213) in [1].
+ model_output = (sigma_hat / 2) * model((sample_hat + 1) / 2, sigma_hat / 2).sample
+
+ # 4. Evaluate dx/dt at sigma_hat
+ # 5. Take Euler step from sigma to sigma_prev
+ step_output = self.scheduler.step(model_output, sigma_hat, sigma_prev, sample_hat)
+
+ if sigma_prev != 0:
+ # 6. Apply 2nd order correction
+ # The model inputs and output are adjusted by following eq. (213) in [1].
+ model_output = (sigma_prev / 2) * model((step_output.prev_sample + 1) / 2, sigma_prev / 2).sample
+ step_output = self.scheduler.step_correct(
+ model_output,
+ sigma_hat,
+ sigma_prev,
+ sample_hat,
+ step_output.prev_sample,
+ step_output["derivative"],
+ )
+ sample = step_output.prev_sample
+
+ sample = (sample / 2 + 0.5).clip(0, 1)
+ image = sample.transpose([0, 2, 3, 1]).numpy()
+ if output_type == "pil":
+ image = self.numpy_to_pil(image)
+
+ if not return_dict:
+ return (image,)
+
+ return ImagePipelineOutput(images=image)
diff --git a/ppdiffusers/pipelines/unclip/__init__.py b/ppdiffusers/pipelines/unclip/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..2c842f13e3f64ab96e6d715f323fae104286cce9
--- /dev/null
+++ b/ppdiffusers/pipelines/unclip/__init__.py
@@ -0,0 +1,29 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+
+from ...utils import (
+ OptionalDependencyNotAvailable,
+ is_paddle_available,
+ is_paddlenlp_available,
+)
+
+try:
+ if not (is_paddlenlp_available() and is_paddle_available()):
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ from ...utils.dummy_paddle_and_paddlenlp_objects import UnCLIPPipeline
+else:
+ from .pipeline_unclip import UnCLIPPipeline
+ from .text_proj import UnCLIPTextProjModel
diff --git a/ppdiffusers/pipelines/unclip/__pycache__/__init__.cpython-37.pyc b/ppdiffusers/pipelines/unclip/__pycache__/__init__.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..d64ddcc7f867289a62b6ddcbb216e044f6fbc220
Binary files /dev/null and b/ppdiffusers/pipelines/unclip/__pycache__/__init__.cpython-37.pyc differ
diff --git a/ppdiffusers/pipelines/unclip/__pycache__/pipeline_unclip.cpython-37.pyc b/ppdiffusers/pipelines/unclip/__pycache__/pipeline_unclip.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..e1f4850a36e2e4119662eb36b8b2201e3a584374
Binary files /dev/null and b/ppdiffusers/pipelines/unclip/__pycache__/pipeline_unclip.cpython-37.pyc differ
diff --git a/ppdiffusers/pipelines/unclip/__pycache__/text_proj.cpython-37.pyc b/ppdiffusers/pipelines/unclip/__pycache__/text_proj.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..058a05c0ede50ab423441404616f1543f11bfcc6
Binary files /dev/null and b/ppdiffusers/pipelines/unclip/__pycache__/text_proj.cpython-37.pyc differ
diff --git a/ppdiffusers/pipelines/unclip/pipeline_unclip.py b/ppdiffusers/pipelines/unclip/pipeline_unclip.py
new file mode 100644
index 0000000000000000000000000000000000000000..022057a96c9c328c343ca3d6443f91e500e909d5
--- /dev/null
+++ b/ppdiffusers/pipelines/unclip/pipeline_unclip.py
@@ -0,0 +1,476 @@
+# Copyright 2022 Kakao Brain and The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import inspect
+from typing import List, Optional, Union
+
+import paddle
+import paddle.nn.functional as F
+
+from paddlenlp.transformers import CLIPTextModelWithProjection, CLIPTokenizer
+
+from ...models import PriorTransformer, UNet2DConditionModel, UNet2DModel
+from ...pipeline_utils import DiffusionPipeline, ImagePipelineOutput
+from ...schedulers import UnCLIPScheduler
+from ...utils import logging
+from .text_proj import UnCLIPTextProjModel
+
+logger = logging.get_logger(__name__) # pylint: disable=invalid-name
+
+
+class UnCLIPPipeline(DiffusionPipeline):
+ """
+ Pipeline for text-to-image generation using unCLIP
+
+ This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
+ library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
+
+ Args:
+ text_encoder ([`CLIPTextModelWithProjection`]):
+ Frozen text-encoder.
+ tokenizer (`CLIPTokenizer`):
+ Tokenizer of class
+ [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
+ prior ([`PriorTransformer`]):
+ The canonincal unCLIP prior to approximate the image embedding from the text embedding.
+ decoder ([`UNet2DConditionModel`]):
+ The decoder to invert the image embedding into an image.
+ super_res_first ([`UNet2DModel`]):
+ Super resolution unet. Used in all but the last step of the super resolution diffusion process.
+ super_res_last ([`UNet2DModel`]):
+ Super resolution unet. Used in the last step of the super resolution diffusion process.
+ prior_scheduler ([`UnCLIPScheduler`]):
+ Scheduler used in the prior denoising process. Just a modified DDPMScheduler.
+ decoder_scheduler ([`UnCLIPScheduler`]):
+ Scheduler used in the decoder denoising process. Just a modified DDPMScheduler.
+ super_res_scheduler ([`UnCLIPScheduler`]):
+ Scheduler used in the super resolution denoising process. Just a modified DDPMScheduler.
+
+ """
+
+ prior: PriorTransformer
+ decoder: UNet2DConditionModel
+ text_proj: UnCLIPTextProjModel
+ text_encoder: CLIPTextModelWithProjection
+ tokenizer: CLIPTokenizer
+ super_res_first: UNet2DModel
+ super_res_last: UNet2DModel
+
+ prior_scheduler: UnCLIPScheduler
+ decoder_scheduler: UnCLIPScheduler
+ super_res_scheduler: UnCLIPScheduler
+
+ def __init__(
+ self,
+ prior: PriorTransformer,
+ decoder: UNet2DConditionModel,
+ text_encoder: CLIPTextModelWithProjection,
+ tokenizer: CLIPTokenizer,
+ text_proj: UnCLIPTextProjModel,
+ super_res_first: UNet2DModel,
+ super_res_last: UNet2DModel,
+ prior_scheduler: UnCLIPScheduler,
+ decoder_scheduler: UnCLIPScheduler,
+ super_res_scheduler: UnCLIPScheduler,
+ ):
+ super().__init__()
+
+ self.register_modules(
+ prior=prior,
+ decoder=decoder,
+ text_encoder=text_encoder,
+ tokenizer=tokenizer,
+ text_proj=text_proj,
+ super_res_first=super_res_first,
+ super_res_last=super_res_last,
+ prior_scheduler=prior_scheduler,
+ decoder_scheduler=decoder_scheduler,
+ super_res_scheduler=super_res_scheduler,
+ )
+
+ def prepare_latents(self, shape, dtype, generator, latents, scheduler):
+ batch_size = shape[0]
+ if isinstance(generator, list) and len(generator) != batch_size:
+ raise ValueError(
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
+ )
+
+ if latents is None:
+ if isinstance(generator, list):
+ shape = [
+ 1,
+ ] + shape[1:]
+ latents = [paddle.randn(shape, generator=generator[i], dtype=dtype) for i in range(batch_size)]
+ latents = paddle.concat(latents, axis=0)
+ else:
+ latents = paddle.randn(shape, generator=generator, dtype=dtype)
+ else:
+ if latents.shape != shape:
+ raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}")
+
+ # scale the initial noise by the standard deviation required by the scheduler
+ latents = latents * scheduler.init_noise_sigma
+ return latents
+
+ def _encode_prompt(self, prompt, num_images_per_prompt, do_classifier_free_guidance):
+ batch_size = len(prompt) if isinstance(prompt, list) else 1
+
+ # get prompt text embeddings
+ text_inputs = self.tokenizer(
+ prompt,
+ padding="max_length",
+ max_length=self.tokenizer.model_max_length,
+ return_tensors="pd",
+ return_attention_mask=True,
+ )
+ text_input_ids = text_inputs.input_ids
+ text_mask = text_inputs.attention_mask
+
+ if text_input_ids.shape[-1] > self.tokenizer.model_max_length:
+ removed_text = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :])
+ logger.warning(
+ "The following part of your input was truncated because CLIP can only handle sequences up to"
+ f" {self.tokenizer.model_max_length} tokens: {removed_text}"
+ )
+ text_input_ids = text_input_ids[:, : self.tokenizer.model_max_length]
+
+ text_encoder_output = self.text_encoder(text_input_ids)
+
+ text_embeddings = text_encoder_output.text_embeds
+ text_encoder_hidden_states = text_encoder_output.last_hidden_state
+
+ # duplicate text embeddings for each generation per prompt
+ seq_len = text_embeddings.shape[1]
+ text_embeddings = text_embeddings.tile([1, num_images_per_prompt])
+ text_embeddings = text_embeddings.reshape([batch_size * num_images_per_prompt, seq_len])
+
+ # duplicate text_encoder_hidden_states for each generation per prompt
+ seq_len = text_encoder_hidden_states.shape[1]
+ text_encoder_hidden_states = text_encoder_hidden_states.tile([1, num_images_per_prompt, 1])
+ text_encoder_hidden_states = text_encoder_hidden_states.reshape(
+ [batch_size * num_images_per_prompt, seq_len, -1]
+ )
+
+ # duplicate text_mask for each generation per prompt
+ seq_len = text_mask.shape[1]
+ text_mask = text_mask.tile([1, num_images_per_prompt])
+ text_mask = text_mask.reshape([batch_size * num_images_per_prompt, seq_len])
+
+ if do_classifier_free_guidance:
+ uncond_tokens = [""] * batch_size
+
+ max_length = text_input_ids.shape[-1]
+ uncond_input = self.tokenizer(
+ uncond_tokens,
+ padding="max_length",
+ max_length=max_length,
+ truncation=True,
+ return_tensors="pd",
+ return_attention_mask=True,
+ )
+ uncond_text_mask = uncond_input.attention_mask
+ uncond_embeddings_text_encoder_output = self.text_encoder(uncond_input.input_ids)
+
+ uncond_embeddings = uncond_embeddings_text_encoder_output.text_embeds
+ uncond_text_encoder_hidden_states = uncond_embeddings_text_encoder_output.last_hidden_state
+
+ # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
+
+ seq_len = uncond_embeddings.shape[1]
+ uncond_embeddings = uncond_embeddings.tile([1, num_images_per_prompt])
+ uncond_embeddings = uncond_embeddings.reshape([batch_size * num_images_per_prompt, seq_len])
+
+ seq_len = uncond_text_encoder_hidden_states.shape[1]
+ uncond_text_encoder_hidden_states = uncond_text_encoder_hidden_states.tile([1, num_images_per_prompt, 1])
+ uncond_text_encoder_hidden_states = uncond_text_encoder_hidden_states.reshape(
+ [batch_size * num_images_per_prompt, seq_len, -1]
+ )
+
+ # duplicate uncond_text_mask for each generation per prompt
+ seq_len = uncond_text_mask.shape[1]
+ uncond_text_mask = uncond_text_mask.tile([1, num_images_per_prompt])
+ uncond_text_mask = uncond_text_mask.reshape([batch_size * num_images_per_prompt, seq_len])
+
+ # For classifier free guidance, we need to do two forward passes.
+ # Here we concatenate the unconditional and text embeddings into a single batch
+ # to avoid doing two forward passes
+ text_embeddings = paddle.concat([uncond_embeddings, text_embeddings])
+ text_encoder_hidden_states = paddle.concat([uncond_text_encoder_hidden_states, text_encoder_hidden_states])
+
+ text_mask = paddle.concat([uncond_text_mask, text_mask])
+
+ return text_embeddings, text_encoder_hidden_states, text_mask
+
+ @paddle.no_grad()
+ def __call__(
+ self,
+ prompt: Union[str, List[str]],
+ num_images_per_prompt: int = 1,
+ prior_num_inference_steps: int = 25,
+ decoder_num_inference_steps: int = 25,
+ super_res_num_inference_steps: int = 7,
+ generator: Optional[Union[paddle.Generator, List[paddle.Generator]]] = None,
+ prior_latents: Optional[paddle.Tensor] = None,
+ decoder_latents: Optional[paddle.Tensor] = None,
+ super_res_latents: Optional[paddle.Tensor] = None,
+ prior_guidance_scale: float = 4.0,
+ decoder_guidance_scale: float = 8.0,
+ output_type: Optional[str] = "pil",
+ return_dict: bool = True,
+ ):
+ """
+ Function invoked when calling the pipeline for generation.
+
+ Args:
+ prompt (`str` or `List[str]`):
+ The prompt or prompts to guide the image generation.
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
+ The number of images to generate per prompt.
+ prior_num_inference_steps (`int`, *optional*, defaults to 25):
+ The number of denoising steps for the prior. More denoising steps usually lead to a higher quality
+ image at the expense of slower inference.
+ decoder_num_inference_steps (`int`, *optional*, defaults to 25):
+ The number of denoising steps for the decoder. More denoising steps usually lead to a higher quality
+ image at the expense of slower inference.
+ super_res_num_inference_steps (`int`, *optional*, defaults to 7):
+ The number of denoising steps for super resolution. More denoising steps usually lead to a higher
+ quality image at the expense of slower inference.
+ generator (`paddle.Generator`, *optional*):
+ One or a list of paddle generator(s) to make generation deterministic.
+ prior_latents (`paddle.Tensor` of shape (batch size, embeddings dimension), *optional*):
+ Pre-generated noisy latents to be used as inputs for the prior.
+ decoder_latents (`paddle.Tensor` of shape (batch size, channels, height, width), *optional*):
+ Pre-generated noisy latents to be used as inputs for the decoder.
+ super_res_latents (`paddle.Tensor` of shape (batch size, channels, super res height, super res width), *optional*):
+ Pre-generated noisy latents to be used as inputs for the decoder.
+ prior_guidance_scale (`float`, *optional*, defaults to 4.0):
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
+ usually at the expense of lower image quality.
+ decoder_guidance_scale (`float`, *optional*, defaults to 4.0):
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
+ usually at the expense of lower image quality.
+ output_type (`str`, *optional*, defaults to `"pil"`):
+ The output format of the generated image. Choose between
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
+ return_dict (`bool`, *optional*, defaults to `True`):
+ Whether or not to return a [`~pipeline_utils.ImagePipelineOutput`] instead of a plain tuple.
+ """
+ if isinstance(prompt, str):
+ batch_size = 1
+ elif isinstance(prompt, list):
+ batch_size = len(prompt)
+ else:
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
+
+ batch_size = batch_size * num_images_per_prompt
+
+ do_classifier_free_guidance = prior_guidance_scale > 1.0 or decoder_guidance_scale > 1.0
+
+ text_embeddings, text_encoder_hidden_states, text_mask = self._encode_prompt(
+ prompt, num_images_per_prompt, do_classifier_free_guidance
+ )
+
+ # prior
+
+ self.prior_scheduler.set_timesteps(prior_num_inference_steps)
+ prior_timesteps_tensor = self.prior_scheduler.timesteps
+
+ embedding_dim = self.prior.config.embedding_dim
+ prior_latents = self.prepare_latents(
+ (batch_size, embedding_dim),
+ text_embeddings.dtype,
+ generator,
+ prior_latents,
+ self.prior_scheduler,
+ )
+
+ for i, t in enumerate(self.progress_bar(prior_timesteps_tensor)):
+ # expand the latents if we are doing classifier free guidance
+ latent_model_input = paddle.concat([prior_latents] * 2) if do_classifier_free_guidance else prior_latents
+
+ predicted_image_embedding = self.prior(
+ latent_model_input,
+ timestep=t,
+ proj_embedding=text_embeddings,
+ encoder_hidden_states=text_encoder_hidden_states,
+ attention_mask=text_mask,
+ ).predicted_image_embedding
+
+ if do_classifier_free_guidance:
+ predicted_image_embedding_uncond, predicted_image_embedding_text = predicted_image_embedding.chunk(2)
+ predicted_image_embedding = predicted_image_embedding_uncond + prior_guidance_scale * (
+ predicted_image_embedding_text - predicted_image_embedding_uncond
+ )
+
+ if i + 1 == prior_timesteps_tensor.shape[0]:
+ prev_timestep = None
+ else:
+ prev_timestep = prior_timesteps_tensor[i + 1]
+
+ prior_latents = self.prior_scheduler.step(
+ predicted_image_embedding,
+ timestep=t,
+ sample=prior_latents,
+ generator=generator,
+ prev_timestep=prev_timestep,
+ ).prev_sample
+
+ prior_latents = self.prior.post_process_latents(prior_latents)
+
+ image_embeddings = prior_latents
+
+ # done prior
+
+ # decoder
+
+ text_encoder_hidden_states, additive_clip_time_embeddings = self.text_proj(
+ image_embeddings=image_embeddings,
+ text_embeddings=text_embeddings,
+ text_encoder_hidden_states=text_encoder_hidden_states,
+ do_classifier_free_guidance=do_classifier_free_guidance,
+ )
+
+ decoder_text_mask = F.pad(
+ text_mask.unsqueeze(0), (self.text_proj.clip_extra_context_tokens, 0), value=1, data_format="NCL"
+ ).squeeze(0)
+
+ self.decoder_scheduler.set_timesteps(decoder_num_inference_steps)
+ decoder_timesteps_tensor = self.decoder_scheduler.timesteps
+
+ num_channels_latents = self.decoder.in_channels
+ height = self.decoder.sample_size
+ width = self.decoder.sample_size
+ decoder_latents = self.prepare_latents(
+ (batch_size, num_channels_latents, height, width),
+ text_encoder_hidden_states.dtype,
+ generator,
+ decoder_latents,
+ self.decoder_scheduler,
+ )
+
+ for i, t in enumerate(self.progress_bar(decoder_timesteps_tensor)):
+ # expand the latents if we are doing classifier free guidance
+ latent_model_input = (
+ paddle.concat([decoder_latents] * 2) if do_classifier_free_guidance else decoder_latents
+ )
+
+ noise_pred = self.decoder(
+ sample=latent_model_input,
+ timestep=t,
+ encoder_hidden_states=text_encoder_hidden_states,
+ class_labels=additive_clip_time_embeddings,
+ attention_mask=decoder_text_mask,
+ ).sample
+
+ if do_classifier_free_guidance:
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
+ # paddle.split is not equal torch.split
+ noise_pred_uncond, _ = noise_pred_uncond.split(
+ [latent_model_input.shape[1], noise_pred_uncond.shape[1] - latent_model_input.shape[1]], axis=1
+ )
+ noise_pred_text, predicted_variance = noise_pred_text.split(
+ [latent_model_input.shape[1], noise_pred_text.shape[1] - latent_model_input.shape[1]], axis=1
+ )
+ noise_pred = noise_pred_uncond + decoder_guidance_scale * (noise_pred_text - noise_pred_uncond)
+ noise_pred = paddle.concat([noise_pred, predicted_variance], axis=1)
+
+ if i + 1 == decoder_timesteps_tensor.shape[0]:
+ prev_timestep = None
+ else:
+ prev_timestep = decoder_timesteps_tensor[i + 1]
+
+ # compute the previous noisy sample x_t -> x_t-1
+ decoder_latents = self.decoder_scheduler.step(
+ noise_pred, t, decoder_latents, prev_timestep=prev_timestep, generator=generator
+ ).prev_sample
+
+ decoder_latents = decoder_latents.clip(-1, 1)
+
+ image_small = decoder_latents
+
+ # done decoder
+
+ # super res
+
+ self.super_res_scheduler.set_timesteps(super_res_num_inference_steps)
+ super_res_timesteps_tensor = self.super_res_scheduler.timesteps
+
+ channels = self.super_res_first.in_channels // 2
+ height = self.super_res_first.sample_size
+ width = self.super_res_first.sample_size
+ super_res_latents = self.prepare_latents(
+ (batch_size, channels, height, width),
+ image_small.dtype,
+ generator,
+ super_res_latents,
+ self.super_res_scheduler,
+ )
+
+ interpolate_antialias = {}
+ if "antialias" in inspect.signature(F.interpolate).parameters:
+ interpolate_antialias["antialias"] = True
+
+ image_upscaled = F.interpolate(
+ image_small, size=[height, width], mode="bicubic", align_corners=False, **interpolate_antialias
+ )
+
+ for i, t in enumerate(self.progress_bar(super_res_timesteps_tensor)):
+ # no classifier free guidance
+
+ if i == super_res_timesteps_tensor.shape[0] - 1:
+ unet = self.super_res_last
+ else:
+ unet = self.super_res_first
+
+ latent_model_input = paddle.concat([super_res_latents, image_upscaled], axis=1)
+
+ noise_pred = unet(
+ sample=latent_model_input,
+ timestep=t,
+ ).sample
+
+ if i + 1 == super_res_timesteps_tensor.shape[0]:
+ prev_timestep = None
+ else:
+ prev_timestep = super_res_timesteps_tensor[i + 1]
+
+ # compute the previous noisy sample x_t -> x_t-1
+ super_res_latents = self.super_res_scheduler.step(
+ noise_pred, t, super_res_latents, prev_timestep=prev_timestep, generator=generator
+ ).prev_sample
+
+ image = super_res_latents
+
+ # done super res
+
+ # post processing
+
+ image = image * 0.5 + 0.5
+ image = image.clip(0, 1)
+ image = image.transpose([0, 2, 3, 1]).cast("float32").numpy()
+
+ if output_type == "pil":
+ image = self.numpy_to_pil(image)
+
+ if not return_dict:
+ return (image,)
+
+ return ImagePipelineOutput(images=image)
diff --git a/ppdiffusers/pipelines/unclip/text_proj.py b/ppdiffusers/pipelines/unclip/text_proj.py
new file mode 100644
index 0000000000000000000000000000000000000000..174c70ec686dbc139c1fac30ac4df2b7424875d4
--- /dev/null
+++ b/ppdiffusers/pipelines/unclip/text_proj.py
@@ -0,0 +1,88 @@
+# Copyright 2022 Kakao Brain and The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import paddle
+from paddle import nn
+
+from ...configuration_utils import ConfigMixin, register_to_config
+from ...modeling_utils import ModelMixin
+
+
+class UnCLIPTextProjModel(ModelMixin, ConfigMixin):
+ """
+ Utility class for CLIP embeddings. Used to combine the image and text embeddings into a format usable by the
+ decoder.
+
+ For more details, see the original paper: https://arxiv.org/abs/2204.06125 section 2.1
+ """
+
+ @register_to_config
+ def __init__(
+ self,
+ *,
+ clip_extra_context_tokens: int = 4,
+ clip_embeddings_dim: int = 768,
+ time_embed_dim: int,
+ cross_attention_dim,
+ ):
+ super().__init__()
+
+ self.learned_classifier_free_guidance_embeddings = self.create_parameter(
+ (clip_embeddings_dim,), dtype=paddle.get_default_dtype(), default_initializer=nn.initializer.Constant(0.0)
+ )
+
+ # parameters for additional clip time embeddings
+ self.embedding_proj = nn.Linear(clip_embeddings_dim, time_embed_dim)
+ self.clip_image_embeddings_project_to_time_embeddings = nn.Linear(clip_embeddings_dim, time_embed_dim)
+
+ # parameters for encoder hidden states
+ self.clip_extra_context_tokens = clip_extra_context_tokens
+ self.clip_extra_context_tokens_proj = nn.Linear(
+ clip_embeddings_dim, self.clip_extra_context_tokens * cross_attention_dim
+ )
+ self.encoder_hidden_states_proj = nn.Linear(clip_embeddings_dim, cross_attention_dim)
+ self.text_encoder_hidden_states_norm = nn.LayerNorm(cross_attention_dim)
+
+ def forward(self, *, image_embeddings, text_embeddings, text_encoder_hidden_states, do_classifier_free_guidance):
+ if do_classifier_free_guidance:
+ # Add the classifier free guidance embeddings to the image embeddings
+ image_embeddings_batch_size = image_embeddings.shape[0]
+ classifier_free_guidance_embeddings = self.learned_classifier_free_guidance_embeddings.unsqueeze(0)
+ classifier_free_guidance_embeddings = classifier_free_guidance_embeddings.expand(
+ [image_embeddings_batch_size, -1]
+ )
+ image_embeddings = paddle.concat([classifier_free_guidance_embeddings, image_embeddings], axis=0)
+
+ # The image embeddings batch size and the text embeddings batch size are equal
+ assert image_embeddings.shape[0] == text_embeddings.shape[0]
+
+ batch_size = text_embeddings.shape[0]
+
+ # "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and
+ # adding CLIP embeddings to the existing timestep embedding, ...
+ time_projected_text_embeddings = self.embedding_proj(text_embeddings)
+ time_projected_image_embeddings = self.clip_image_embeddings_project_to_time_embeddings(image_embeddings)
+ additive_clip_time_embeddings = time_projected_image_embeddings + time_projected_text_embeddings
+
+ # ... and by projecting CLIP embeddings into four
+ # extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder"
+ clip_extra_context_tokens = self.clip_extra_context_tokens_proj(image_embeddings)
+ clip_extra_context_tokens = clip_extra_context_tokens.reshape([batch_size, -1, self.clip_extra_context_tokens])
+
+ text_encoder_hidden_states = self.encoder_hidden_states_proj(text_encoder_hidden_states)
+ text_encoder_hidden_states = self.text_encoder_hidden_states_norm(text_encoder_hidden_states)
+ text_encoder_hidden_states = text_encoder_hidden_states.transpose([0, 2, 1])
+ text_encoder_hidden_states = paddle.concat([clip_extra_context_tokens, text_encoder_hidden_states], axis=2)
+
+ return text_encoder_hidden_states, additive_clip_time_embeddings
diff --git a/ppdiffusers/pipelines/versatile_diffusion/__init__.py b/ppdiffusers/pipelines/versatile_diffusion/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..309b32b2d1129f07c0643c6cd1e7e0071ccf2045
--- /dev/null
+++ b/ppdiffusers/pipelines/versatile_diffusion/__init__.py
@@ -0,0 +1,43 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+# flake8: noqa
+
+from ...utils import (
+ OptionalDependencyNotAvailable,
+ is_paddle_available,
+ is_paddlenlp_available,
+)
+
+try:
+ if not (is_paddlenlp_available() and is_paddle_available()):
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ from ...utils.dummy_paddle_and_paddlenlp_objects import (
+ VersatileDiffusionDualGuidedPipeline,
+ VersatileDiffusionImageVariationPipeline,
+ VersatileDiffusionPipeline,
+ VersatileDiffusionTextToImagePipeline,
+ )
+else:
+ from .modeling_text_unet import UNetFlatConditionModel
+ from .pipeline_versatile_diffusion import VersatileDiffusionPipeline
+ from .pipeline_versatile_diffusion_dual_guided import (
+ VersatileDiffusionDualGuidedPipeline,
+ )
+ from .pipeline_versatile_diffusion_image_variation import (
+ VersatileDiffusionImageVariationPipeline,
+ )
+ from .pipeline_versatile_diffusion_text_to_image import (
+ VersatileDiffusionTextToImagePipeline,
+ )
diff --git a/ppdiffusers/pipelines/versatile_diffusion/__pycache__/__init__.cpython-37.pyc b/ppdiffusers/pipelines/versatile_diffusion/__pycache__/__init__.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..9988c1f09e7ec4a4acc2428b592dd99642fcbefb
Binary files /dev/null and b/ppdiffusers/pipelines/versatile_diffusion/__pycache__/__init__.cpython-37.pyc differ
diff --git a/ppdiffusers/pipelines/versatile_diffusion/__pycache__/modeling_text_unet.cpython-37.pyc b/ppdiffusers/pipelines/versatile_diffusion/__pycache__/modeling_text_unet.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..a2f6477dacbc11a6c144370fcb009130c2af14f3
Binary files /dev/null and b/ppdiffusers/pipelines/versatile_diffusion/__pycache__/modeling_text_unet.cpython-37.pyc differ
diff --git a/ppdiffusers/pipelines/versatile_diffusion/__pycache__/pipeline_versatile_diffusion.cpython-37.pyc b/ppdiffusers/pipelines/versatile_diffusion/__pycache__/pipeline_versatile_diffusion.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..c724aaad0b9dea878479f99db87eeb6dd00daeb7
Binary files /dev/null and b/ppdiffusers/pipelines/versatile_diffusion/__pycache__/pipeline_versatile_diffusion.cpython-37.pyc differ
diff --git a/ppdiffusers/pipelines/versatile_diffusion/__pycache__/pipeline_versatile_diffusion_dual_guided.cpython-37.pyc b/ppdiffusers/pipelines/versatile_diffusion/__pycache__/pipeline_versatile_diffusion_dual_guided.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..2c9bc2bd366f1792f05d8f76d075a2fd07e0156b
Binary files /dev/null and b/ppdiffusers/pipelines/versatile_diffusion/__pycache__/pipeline_versatile_diffusion_dual_guided.cpython-37.pyc differ
diff --git a/ppdiffusers/pipelines/versatile_diffusion/__pycache__/pipeline_versatile_diffusion_image_variation.cpython-37.pyc b/ppdiffusers/pipelines/versatile_diffusion/__pycache__/pipeline_versatile_diffusion_image_variation.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..b562b934e5991766f3ca92d7a58e902fe280faa3
Binary files /dev/null and b/ppdiffusers/pipelines/versatile_diffusion/__pycache__/pipeline_versatile_diffusion_image_variation.cpython-37.pyc differ
diff --git a/ppdiffusers/pipelines/versatile_diffusion/__pycache__/pipeline_versatile_diffusion_text_to_image.cpython-37.pyc b/ppdiffusers/pipelines/versatile_diffusion/__pycache__/pipeline_versatile_diffusion_text_to_image.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..fb1f7b94d47e7d88d18cb25d6939b5c65f7d6d35
Binary files /dev/null and b/ppdiffusers/pipelines/versatile_diffusion/__pycache__/pipeline_versatile_diffusion_text_to_image.cpython-37.pyc differ
diff --git a/ppdiffusers/pipelines/versatile_diffusion/modeling_text_unet.py b/ppdiffusers/pipelines/versatile_diffusion/modeling_text_unet.py
new file mode 100644
index 0000000000000000000000000000000000000000..74a4d89cf0576f921ce6b0a075e00d995c7dad7b
--- /dev/null
+++ b/ppdiffusers/pipelines/versatile_diffusion/modeling_text_unet.py
@@ -0,0 +1,1366 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from typing import Any, Dict, List, Optional, Tuple, Union
+
+import numpy as np
+import paddle
+import paddle.nn as nn
+from paddle.distributed.fleet.utils import recompute
+
+from ...configuration_utils import ConfigMixin, register_to_config
+from ...modeling_utils import ModelMixin
+from ...models.attention import DualTransformer2DModel, Transformer2DModel
+from ...models.cross_attention import (
+ AttnProcessor,
+ CrossAttention,
+ CrossAttnAddedKVProcessor,
+)
+from ...models.embeddings import TimestepEmbedding, Timesteps
+from ...models.unet_2d_condition import UNet2DConditionOutput
+from ...utils import logging
+
+logger = logging.get_logger(__name__) # pylint: disable=invalid-name
+
+
+def get_down_block(
+ down_block_type,
+ num_layers,
+ in_channels,
+ out_channels,
+ temb_channels,
+ add_downsample,
+ resnet_eps,
+ resnet_act_fn,
+ attn_num_head_channels,
+ resnet_groups=None,
+ cross_attention_dim=None,
+ downsample_padding=None,
+ dual_cross_attention=False,
+ use_linear_projection=False,
+ only_cross_attention=False,
+ upcast_attention=False,
+ resnet_time_scale_shift="default",
+):
+ down_block_type = down_block_type[7:] if down_block_type.startswith("UNetRes") else down_block_type
+ if down_block_type == "DownBlockFlat":
+ return DownBlockFlat(
+ num_layers=num_layers,
+ in_channels=in_channels,
+ out_channels=out_channels,
+ temb_channels=temb_channels,
+ add_downsample=add_downsample,
+ resnet_eps=resnet_eps,
+ resnet_act_fn=resnet_act_fn,
+ resnet_groups=resnet_groups,
+ downsample_padding=downsample_padding,
+ resnet_time_scale_shift=resnet_time_scale_shift,
+ )
+ elif down_block_type == "CrossAttnDownBlockFlat":
+ if cross_attention_dim is None:
+ raise ValueError("cross_attention_dim must be specified for CrossAttnDownBlockFlat")
+ return CrossAttnDownBlockFlat(
+ num_layers=num_layers,
+ in_channels=in_channels,
+ out_channels=out_channels,
+ temb_channels=temb_channels,
+ add_downsample=add_downsample,
+ resnet_eps=resnet_eps,
+ resnet_act_fn=resnet_act_fn,
+ resnet_groups=resnet_groups,
+ downsample_padding=downsample_padding,
+ cross_attention_dim=cross_attention_dim,
+ attn_num_head_channels=attn_num_head_channels,
+ dual_cross_attention=dual_cross_attention,
+ use_linear_projection=use_linear_projection,
+ only_cross_attention=only_cross_attention,
+ resnet_time_scale_shift=resnet_time_scale_shift,
+ )
+ raise ValueError(f"{down_block_type} is not supported.")
+
+
+def get_up_block(
+ up_block_type,
+ num_layers,
+ in_channels,
+ out_channels,
+ prev_output_channel,
+ temb_channels,
+ add_upsample,
+ resnet_eps,
+ resnet_act_fn,
+ attn_num_head_channels,
+ resnet_groups=None,
+ cross_attention_dim=None,
+ dual_cross_attention=False,
+ use_linear_projection=False,
+ only_cross_attention=False,
+ upcast_attention=False,
+ resnet_time_scale_shift="default",
+):
+ up_block_type = up_block_type[7:] if up_block_type.startswith("UNetRes") else up_block_type
+ if up_block_type == "UpBlockFlat":
+ return UpBlockFlat(
+ num_layers=num_layers,
+ in_channels=in_channels,
+ out_channels=out_channels,
+ prev_output_channel=prev_output_channel,
+ temb_channels=temb_channels,
+ add_upsample=add_upsample,
+ resnet_eps=resnet_eps,
+ resnet_act_fn=resnet_act_fn,
+ resnet_groups=resnet_groups,
+ resnet_time_scale_shift=resnet_time_scale_shift,
+ )
+ elif up_block_type == "CrossAttnUpBlockFlat":
+ if cross_attention_dim is None:
+ raise ValueError("cross_attention_dim must be specified for CrossAttnUpBlockFlat")
+ return CrossAttnUpBlockFlat(
+ num_layers=num_layers,
+ in_channels=in_channels,
+ out_channels=out_channels,
+ prev_output_channel=prev_output_channel,
+ temb_channels=temb_channels,
+ add_upsample=add_upsample,
+ resnet_eps=resnet_eps,
+ resnet_act_fn=resnet_act_fn,
+ resnet_groups=resnet_groups,
+ cross_attention_dim=cross_attention_dim,
+ attn_num_head_channels=attn_num_head_channels,
+ dual_cross_attention=dual_cross_attention,
+ use_linear_projection=use_linear_projection,
+ only_cross_attention=only_cross_attention,
+ resnet_time_scale_shift=resnet_time_scale_shift,
+ )
+ raise ValueError(f"{up_block_type} is not supported.")
+
+
+# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel with UNet2DConditionModel->UNetFlatConditionModel, nn.Conv2d->LinearMultiDim, Block2D->BlockFlat
+class UNetFlatConditionModel(ModelMixin, ConfigMixin):
+ r"""
+ UNetFlatConditionModel is a conditional 2D UNet model that takes in a noisy sample, conditional state, and a
+ timestep and returns sample shaped output.
+
+ This model inherits from [`ModelMixin`]. Check the superclass documentation for the generic methods the library
+ implements for all the models (such as downloading or saving, etc.)
+
+ Parameters:
+ sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`):
+ Height and width of input/output sample.
+ in_channels (`int`, *optional*, defaults to 4): The number of channels in the input sample.
+ out_channels (`int`, *optional*, defaults to 4): The number of channels in the output.
+ center_input_sample (`bool`, *optional*, defaults to `False`): Whether to center the input sample.
+ flip_sin_to_cos (`bool`, *optional*, defaults to `False`):
+ Whether to flip the sin to cos in the time embedding.
+ freq_shift (`int`, *optional*, defaults to 0): The frequency shift to apply to the time embedding.
+ down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlockFlat", "CrossAttnDownBlockFlat", "CrossAttnDownBlockFlat", "DownBlockFlat")`):
+ The tuple of downsample blocks to use.
+ mid_block_type (`str`, *optional*, defaults to `"UNetMidBlockFlatCrossAttn"`):
+ The mid block type. Choose from `UNetMidBlockFlatCrossAttn` or `UNetMidBlockFlatSimpleCrossAttn`.
+ up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlockFlat", "CrossAttnUpBlockFlat", "CrossAttnUpBlockFlat", "CrossAttnUpBlockFlat",)`):
+ The tuple of upsample blocks to use.
+ block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`):
+ The tuple of output channels for each block.
+ layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block.
+ downsample_padding (`int`, *optional*, defaults to 1): The padding to use for the downsampling convolution.
+ mid_block_scale_factor (`float`, *optional*, defaults to 1.0): The scale factor to use for the mid block.
+ act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
+ norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for the normalization.
+ norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon to use for the normalization.
+ cross_attention_dim (`int`, *optional*, defaults to 1280): The dimension of the cross attention features.
+ attention_head_dim (`int`, *optional*, defaults to 8): The dimension of the attention heads.
+ resnet_time_scale_shift (`str`, *optional*, defaults to `"default"`): Time scale shift config
+ for resnet blocks, see [`~models.resnet.ResnetBlockFlat`]. Choose from `default` or `scale_shift`.
+ class_embed_type (`str`, *optional*, defaults to None): The type of class embedding to use which is ultimately
+ summed with the time embeddings. Choose from `None`, `"timestep"`, or `"identity"`.
+ """
+
+ _supports_gradient_checkpointing = True
+
+ @register_to_config
+ def __init__(
+ self,
+ sample_size: Optional[int] = None,
+ in_channels: int = 4,
+ out_channels: int = 4,
+ center_input_sample: bool = False,
+ flip_sin_to_cos: bool = True,
+ freq_shift: int = 0,
+ down_block_types: Tuple[str] = (
+ "CrossAttnDownBlockFlat",
+ "CrossAttnDownBlockFlat",
+ "CrossAttnDownBlockFlat",
+ "DownBlockFlat",
+ ),
+ mid_block_type: str = "UNetMidBlockFlatCrossAttn",
+ up_block_types: Tuple[str] = (
+ "UpBlockFlat",
+ "CrossAttnUpBlockFlat",
+ "CrossAttnUpBlockFlat",
+ "CrossAttnUpBlockFlat",
+ ),
+ only_cross_attention: Union[bool, Tuple[bool]] = False,
+ block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
+ layers_per_block: int = 2,
+ downsample_padding: int = 1,
+ mid_block_scale_factor: float = 1,
+ act_fn: str = "silu",
+ norm_num_groups: int = 32,
+ norm_eps: float = 1e-5,
+ cross_attention_dim: int = 1280,
+ attention_head_dim: Union[int, Tuple[int]] = 8,
+ dual_cross_attention: bool = False,
+ use_linear_projection: bool = False,
+ class_embed_type: Optional[str] = None,
+ num_class_embeds: Optional[int] = None,
+ upcast_attention: bool = False,
+ resnet_time_scale_shift: str = "default",
+ ):
+ super().__init__()
+
+ self.sample_size = sample_size
+ time_embed_dim = block_out_channels[0] * 4
+
+ # input
+ self.conv_in = LinearMultiDim(in_channels, block_out_channels[0], kernel_size=3, padding=(1, 1))
+
+ # time
+ self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
+ timestep_input_dim = block_out_channels[0]
+
+ self.time_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
+
+ # class embedding
+ if class_embed_type is None and num_class_embeds is not None:
+ self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
+ elif class_embed_type == "timestep":
+ self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
+ elif class_embed_type == "identity":
+ self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
+ else:
+ self.class_embedding = None
+
+ self.down_blocks = nn.LayerList([])
+ self.mid_block = None
+ self.up_blocks = nn.LayerList([])
+
+ if isinstance(only_cross_attention, bool):
+ only_cross_attention = [only_cross_attention] * len(down_block_types)
+
+ if isinstance(attention_head_dim, int):
+ attention_head_dim = (attention_head_dim,) * len(down_block_types)
+
+ # down
+ output_channel = block_out_channels[0]
+ for i, down_block_type in enumerate(down_block_types):
+ input_channel = output_channel
+ output_channel = block_out_channels[i]
+ is_final_block = i == len(block_out_channels) - 1
+
+ down_block = get_down_block(
+ down_block_type,
+ num_layers=layers_per_block,
+ in_channels=input_channel,
+ out_channels=output_channel,
+ temb_channels=time_embed_dim,
+ add_downsample=not is_final_block,
+ resnet_eps=norm_eps,
+ resnet_act_fn=act_fn,
+ resnet_groups=norm_num_groups,
+ cross_attention_dim=cross_attention_dim,
+ attn_num_head_channels=attention_head_dim[i],
+ downsample_padding=downsample_padding,
+ dual_cross_attention=dual_cross_attention,
+ use_linear_projection=use_linear_projection,
+ only_cross_attention=only_cross_attention[i],
+ upcast_attention=upcast_attention,
+ resnet_time_scale_shift=resnet_time_scale_shift,
+ )
+ self.down_blocks.append(down_block)
+
+ # mid
+ if mid_block_type == "UNetMidBlockFlatCrossAttn":
+ self.mid_block = UNetMidBlockFlatCrossAttn(
+ in_channels=block_out_channels[-1],
+ temb_channels=time_embed_dim,
+ resnet_eps=norm_eps,
+ resnet_act_fn=act_fn,
+ output_scale_factor=mid_block_scale_factor,
+ resnet_time_scale_shift=resnet_time_scale_shift,
+ cross_attention_dim=cross_attention_dim,
+ attn_num_head_channels=attention_head_dim[-1],
+ resnet_groups=norm_num_groups,
+ dual_cross_attention=dual_cross_attention,
+ use_linear_projection=use_linear_projection,
+ upcast_attention=upcast_attention,
+ )
+ elif mid_block_type == "UNetMidBlockFlatSimpleCrossAttn":
+ self.mid_block = UNetMidBlockFlatSimpleCrossAttn(
+ in_channels=block_out_channels[-1],
+ temb_channels=time_embed_dim,
+ resnet_eps=norm_eps,
+ resnet_act_fn=act_fn,
+ output_scale_factor=mid_block_scale_factor,
+ cross_attention_dim=cross_attention_dim,
+ attn_num_head_channels=attention_head_dim[-1],
+ resnet_groups=norm_num_groups,
+ resnet_time_scale_shift=resnet_time_scale_shift,
+ )
+ else:
+ raise ValueError(f"unknown mid_block_type : {mid_block_type}")
+
+ # count how many layers upsample the images
+ self.num_upsamplers = 0
+
+ # up
+ reversed_block_out_channels = list(reversed(block_out_channels))
+ reversed_attention_head_dim = list(reversed(attention_head_dim))
+ reversed_only_cross_attention = list(reversed(only_cross_attention))
+
+ output_channel = reversed_block_out_channels[0]
+ for i, up_block_type in enumerate(up_block_types):
+ is_final_block = i == len(block_out_channels) - 1
+
+ prev_output_channel = output_channel
+ output_channel = reversed_block_out_channels[i]
+ input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
+
+ # add upsample block for all BUT final layer
+ if not is_final_block:
+ add_upsample = True
+ self.num_upsamplers += 1
+ else:
+ add_upsample = False
+
+ up_block = get_up_block(
+ up_block_type,
+ num_layers=layers_per_block + 1,
+ in_channels=input_channel,
+ out_channels=output_channel,
+ prev_output_channel=prev_output_channel,
+ temb_channels=time_embed_dim,
+ add_upsample=add_upsample,
+ resnet_eps=norm_eps,
+ resnet_act_fn=act_fn,
+ resnet_groups=norm_num_groups,
+ cross_attention_dim=cross_attention_dim,
+ attn_num_head_channels=reversed_attention_head_dim[i],
+ dual_cross_attention=dual_cross_attention,
+ use_linear_projection=use_linear_projection,
+ only_cross_attention=reversed_only_cross_attention[i],
+ upcast_attention=upcast_attention,
+ resnet_time_scale_shift=resnet_time_scale_shift,
+ )
+ self.up_blocks.append(up_block)
+ prev_output_channel = output_channel
+
+ # out
+ self.conv_norm_out = nn.GroupNorm(
+ num_channels=block_out_channels[0], num_groups=norm_num_groups, epsilon=norm_eps
+ )
+ self.conv_act = nn.Silu()
+ self.conv_out = LinearMultiDim(block_out_channels[0], out_channels, kernel_size=3, padding=1)
+
+ @property
+ def attn_processors(self) -> Dict[str, AttnProcessor]:
+ r"""
+ Returns:
+ `dict` of attention processors: A dictionary containing all attention processors used in the model with
+ indexed by its weight name.
+ """
+ # set recursively
+ processors = {}
+
+ def fn_recursive_add_processors(name: str, module: nn.Layer, processors: Dict[str, AttnProcessor]):
+ if hasattr(module, "set_processor"):
+ processors[f"{name}.processor"] = module.processor
+
+ for sub_name, child in module.named_children():
+ fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
+
+ return processors
+
+ for name, module in self.named_children():
+ fn_recursive_add_processors(name, module, processors)
+
+ return processors
+
+ def set_attn_processor(self, processor: Union[AttnProcessor, Dict[str, AttnProcessor]]):
+ r"""
+ Parameters:
+ `processor (`dict` of `AttnProcessor` or `AttnProcessor`):
+ The instantiated processor class or a dictionary of processor classes that will be set as the processor
+ of **all** `CrossAttention` layers.
+ In case `processor` is a dict, the key needs to define the path to the corresponding cross attention processor. This is strongly recommended when setting trainablae attention processors.:
+ """
+ count = len(self.attn_processors.keys())
+
+ if isinstance(processor, dict) and len(processor) != count:
+ raise ValueError(
+ f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
+ f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
+ )
+
+ def fn_recursive_attn_processor(name: str, module: nn.Layer, processor):
+ if hasattr(module, "set_processor"):
+ if not isinstance(processor, dict):
+ module.set_processor(processor)
+ else:
+ module.set_processor(processor.pop(f"{name}.processor"))
+
+ for sub_name, child in module.named_children():
+ fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
+
+ for name, module in self.named_children():
+ fn_recursive_attn_processor(name, module, processor)
+
+ def set_attention_slice(self, slice_size):
+ r"""
+ Enable sliced attention computation.
+
+ When this option is enabled, the attention module will split the input tensor in slices, to compute attention
+ in several steps. This is useful to save some memory in exchange for a small speed decrease.
+
+ Args:
+ slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
+ When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If
+ `"max"`, maxium amount of memory will be saved by running only one slice at a time. If a number is
+ provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
+ must be a multiple of `slice_size`.
+ """
+ sliceable_head_dims = []
+
+ def fn_recursive_retrieve_slicable_dims(module: nn.Layer):
+ if hasattr(module, "set_attention_slice"):
+ sliceable_head_dims.append(module.sliceable_head_dim)
+
+ for child in module.children():
+ fn_recursive_retrieve_slicable_dims(child)
+
+ # retrieve number of attention layers
+ for module in self.children():
+ fn_recursive_retrieve_slicable_dims(module)
+
+ num_slicable_layers = len(sliceable_head_dims)
+
+ if slice_size == "auto":
+ # half the attention head size is usually a good trade-off between
+ # speed and memory
+ slice_size = [dim // 2 for dim in sliceable_head_dims]
+ elif slice_size == "max":
+ # make smallest slice possible
+ slice_size = num_slicable_layers * [1]
+
+ slice_size = num_slicable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
+
+ if len(slice_size) != len(sliceable_head_dims):
+ raise ValueError(
+ f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
+ f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
+ )
+
+ for i in range(len(slice_size)):
+ size = slice_size[i]
+ dim = sliceable_head_dims[i]
+ if size is not None and size > dim:
+ raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
+
+ # Recursively walk through all the children.
+ # Any children which exposes the set_attention_slice method
+ # gets the message
+ def fn_recursive_set_attention_slice(module: nn.Layer, slice_size: List[int]):
+ if hasattr(module, "set_attention_slice"):
+ module.set_attention_slice(slice_size.pop())
+
+ for child in module.children():
+ fn_recursive_set_attention_slice(child, slice_size)
+
+ reversed_slice_size = list(reversed(slice_size))
+ for module in self.children():
+ fn_recursive_set_attention_slice(module, reversed_slice_size)
+
+ def _set_gradient_checkpointing(self, module, value=False):
+ if isinstance(module, (CrossAttnDownBlockFlat, DownBlockFlat, CrossAttnUpBlockFlat, UpBlockFlat)):
+ module.gradient_checkpointing = value
+
+ def forward(
+ self,
+ sample: paddle.Tensor,
+ timestep: Union[paddle.Tensor, float, int],
+ encoder_hidden_states: paddle.Tensor,
+ class_labels: Optional[paddle.Tensor] = None,
+ attention_mask: Optional[paddle.Tensor] = None,
+ cross_attention_kwargs: Optional[Dict[str, Any]] = None,
+ return_dict: bool = True,
+ ) -> Union[UNet2DConditionOutput, Tuple]:
+ r"""
+ Args:
+ sample (`paddle.Tensor`): (batch, channel, height, width) noisy inputs tensor
+ timestep (`paddle.Tensor` or `float` or `int`): (batch) timesteps
+ encoder_hidden_states (`paddle.Tensor`): (batch, sequence_length, feature_dim) encoder hidden states
+ return_dict (`bool`, *optional*, defaults to `True`):
+ Whether or not to return a [`models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple.
+
+ Returns:
+ [`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
+ [`~models.unet_2d_condition.UNet2DConditionOutput`] if `return_dict` is True, otherwise a `tuple`. When
+ returning a tuple, the first element is the sample tensor.
+ """
+ # By default samples have to be AT least a multiple of the overall upsampling factor.
+ # The overall upsampling factor is equal to 2 ** (# num of upsampling layears).
+ # However, the upsampling interpolation output size can be forced to fit any upsampling size
+ # on the fly if necessary.
+ default_overall_up_factor = 2**self.num_upsamplers
+
+ # upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
+ forward_upsample_size = False
+ upsample_size = None
+
+ if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]):
+ logger.info("Forward upsample size to force interpolation output size.")
+ forward_upsample_size = True
+
+ # prepare attention_mask
+ if attention_mask is not None:
+ attention_mask = (1 - attention_mask.cast(sample.dtype)) * -10000.0
+ attention_mask = attention_mask.unsqueeze(1)
+
+ # 0. center input if necessary
+ if self.config.center_input_sample:
+ sample = 2 * sample - 1.0
+
+ # 1. time
+ timesteps = timestep
+ if not paddle.is_tensor(timesteps):
+ # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
+ timesteps = paddle.to_tensor([timesteps], dtype="int64")
+ elif paddle.is_tensor(timesteps) and len(timesteps.shape) == 0:
+ timesteps = timesteps[None]
+
+ # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
+ timesteps = timesteps.expand(
+ [
+ sample.shape[0],
+ ]
+ )
+
+ t_emb = self.time_proj(timesteps)
+
+ # timesteps does not contain any weights and will always return f32 tensors
+ # but time_embedding might actually be running in fp16. so we need to cast here.
+ # there might be better ways to encapsulate this.
+ t_emb = t_emb.cast(self.dtype)
+ emb = self.time_embedding(t_emb)
+
+ if self.class_embedding is not None:
+ if class_labels is None:
+ raise ValueError("class_labels should be provided when num_class_embeds > 0")
+
+ if self.config.class_embed_type == "timestep":
+ class_labels = self.time_proj(class_labels)
+
+ class_emb = self.class_embedding(class_labels).cast(self.dtype)
+ emb = emb + class_emb
+
+ # 2. pre-process
+ sample = self.conv_in(sample)
+
+ # 3. down
+ down_block_res_samples = (sample,)
+ for downsample_block in self.down_blocks:
+ if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
+ sample, res_samples = downsample_block(
+ hidden_states=sample,
+ temb=emb,
+ encoder_hidden_states=encoder_hidden_states,
+ attention_mask=attention_mask,
+ cross_attention_kwargs=cross_attention_kwargs,
+ )
+ else:
+ sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
+
+ down_block_res_samples += res_samples
+
+ # 4. mid
+ sample = self.mid_block(
+ sample,
+ emb,
+ encoder_hidden_states=encoder_hidden_states,
+ attention_mask=attention_mask,
+ cross_attention_kwargs=cross_attention_kwargs,
+ )
+
+ # 5. up
+ for i, upsample_block in enumerate(self.up_blocks):
+ is_final_block = i == len(self.up_blocks) - 1
+
+ res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
+ down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
+
+ # if we have not reached the final block and need to forward the
+ # upsample size, we do it here
+ if not is_final_block and forward_upsample_size:
+ upsample_size = down_block_res_samples[-1].shape[2:]
+
+ if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
+ sample = upsample_block(
+ hidden_states=sample,
+ temb=emb,
+ res_hidden_states_tuple=res_samples,
+ encoder_hidden_states=encoder_hidden_states,
+ cross_attention_kwargs=cross_attention_kwargs,
+ upsample_size=upsample_size,
+ attention_mask=attention_mask,
+ )
+ else:
+ sample = upsample_block(
+ hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size
+ )
+ # 6. post-process
+ sample = self.conv_norm_out(sample)
+ sample = self.conv_act(sample)
+ sample = self.conv_out(sample)
+
+ if not return_dict:
+ return (sample,)
+
+ return UNet2DConditionOutput(sample=sample)
+
+
+class LinearMultiDim(nn.Linear):
+ def __init__(self, in_features, out_features=None, second_dim=4, *args, **kwargs):
+ in_features = [in_features, second_dim, 1] if isinstance(in_features, int) else list(in_features)
+ if out_features is None:
+ out_features = in_features
+ out_features = [out_features, second_dim, 1] if isinstance(out_features, int) else list(out_features)
+ self.in_features_multidim = in_features
+ self.out_features_multidim = out_features
+ super().__init__(np.array(in_features).prod(), np.array(out_features).prod())
+
+ def forward(self, input_tensor, *args, **kwargs):
+ shape = input_tensor.shape
+ n_dim = len(self.in_features_multidim)
+ input_tensor = input_tensor.reshape([*shape[0:-n_dim], self.in_features])
+ output_tensor = super().forward(input_tensor)
+ output_tensor = output_tensor.reshape([*shape[0:-n_dim], *self.out_features_multidim])
+ return output_tensor
+
+
+class ResnetBlockFlat(nn.Layer):
+ def __init__(
+ self,
+ *,
+ in_channels,
+ out_channels=None,
+ dropout=0.0,
+ temb_channels=512,
+ groups=32,
+ groups_out=None,
+ pre_norm=True,
+ eps=1e-6,
+ time_embedding_norm="default",
+ use_in_shortcut=None,
+ second_dim=4,
+ **kwargs,
+ ):
+ super().__init__()
+ self.pre_norm = pre_norm
+ self.pre_norm = True
+
+ in_channels = [in_channels, second_dim, 1] if isinstance(in_channels, int) else list(in_channels)
+ self.in_channels_prod = np.array(in_channels).prod()
+ self.channels_multidim = in_channels
+
+ if out_channels is not None:
+ out_channels = [out_channels, second_dim, 1] if isinstance(out_channels, int) else list(out_channels)
+ out_channels_prod = np.array(out_channels).prod()
+ self.out_channels_multidim = out_channels
+ else:
+ out_channels_prod = self.in_channels_prod
+ self.out_channels_multidim = self.channels_multidim
+ self.time_embedding_norm = time_embedding_norm
+
+ if groups_out is None:
+ groups_out = groups
+
+ self.norm1 = nn.GroupNorm(num_groups=groups, num_channels=self.in_channels_prod, epsilon=eps)
+ self.conv1 = nn.Conv2D(self.in_channels_prod, out_channels_prod, kernel_size=1, padding=0)
+
+ if temb_channels is not None:
+ self.time_emb_proj = nn.Linear(temb_channels, out_channels_prod)
+ else:
+ self.time_emb_proj = None
+
+ self.norm2 = nn.GroupNorm(num_groups=groups_out, num_channels=out_channels_prod, epsilon=eps)
+ self.dropout = nn.Dropout(dropout)
+ self.conv2 = nn.Conv2D(out_channels_prod, out_channels_prod, kernel_size=1, padding=0)
+
+ self.nonlinearity = nn.Silu()
+
+ self.use_in_shortcut = (
+ self.in_channels_prod != out_channels_prod if use_in_shortcut is None else use_in_shortcut
+ )
+
+ self.conv_shortcut = None
+ if self.use_in_shortcut:
+ self.conv_shortcut = nn.Conv2D(
+ self.in_channels_prod, out_channels_prod, kernel_size=1, stride=1, padding=0
+ )
+
+ def forward(self, input_tensor, temb):
+ shape = input_tensor.shape
+ n_dim = len(self.channels_multidim)
+ input_tensor = input_tensor.reshape([*shape[0:-n_dim], self.in_channels_prod, 1, 1])
+ input_tensor = input_tensor.reshape([-1, self.in_channels_prod, 1, 1])
+
+ hidden_states = input_tensor
+
+ hidden_states = self.norm1(hidden_states)
+ hidden_states = self.nonlinearity(hidden_states)
+ hidden_states = self.conv1(hidden_states)
+
+ if temb is not None:
+ temb = self.time_emb_proj(self.nonlinearity(temb))[:, :, None, None]
+ hidden_states = hidden_states + temb
+
+ hidden_states = self.norm2(hidden_states)
+ hidden_states = self.nonlinearity(hidden_states)
+
+ hidden_states = self.dropout(hidden_states)
+ hidden_states = self.conv2(hidden_states)
+
+ if self.conv_shortcut is not None:
+ input_tensor = self.conv_shortcut(input_tensor)
+
+ output_tensor = input_tensor + hidden_states
+
+ output_tensor = output_tensor.reshape([*shape[0:-n_dim], -1])
+ output_tensor = output_tensor.reshape([*shape[0:-n_dim], *self.out_channels_multidim])
+
+ return output_tensor
+
+
+# Copied from diffusers.models.unet_2d_blocks.DownBlock2D with DownBlock2D->DownBlockFlat, ResnetBlock2D->ResnetBlockFlat, Downsample2D->LinearMultiDim
+class DownBlockFlat(nn.Layer):
+ def __init__(
+ self,
+ in_channels: int,
+ out_channels: int,
+ temb_channels: int,
+ dropout: float = 0.0,
+ num_layers: int = 1,
+ resnet_eps: float = 1e-6,
+ resnet_time_scale_shift: str = "default",
+ resnet_act_fn: str = "swish",
+ resnet_groups: int = 32,
+ resnet_pre_norm: bool = True,
+ output_scale_factor=1.0,
+ add_downsample=True,
+ downsample_padding=1,
+ ):
+ super().__init__()
+ resnets = []
+
+ for i in range(num_layers):
+ in_channels = in_channels if i == 0 else out_channels
+ resnets.append(
+ ResnetBlockFlat(
+ in_channels=in_channels,
+ out_channels=out_channels,
+ temb_channels=temb_channels,
+ eps=resnet_eps,
+ groups=resnet_groups,
+ dropout=dropout,
+ time_embedding_norm=resnet_time_scale_shift,
+ non_linearity=resnet_act_fn,
+ output_scale_factor=output_scale_factor,
+ pre_norm=resnet_pre_norm,
+ )
+ )
+
+ self.resnets = nn.LayerList(resnets)
+
+ if add_downsample:
+ self.downsamplers = nn.LayerList(
+ [
+ LinearMultiDim(
+ out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
+ )
+ ]
+ )
+ else:
+ self.downsamplers = None
+
+ self.gradient_checkpointing = False
+
+ def forward(self, hidden_states, temb=None):
+ output_states = ()
+
+ for resnet in self.resnets:
+ if self.training and self.gradient_checkpointing:
+
+ def create_custom_forward(module):
+ def custom_forward(*inputs):
+ return module(*inputs)
+
+ return custom_forward
+
+ hidden_states = recompute(create_custom_forward(resnet), hidden_states, temb)
+ else:
+ hidden_states = resnet(hidden_states, temb)
+
+ output_states += (hidden_states,)
+
+ if self.downsamplers is not None:
+ for downsampler in self.downsamplers:
+ hidden_states = downsampler(hidden_states)
+
+ output_states += (hidden_states,)
+
+ return hidden_states, output_states
+
+
+# Copied from diffusers.models.unet_2d_blocks.CrossAttnDownBlock2D with CrossAttnDownBlock2D->CrossAttnDownBlockFlat, ResnetBlock2D->ResnetBlockFlat, Downsample2D->LinearMultiDim
+class CrossAttnDownBlockFlat(nn.Layer):
+ def __init__(
+ self,
+ in_channels: int,
+ out_channels: int,
+ temb_channels: int,
+ dropout: float = 0.0,
+ num_layers: int = 1,
+ resnet_eps: float = 1e-6,
+ resnet_time_scale_shift: str = "default",
+ resnet_act_fn: str = "swish",
+ resnet_groups: int = 32,
+ resnet_pre_norm: bool = True,
+ attn_num_head_channels=1,
+ cross_attention_dim=1280,
+ output_scale_factor=1.0,
+ downsample_padding=1,
+ add_downsample=True,
+ dual_cross_attention=False,
+ use_linear_projection=False,
+ only_cross_attention=False,
+ upcast_attention=False,
+ ):
+ super().__init__()
+ resnets = []
+ attentions = []
+
+ self.has_cross_attention = True
+ self.attn_num_head_channels = attn_num_head_channels
+
+ for i in range(num_layers):
+ in_channels = in_channels if i == 0 else out_channels
+ resnets.append(
+ ResnetBlockFlat(
+ in_channels=in_channels,
+ out_channels=out_channels,
+ temb_channels=temb_channels,
+ eps=resnet_eps,
+ groups=resnet_groups,
+ dropout=dropout,
+ time_embedding_norm=resnet_time_scale_shift,
+ non_linearity=resnet_act_fn,
+ output_scale_factor=output_scale_factor,
+ pre_norm=resnet_pre_norm,
+ )
+ )
+ if not dual_cross_attention:
+ attentions.append(
+ Transformer2DModel(
+ attn_num_head_channels,
+ out_channels // attn_num_head_channels,
+ in_channels=out_channels,
+ num_layers=1,
+ cross_attention_dim=cross_attention_dim,
+ norm_num_groups=resnet_groups,
+ use_linear_projection=use_linear_projection,
+ only_cross_attention=only_cross_attention,
+ upcast_attention=upcast_attention,
+ )
+ )
+ else:
+ attentions.append(
+ DualTransformer2DModel(
+ attn_num_head_channels,
+ out_channels // attn_num_head_channels,
+ in_channels=out_channels,
+ num_layers=1,
+ cross_attention_dim=cross_attention_dim,
+ norm_num_groups=resnet_groups,
+ )
+ )
+ self.attentions = nn.LayerList(attentions)
+ self.resnets = nn.LayerList(resnets)
+
+ if add_downsample:
+ self.downsamplers = nn.LayerList(
+ [
+ LinearMultiDim(
+ out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
+ )
+ ]
+ )
+ else:
+ self.downsamplers = None
+
+ self.gradient_checkpointing = False
+
+ def forward(
+ self, hidden_states, temb=None, encoder_hidden_states=None, attention_mask=None, cross_attention_kwargs=None
+ ):
+ output_states = ()
+
+ for resnet, attn in zip(self.resnets, self.attentions):
+ if self.training and self.gradient_checkpointing:
+
+ def create_custom_forward(module, return_dict=None):
+ def custom_forward(*inputs):
+ if return_dict is not None:
+ return module(*inputs, return_dict=return_dict)[0] # move [0]
+ else:
+ return module(*inputs)
+
+ return custom_forward
+
+ hidden_states = recompute(create_custom_forward(resnet), hidden_states, temb)
+ hidden_states = recompute(
+ create_custom_forward(attn, return_dict=False),
+ hidden_states,
+ encoder_hidden_states,
+ cross_attention_kwargs,
+ ) # [0]
+ else:
+ hidden_states = resnet(hidden_states, temb)
+ hidden_states = attn(
+ hidden_states,
+ encoder_hidden_states=encoder_hidden_states,
+ cross_attention_kwargs=cross_attention_kwargs,
+ ).sample
+ output_states += (hidden_states,)
+
+ if self.downsamplers is not None:
+ for downsampler in self.downsamplers:
+ hidden_states = downsampler(hidden_states)
+
+ output_states += (hidden_states,)
+
+ return hidden_states, output_states
+
+
+# Copied from diffusers.models.unet_2d_blocks.UpBlock2D with UpBlock2D->UpBlockFlat, ResnetBlock2D->ResnetBlockFlat, Upsample2D->LinearMultiDim
+class UpBlockFlat(nn.Layer):
+ def __init__(
+ self,
+ in_channels: int,
+ prev_output_channel: int,
+ out_channels: int,
+ temb_channels: int,
+ dropout: float = 0.0,
+ num_layers: int = 1,
+ resnet_eps: float = 1e-6,
+ resnet_time_scale_shift: str = "default",
+ resnet_act_fn: str = "swish",
+ resnet_groups: int = 32,
+ resnet_pre_norm: bool = True,
+ output_scale_factor=1.0,
+ add_upsample=True,
+ ):
+ super().__init__()
+ resnets = []
+
+ for i in range(num_layers):
+ res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
+ resnet_in_channels = prev_output_channel if i == 0 else out_channels
+
+ resnets.append(
+ ResnetBlockFlat(
+ in_channels=resnet_in_channels + res_skip_channels,
+ out_channels=out_channels,
+ temb_channels=temb_channels,
+ eps=resnet_eps,
+ groups=resnet_groups,
+ dropout=dropout,
+ time_embedding_norm=resnet_time_scale_shift,
+ non_linearity=resnet_act_fn,
+ output_scale_factor=output_scale_factor,
+ pre_norm=resnet_pre_norm,
+ )
+ )
+
+ self.resnets = nn.LayerList(resnets)
+
+ if add_upsample:
+ self.upsamplers = nn.LayerList([LinearMultiDim(out_channels, use_conv=True, out_channels=out_channels)])
+ else:
+ self.upsamplers = None
+
+ self.gradient_checkpointing = False
+
+ def forward(self, hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None):
+ for resnet in self.resnets:
+ # pop res hidden states
+ res_hidden_states = res_hidden_states_tuple[-1]
+ res_hidden_states_tuple = res_hidden_states_tuple[:-1]
+ hidden_states = paddle.concat([hidden_states, res_hidden_states], axis=1)
+
+ if self.training and self.gradient_checkpointing:
+
+ def create_custom_forward(module):
+ def custom_forward(*inputs):
+ return module(*inputs)
+
+ return custom_forward
+
+ hidden_states = recompute(create_custom_forward(resnet), hidden_states, temb)
+ else:
+ hidden_states = resnet(hidden_states, temb)
+
+ if self.upsamplers is not None:
+ for upsampler in self.upsamplers:
+ hidden_states = upsampler(hidden_states, upsample_size)
+
+ return hidden_states
+
+
+# Copied from diffusers.models.unet_2d_blocks.CrossAttnUpBlock2D with CrossAttnUpBlock2D->CrossAttnUpBlockFlat, ResnetBlock2D->ResnetBlockFlat, Upsample2D->LinearMultiDim
+class CrossAttnUpBlockFlat(nn.Layer):
+ def __init__(
+ self,
+ in_channels: int,
+ out_channels: int,
+ prev_output_channel: int,
+ temb_channels: int,
+ dropout: float = 0.0,
+ num_layers: int = 1,
+ resnet_eps: float = 1e-6,
+ resnet_time_scale_shift: str = "default",
+ resnet_act_fn: str = "swish",
+ resnet_groups: int = 32,
+ resnet_pre_norm: bool = True,
+ attn_num_head_channels=1,
+ cross_attention_dim=1280,
+ output_scale_factor=1.0,
+ add_upsample=True,
+ dual_cross_attention=False,
+ use_linear_projection=False,
+ only_cross_attention=False,
+ upcast_attention=False,
+ ):
+ super().__init__()
+ resnets = []
+ attentions = []
+
+ self.has_cross_attention = True
+ self.attn_num_head_channels = attn_num_head_channels
+
+ for i in range(num_layers):
+ res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
+ resnet_in_channels = prev_output_channel if i == 0 else out_channels
+
+ resnets.append(
+ ResnetBlockFlat(
+ in_channels=resnet_in_channels + res_skip_channels,
+ out_channels=out_channels,
+ temb_channels=temb_channels,
+ eps=resnet_eps,
+ groups=resnet_groups,
+ dropout=dropout,
+ time_embedding_norm=resnet_time_scale_shift,
+ non_linearity=resnet_act_fn,
+ output_scale_factor=output_scale_factor,
+ pre_norm=resnet_pre_norm,
+ )
+ )
+ if not dual_cross_attention:
+ attentions.append(
+ Transformer2DModel(
+ attn_num_head_channels,
+ out_channels // attn_num_head_channels,
+ in_channels=out_channels,
+ num_layers=1,
+ cross_attention_dim=cross_attention_dim,
+ norm_num_groups=resnet_groups,
+ use_linear_projection=use_linear_projection,
+ only_cross_attention=only_cross_attention,
+ upcast_attention=upcast_attention,
+ )
+ )
+ else:
+ attentions.append(
+ DualTransformer2DModel(
+ attn_num_head_channels,
+ out_channels // attn_num_head_channels,
+ in_channels=out_channels,
+ num_layers=1,
+ cross_attention_dim=cross_attention_dim,
+ norm_num_groups=resnet_groups,
+ )
+ )
+ self.attentions = nn.LayerList(attentions)
+ self.resnets = nn.LayerList(resnets)
+
+ if add_upsample:
+ self.upsamplers = nn.LayerList([LinearMultiDim(out_channels, use_conv=True, out_channels=out_channels)])
+ else:
+ self.upsamplers = None
+
+ self.gradient_checkpointing = False
+
+ def forward(
+ self,
+ hidden_states,
+ res_hidden_states_tuple,
+ temb=None,
+ encoder_hidden_states=None,
+ cross_attention_kwargs=None,
+ upsample_size=None,
+ attention_mask=None,
+ ):
+ # TODO(Patrick, William) - attention mask is not used
+ for resnet, attn in zip(self.resnets, self.attentions):
+ # pop res hidden states
+ res_hidden_states = res_hidden_states_tuple[-1]
+ res_hidden_states_tuple = res_hidden_states_tuple[:-1]
+ hidden_states = paddle.concat([hidden_states, res_hidden_states], axis=1)
+
+ if self.training and self.gradient_checkpointing:
+
+ def create_custom_forward(module, return_dict=None):
+ def custom_forward(*inputs):
+ if return_dict is not None:
+ return module(*inputs, return_dict=return_dict)[0] # move [0]
+ else:
+ return module(*inputs)
+
+ return custom_forward
+
+ hidden_states = recompute(create_custom_forward(resnet), hidden_states, temb)
+ hidden_states = recompute(
+ create_custom_forward(attn, return_dict=False),
+ hidden_states,
+ encoder_hidden_states,
+ cross_attention_kwargs,
+ ) # [0]
+ else:
+ hidden_states = resnet(hidden_states, temb)
+ hidden_states = attn(
+ hidden_states,
+ encoder_hidden_states=encoder_hidden_states,
+ cross_attention_kwargs=cross_attention_kwargs,
+ ).sample
+
+ if self.upsamplers is not None:
+ for upsampler in self.upsamplers:
+ hidden_states = upsampler(hidden_states, upsample_size)
+
+ return hidden_states
+
+
+# Copied from diffusers.models.unet_2d_blocks.UNetMidBlock2DCrossAttn with UNetMidBlock2DCrossAttn->UNetMidBlockFlatCrossAttn, ResnetBlock2D->ResnetBlockFlat
+class UNetMidBlockFlatCrossAttn(nn.Layer):
+ def __init__(
+ self,
+ in_channels: int,
+ temb_channels: int,
+ dropout: float = 0.0,
+ num_layers: int = 1,
+ resnet_eps: float = 1e-6,
+ resnet_time_scale_shift: str = "default",
+ resnet_act_fn: str = "swish",
+ resnet_groups: int = 32,
+ resnet_pre_norm: bool = True,
+ attn_num_head_channels=1,
+ output_scale_factor=1.0,
+ cross_attention_dim=1280,
+ dual_cross_attention=False,
+ use_linear_projection=False,
+ upcast_attention=False,
+ ):
+ super().__init__()
+
+ self.has_cross_attention = True
+ self.attn_num_head_channels = attn_num_head_channels
+ resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
+
+ # there is always at least one resnet
+ resnets = [
+ ResnetBlockFlat(
+ in_channels=in_channels,
+ out_channels=in_channels,
+ temb_channels=temb_channels,
+ eps=resnet_eps,
+ groups=resnet_groups,
+ dropout=dropout,
+ time_embedding_norm=resnet_time_scale_shift,
+ non_linearity=resnet_act_fn,
+ output_scale_factor=output_scale_factor,
+ pre_norm=resnet_pre_norm,
+ )
+ ]
+ attentions = []
+
+ for _ in range(num_layers):
+ if not dual_cross_attention:
+ attentions.append(
+ Transformer2DModel(
+ attn_num_head_channels,
+ in_channels // attn_num_head_channels,
+ in_channels=in_channels,
+ num_layers=1,
+ cross_attention_dim=cross_attention_dim,
+ norm_num_groups=resnet_groups,
+ use_linear_projection=use_linear_projection,
+ upcast_attention=upcast_attention,
+ )
+ )
+ else:
+ attentions.append(
+ DualTransformer2DModel(
+ attn_num_head_channels,
+ in_channels // attn_num_head_channels,
+ in_channels=in_channels,
+ num_layers=1,
+ cross_attention_dim=cross_attention_dim,
+ norm_num_groups=resnet_groups,
+ )
+ )
+ resnets.append(
+ ResnetBlockFlat(
+ in_channels=in_channels,
+ out_channels=in_channels,
+ temb_channels=temb_channels,
+ eps=resnet_eps,
+ groups=resnet_groups,
+ dropout=dropout,
+ time_embedding_norm=resnet_time_scale_shift,
+ non_linearity=resnet_act_fn,
+ output_scale_factor=output_scale_factor,
+ pre_norm=resnet_pre_norm,
+ )
+ )
+
+ self.attentions = nn.LayerList(attentions)
+ self.resnets = nn.LayerList(resnets)
+
+ def forward(
+ self, hidden_states, temb=None, encoder_hidden_states=None, attention_mask=None, cross_attention_kwargs=None
+ ):
+ hidden_states = self.resnets[0](hidden_states, temb)
+ for attn, resnet in zip(self.attentions, self.resnets[1:]):
+ hidden_states = attn(
+ hidden_states,
+ encoder_hidden_states=encoder_hidden_states,
+ cross_attention_kwargs=cross_attention_kwargs,
+ ).sample
+ hidden_states = resnet(hidden_states, temb)
+
+ return hidden_states
+
+
+# Copied from diffusers.models.unet_2d_blocks.UNetMidBlock2DSimpleCrossAttn with UNetMidBlock2DSimpleCrossAttn->UNetMidBlockFlatSimpleCrossAttn, ResnetBlock2D->ResnetBlockFlat
+class UNetMidBlockFlatSimpleCrossAttn(nn.Layer):
+ def __init__(
+ self,
+ in_channels: int,
+ temb_channels: int,
+ dropout: float = 0.0,
+ num_layers: int = 1,
+ resnet_eps: float = 1e-6,
+ resnet_time_scale_shift: str = "default",
+ resnet_act_fn: str = "swish",
+ resnet_groups: int = 32,
+ resnet_pre_norm: bool = True,
+ attn_num_head_channels=1,
+ output_scale_factor=1.0,
+ cross_attention_dim=1280,
+ ):
+ super().__init__()
+
+ self.has_cross_attention = True
+
+ self.attn_num_head_channels = attn_num_head_channels
+ resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
+
+ self.num_heads = in_channels // self.attn_num_head_channels
+
+ # there is always at least one resnet
+ resnets = [
+ ResnetBlockFlat(
+ in_channels=in_channels,
+ out_channels=in_channels,
+ temb_channels=temb_channels,
+ eps=resnet_eps,
+ groups=resnet_groups,
+ dropout=dropout,
+ time_embedding_norm=resnet_time_scale_shift,
+ non_linearity=resnet_act_fn,
+ output_scale_factor=output_scale_factor,
+ pre_norm=resnet_pre_norm,
+ )
+ ]
+ attentions = []
+
+ for _ in range(num_layers):
+ attentions.append(
+ CrossAttention(
+ query_dim=in_channels,
+ cross_attention_dim=in_channels,
+ heads=self.num_heads,
+ dim_head=attn_num_head_channels,
+ added_kv_proj_dim=cross_attention_dim,
+ norm_num_groups=resnet_groups,
+ bias=True,
+ upcast_softmax=True,
+ processor=CrossAttnAddedKVProcessor(),
+ )
+ )
+ resnets.append(
+ ResnetBlockFlat(
+ in_channels=in_channels,
+ out_channels=in_channels,
+ temb_channels=temb_channels,
+ eps=resnet_eps,
+ groups=resnet_groups,
+ dropout=dropout,
+ time_embedding_norm=resnet_time_scale_shift,
+ non_linearity=resnet_act_fn,
+ output_scale_factor=output_scale_factor,
+ pre_norm=resnet_pre_norm,
+ )
+ )
+
+ self.attentions = nn.LayerList(attentions)
+ self.resnets = nn.LayerList(resnets)
+
+ def forward(
+ self, hidden_states, temb=None, encoder_hidden_states=None, attention_mask=None, cross_attention_kwargs=None
+ ):
+ cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
+ hidden_states = self.resnets[0](hidden_states, temb)
+ for attn, resnet in zip(self.attentions, self.resnets[1:]):
+ # attn
+ hidden_states = attn(
+ hidden_states,
+ encoder_hidden_states=encoder_hidden_states,
+ attention_mask=attention_mask,
+ **cross_attention_kwargs,
+ )
+
+ # resnet
+ hidden_states = resnet(hidden_states, temb)
+
+ return hidden_states
diff --git a/ppdiffusers/pipelines/versatile_diffusion/pipeline_versatile_diffusion.py b/ppdiffusers/pipelines/versatile_diffusion/pipeline_versatile_diffusion.py
new file mode 100644
index 0000000000000000000000000000000000000000..396723be1e40461f141081e8dbf7b67b451e3fc2
--- /dev/null
+++ b/ppdiffusers/pipelines/versatile_diffusion/pipeline_versatile_diffusion.py
@@ -0,0 +1,459 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import inspect
+from typing import Callable, List, Optional, Union
+
+import paddle
+import PIL.Image
+
+from paddlenlp.transformers import (
+ CLIPFeatureExtractor,
+ CLIPTextModelWithProjection,
+ CLIPTokenizer,
+ CLIPVisionModelWithProjection,
+)
+
+from ...models import AutoencoderKL, UNet2DConditionModel
+from ...pipeline_utils import DiffusionPipeline
+from ...schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler
+from ...utils import logging
+from .modeling_text_unet import UNetFlatConditionModel
+from .pipeline_versatile_diffusion_dual_guided import (
+ VersatileDiffusionDualGuidedPipeline,
+)
+from .pipeline_versatile_diffusion_image_variation import (
+ VersatileDiffusionImageVariationPipeline,
+)
+from .pipeline_versatile_diffusion_text_to_image import (
+ VersatileDiffusionTextToImagePipeline,
+)
+
+logger = logging.get_logger(__name__) # pylint: disable=invalid-name
+
+
+class VersatileDiffusionPipeline(DiffusionPipeline):
+ r"""
+ Pipeline for generation using Versatile Diffusion.
+
+ This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
+ library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
+
+ Args:
+ vae ([`AutoencoderKL`]):
+ Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
+ text_encoder ([`CLIPTextModelWithProjection`]):
+ Frozen text-encoder. Versatile Diffusion uses the text portion of
+ [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection), specifically
+ the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
+ image_encoder ([`CLIPVisionModelWithProjection`]):
+ Frozen vision-encoder. Versatile Diffusion uses the vision portion of
+ [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPVisionModelWithProjection), specifically
+ the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
+ tokenizer (`CLIPTokenizer`):
+ Tokenizer of class
+ [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
+ image_unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
+ text_unet ([`UNetFlatConditionModel`]): xxx.
+ scheduler ([`SchedulerMixin`]):
+ A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
+ [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
+ image_feature_extractor ([`CLIPFeatureExtractor`]):
+ Model that extracts features from generated images to be used as inputs for the `safety_checker`.
+ """
+
+ tokenizer: CLIPTokenizer
+ image_feature_extractor: CLIPFeatureExtractor
+ text_encoder: CLIPTextModelWithProjection
+ image_encoder: CLIPVisionModelWithProjection
+ image_unet: UNet2DConditionModel
+ text_unet: UNetFlatConditionModel
+ vae: AutoencoderKL
+ scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler]
+
+ def __init__(
+ self,
+ tokenizer: CLIPTokenizer,
+ image_feature_extractor: CLIPFeatureExtractor,
+ text_encoder: CLIPTextModelWithProjection,
+ image_encoder: CLIPVisionModelWithProjection,
+ image_unet: UNet2DConditionModel,
+ text_unet: UNetFlatConditionModel,
+ vae: AutoencoderKL,
+ scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler],
+ ):
+ super().__init__()
+
+ self.register_modules(
+ tokenizer=tokenizer,
+ image_feature_extractor=image_feature_extractor,
+ text_encoder=text_encoder,
+ image_encoder=image_encoder,
+ image_unet=image_unet,
+ text_unet=text_unet,
+ vae=vae,
+ scheduler=scheduler,
+ )
+ self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
+
+ @paddle.no_grad()
+ def image_variation(
+ self,
+ image: Union[paddle.Tensor, PIL.Image.Image],
+ height: Optional[int] = None,
+ width: Optional[int] = None,
+ num_inference_steps: int = 50,
+ guidance_scale: float = 7.5,
+ negative_prompt: Optional[Union[str, List[str]]] = None,
+ num_images_per_prompt: Optional[int] = 1,
+ eta: float = 0.0,
+ generator: Optional[Union[paddle.Generator, List[paddle.Generator]]] = None,
+ latents: Optional[paddle.Tensor] = None,
+ output_type: Optional[str] = "pil",
+ return_dict: bool = True,
+ callback: Optional[Callable[[int, int, paddle.Tensor], None]] = None,
+ callback_steps: Optional[int] = 1,
+ ):
+ r"""
+ Function invoked when calling the pipeline for generation.
+
+ Args:
+ image (`PIL.Image.Image`, `List[PIL.Image.Image]` or `torch.Tensor`):
+ The image prompt or prompts to guide the image generation.
+ height (`int`, *optional*, defaults to self.image_unet.config.sample_size * self.vae_scale_factor):
+ The height in pixels of the generated image.
+ width (`int`, *optional*, defaults to self.image_unet.config.sample_size * self.vae_scale_factor):
+ The width in pixels of the generated image.
+ num_inference_steps (`int`, *optional*, defaults to 50):
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
+ expense of slower inference.
+ guidance_scale (`float`, *optional*, defaults to 7.5):
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
+ usually at the expense of lower image quality.
+ negative_prompt (`str` or `List[str]`, *optional*):
+ The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
+ if `guidance_scale` is less than `1`).
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
+ The number of images to generate per prompt.
+ eta (`float`, *optional*, defaults to 0.0):
+ Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
+ [`schedulers.DDIMScheduler`], will be ignored for others.
+ generator (`paddle.Generator`, *optional*):
+ A [paddle generator] to make generation
+ deterministic.
+ latents (`paddle.Tensor`, *optional*):
+ Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
+ tensor will ge generated by sampling using the supplied random `generator`.
+ output_type (`str`, *optional*, defaults to `"pil"`):
+ The output format of the generate image. Choose between
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
+ return_dict (`bool`, *optional*, defaults to `True`):
+ Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
+ plain tuple.
+ callback (`Callable`, *optional*):
+ A function that will be called every `callback_steps` steps during inference. The function will be
+ called with the following arguments: `callback(step: int, timestep: int, latents: paddle.Tensor)`.
+ callback_steps (`int`, *optional*, defaults to 1):
+ The frequency at which the `callback` function will be called. If not specified, the callback will be
+ called at every step.
+
+ Examples:
+
+ ```py
+ >>> from ppdiffusers import VersatileDiffusionPipeline
+ >>> import paddle
+ >>> import requests
+ >>> from io import BytesIO
+ >>> from PIL import Image
+
+ >>> # let's download an initial image
+ >>> url = "https://huggingface.co/datasets/diffusers/images/resolve/main/benz.jpg"
+
+ >>> response = requests.get(url)
+ >>> image = Image.open(BytesIO(response.content)).convert("RGB")
+
+ >>> pipe = VersatileDiffusionPipeline.from_pretrained(
+ ... "shi-labs/versatile-diffusion"
+ ... )
+
+ >>> generator = paddle.Generator().manual_seed(0)
+ >>> image = pipe.image_variation(image, generator=generator).images[0]
+ >>> image.save("./car_variation.png")
+ ```
+
+ Returns:
+ [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
+ [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
+ When returning a tuple, the first element is a list with the generated images, and the second element is a
+ list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
+ (nsfw) content, according to the `safety_checker`.
+ """
+ expected_components = inspect.signature(VersatileDiffusionImageVariationPipeline.__init__).parameters.keys()
+ components = {name: component for name, component in self.components.items() if name in expected_components}
+ return VersatileDiffusionImageVariationPipeline(**components)(
+ image=image,
+ height=height,
+ width=width,
+ num_inference_steps=num_inference_steps,
+ guidance_scale=guidance_scale,
+ negative_prompt=negative_prompt,
+ num_images_per_prompt=num_images_per_prompt,
+ eta=eta,
+ generator=generator,
+ latents=latents,
+ output_type=output_type,
+ return_dict=return_dict,
+ callback=callback,
+ callback_steps=callback_steps,
+ )
+
+ @paddle.no_grad()
+ def text_to_image(
+ self,
+ prompt: Union[str, List[str]],
+ height: Optional[int] = None,
+ width: Optional[int] = None,
+ num_inference_steps: int = 50,
+ guidance_scale: float = 7.5,
+ negative_prompt: Optional[Union[str, List[str]]] = None,
+ num_images_per_prompt: Optional[int] = 1,
+ eta: float = 0.0,
+ generator: Optional[Union[paddle.Generator, List[paddle.Generator]]] = None,
+ latents: Optional[paddle.Tensor] = None,
+ output_type: Optional[str] = "pil",
+ return_dict: bool = True,
+ callback: Optional[Callable[[int, int, paddle.Tensor], None]] = None,
+ callback_steps: Optional[int] = 1,
+ ):
+ r"""
+ Function invoked when calling the pipeline for generation.
+
+ Args:
+ prompt (`str` or `List[str]`):
+ The prompt or prompts to guide the image generation.
+ height (`int`, *optional*, defaults to self.image_unet.config.sample_size * self.vae_scale_factor):
+ The height in pixels of the generated image.
+ width (`int`, *optional*, defaults to self.image_unet.config.sample_size * self.vae_scale_factor):
+ The width in pixels of the generated image.
+ num_inference_steps (`int`, *optional*, defaults to 50):
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
+ expense of slower inference.
+ guidance_scale (`float`, *optional*, defaults to 7.5):
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
+ usually at the expense of lower image quality.
+ negative_prompt (`str` or `List[str]`, *optional*):
+ The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
+ if `guidance_scale` is less than `1`).
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
+ The number of images to generate per prompt.
+ eta (`float`, *optional*, defaults to 0.0):
+ Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
+ [`schedulers.DDIMScheduler`], will be ignored for others.
+ generator (`paddle.Generator`, *optional*):
+ A [paddle generator] to make generation
+ deterministic.
+ latents (`paddle.Tensor`, *optional*):
+ Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
+ tensor will ge generated by sampling using the supplied random `generator`.
+ output_type (`str`, *optional*, defaults to `"pil"`):
+ The output format of the generate image. Choose between
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
+ return_dict (`bool`, *optional*, defaults to `True`):
+ Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
+ plain tuple.
+ callback (`Callable`, *optional*):
+ A function that will be called every `callback_steps` steps during inference. The function will be
+ called with the following arguments: `callback(step: int, timestep: int, latents: paddle.Tensor)`.
+ callback_steps (`int`, *optional*, defaults to 1):
+ The frequency at which the `callback` function will be called. If not specified, the callback will be
+ called at every step.
+
+ Examples:
+
+ ```py
+ >>> from ppdiffusers import VersatileDiffusionPipeline
+ >>> import paddle
+
+ >>> pipe = VersatileDiffusionPipeline.from_pretrained(
+ ... "shi-labs/versatile-diffusion"
+ ... )
+
+ >>> generator = paddle.Generator().manual_seed(0)
+ >>> image = pipe.text_to_image("an astronaut riding on a horse on mars", generator=generator).images[0]
+ >>> image.save("./astronaut.png")
+ ```
+
+ Returns:
+ [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
+ [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
+ When returning a tuple, the first element is a list with the generated images, and the second element is a
+ list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
+ (nsfw) content, according to the `safety_checker`.
+ """
+ expected_components = inspect.signature(VersatileDiffusionTextToImagePipeline.__init__).parameters.keys()
+ components = {name: component for name, component in self.components.items() if name in expected_components}
+ temp_pipeline = VersatileDiffusionTextToImagePipeline(**components)
+ output = temp_pipeline(
+ prompt=prompt,
+ height=height,
+ width=width,
+ num_inference_steps=num_inference_steps,
+ guidance_scale=guidance_scale,
+ negative_prompt=negative_prompt,
+ num_images_per_prompt=num_images_per_prompt,
+ eta=eta,
+ generator=generator,
+ latents=latents,
+ output_type=output_type,
+ return_dict=return_dict,
+ callback=callback,
+ callback_steps=callback_steps,
+ )
+ # swap the attention blocks back to the original state
+ temp_pipeline._swap_unet_attention_blocks()
+
+ return output
+
+ @paddle.no_grad()
+ def dual_guided(
+ self,
+ prompt: Union[PIL.Image.Image, List[PIL.Image.Image]],
+ image: Union[str, List[str]],
+ text_to_image_strength: float = 0.5,
+ height: Optional[int] = None,
+ width: Optional[int] = None,
+ num_inference_steps: int = 50,
+ guidance_scale: float = 7.5,
+ num_images_per_prompt: Optional[int] = 1,
+ eta: float = 0.0,
+ generator: Optional[Union[paddle.Generator, List[paddle.Generator]]] = None,
+ latents: Optional[paddle.Tensor] = None,
+ output_type: Optional[str] = "pil",
+ return_dict: bool = True,
+ callback: Optional[Callable[[int, int, paddle.Tensor], None]] = None,
+ callback_steps: Optional[int] = 1,
+ ):
+ r"""
+ Function invoked when calling the pipeline for generation.
+
+ Args:
+ prompt (`str` or `List[str]`):
+ The prompt or prompts to guide the image generation.
+ height (`int`, *optional*, defaults to self.image_unet.config.sample_size * self.vae_scale_factor):
+ The height in pixels of the generated image.
+ width (`int`, *optional*, defaults to self.image_unet.config.sample_size * self.vae_scale_factor):
+ The width in pixels of the generated image.
+ num_inference_steps (`int`, *optional*, defaults to 50):
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
+ expense of slower inference.
+ guidance_scale (`float`, *optional*, defaults to 7.5):
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
+ usually at the expense of lower image quality.
+ negative_prompt (`str` or `List[str]`, *optional*):
+ The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
+ if `guidance_scale` is less than `1`).
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
+ The number of images to generate per prompt.
+ eta (`float`, *optional*, defaults to 0.0):
+ Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
+ [`schedulers.DDIMScheduler`], will be ignored for others.
+ generator (`paddle.Generator`, *optional*):
+ A [paddle generator] to make generation
+ deterministic.
+ latents (`paddle.Tensor`, *optional*):
+ Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
+ tensor will ge generated by sampling using the supplied random `generator`.
+ output_type (`str`, *optional*, defaults to `"pil"`):
+ The output format of the generate image. Choose between
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
+ return_dict (`bool`, *optional*, defaults to `True`):
+ Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
+ plain tuple.
+ callback (`Callable`, *optional*):
+ A function that will be called every `callback_steps` steps during inference. The function will be
+ called with the following arguments: `callback(step: int, timestep: int, latents: paddle.Tensor)`.
+ callback_steps (`int`, *optional*, defaults to 1):
+ The frequency at which the `callback` function will be called. If not specified, the callback will be
+ called at every step.
+
+ Examples:
+
+ ```py
+ >>> from ppdiffusers import VersatileDiffusionPipeline
+ >>> import paddle
+ >>> import requests
+ >>> from io import BytesIO
+ >>> from PIL import Image
+
+ >>> # let's download an initial image
+ >>> url = "https://huggingface.co/datasets/diffusers/images/resolve/main/benz.jpg"
+
+ >>> response = requests.get(url)
+ >>> image = Image.open(BytesIO(response.content)).convert("RGB")
+ >>> text = "a red car in the sun"
+
+ >>> pipe = VersatileDiffusionPipeline.from_pretrained(
+ ... "shi-labs/versatile-diffusion"
+ ... )
+
+ >>> generator = paddle.Generator().manual_seed(0)
+ >>> text_to_image_strength = 0.75
+
+ >>> image = pipe.dual_guided(
+ ... prompt=text, image=image, text_to_image_strength=text_to_image_strength, generator=generator
+ ... ).images[0]
+ >>> image.save("./car_variation.png")
+ ```
+
+ Returns:
+ [`~pipelines.stable_diffusion.ImagePipelineOutput`] or `tuple`:
+ [`~pipelines.stable_diffusion.ImagePipelineOutput`] if `return_dict` is True, otherwise a `tuple. When
+ returning a tuple, the first element is a list with the generated images.
+ """
+
+ expected_components = inspect.signature(VersatileDiffusionDualGuidedPipeline.__init__).parameters.keys()
+ components = {name: component for name, component in self.components.items() if name in expected_components}
+ temp_pipeline = VersatileDiffusionDualGuidedPipeline(**components)
+ output = temp_pipeline(
+ prompt=prompt,
+ image=image,
+ text_to_image_strength=text_to_image_strength,
+ height=height,
+ width=width,
+ num_inference_steps=num_inference_steps,
+ guidance_scale=guidance_scale,
+ num_images_per_prompt=num_images_per_prompt,
+ eta=eta,
+ generator=generator,
+ latents=latents,
+ output_type=output_type,
+ return_dict=return_dict,
+ callback=callback,
+ callback_steps=callback_steps,
+ )
+ temp_pipeline._revert_dual_attention()
+
+ return output
diff --git a/ppdiffusers/pipelines/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py b/ppdiffusers/pipelines/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py
new file mode 100644
index 0000000000000000000000000000000000000000..8c1d7b14bfd91d2f6f894baae67b000cce508de9
--- /dev/null
+++ b/ppdiffusers/pipelines/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py
@@ -0,0 +1,559 @@
+# Copyright 2022 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import inspect
+from typing import Callable, List, Optional, Tuple, Union
+
+import numpy as np
+import paddle
+import PIL
+
+from paddlenlp.transformers import (
+ CLIPFeatureExtractor,
+ CLIPTextModelWithProjection,
+ CLIPTokenizer,
+ CLIPVisionModelWithProjection,
+)
+
+from ...models import AutoencoderKL, UNet2DConditionModel
+from ...models.attention import DualTransformer2DModel, Transformer2DModel
+from ...pipeline_utils import DiffusionPipeline, ImagePipelineOutput
+from ...schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler
+from ...utils import logging
+from .modeling_text_unet import UNetFlatConditionModel
+
+logger = logging.get_logger(__name__) # pylint: disable=invalid-name
+
+
+class VersatileDiffusionDualGuidedPipeline(DiffusionPipeline):
+ r"""
+ Pipeline for dual-guided generation using Versatile Diffusion.
+
+ This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
+ library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
+
+ Args:
+ vae ([`AutoencoderKL`]):
+ Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
+ text_encoder ([`CLIPTextModelWithProjection`]):
+ Frozen text-encoder. Versatile Diffusion uses the text portion of
+ [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection), specifically
+ the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
+ image_encoder ([`CLIPVisionModelWithProjection`]):
+ Frozen vision-encoder. Versatile Diffusion uses the vision portion of
+ [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPVisionModelWithProjection), specifically
+ the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
+ tokenizer (`CLIPTokenizer`):
+ Tokenizer of class
+ [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
+ image_unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
+ text_unet ([`UNetFlatConditionModel`]): xxx.
+ scheduler ([`SchedulerMixin`]):
+ A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
+ [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
+ image_feature_extractor ([`CLIPFeatureExtractor`]):
+ Model that extracts features from generated images to be used as inputs for the `safety_checker`.
+ """
+ tokenizer: CLIPTokenizer
+ image_feature_extractor: CLIPFeatureExtractor
+ text_encoder: CLIPTextModelWithProjection
+ image_encoder: CLIPVisionModelWithProjection
+ image_unet: UNet2DConditionModel
+ text_unet: UNetFlatConditionModel
+ vae: AutoencoderKL
+ scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler]
+
+ _optional_components = ["text_unet"]
+
+ def __init__(
+ self,
+ tokenizer: CLIPTokenizer,
+ image_feature_extractor: CLIPFeatureExtractor,
+ text_encoder: CLIPTextModelWithProjection,
+ image_encoder: CLIPVisionModelWithProjection,
+ image_unet: UNet2DConditionModel,
+ text_unet: UNetFlatConditionModel,
+ vae: AutoencoderKL,
+ scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler],
+ ):
+ super().__init__()
+ self.register_modules(
+ tokenizer=tokenizer,
+ image_feature_extractor=image_feature_extractor,
+ text_encoder=text_encoder,
+ image_encoder=image_encoder,
+ image_unet=image_unet,
+ text_unet=text_unet,
+ vae=vae,
+ scheduler=scheduler,
+ )
+ self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
+
+ if self.text_unet is not None and (
+ "dual_cross_attention" not in self.image_unet.config or not self.image_unet.config.dual_cross_attention
+ ):
+ # if loading from a universal checkpoint rather than a saved dual-guided pipeline
+ self._convert_to_dual_attention()
+
+ def remove_unused_weights(self):
+ self.register_modules(text_unet=None)
+
+ def _convert_to_dual_attention(self):
+ """
+ Replace image_unet's `Transformer2DModel` blocks with `DualTransformer2DModel` that contains transformer blocks
+ from both `image_unet` and `text_unet`
+ """
+ for name, module in self.image_unet.named_sublayers(include_self=True):
+ if isinstance(module, Transformer2DModel):
+ parent_name, index = name.rsplit(".", 1)
+ index = int(index)
+
+ image_transformer = self.image_unet.get_sublayer(parent_name)[index]
+ text_transformer = self.text_unet.get_sublayer(parent_name)[index]
+
+ config = image_transformer.config
+ dual_transformer = DualTransformer2DModel(
+ num_attention_heads=config.num_attention_heads,
+ attention_head_dim=config.attention_head_dim,
+ in_channels=config.in_channels,
+ num_layers=config.num_layers,
+ dropout=config.dropout,
+ norm_num_groups=config.norm_num_groups,
+ cross_attention_dim=config.cross_attention_dim,
+ attention_bias=config.attention_bias,
+ sample_size=config.sample_size,
+ num_vector_embeds=config.num_vector_embeds,
+ activation_fn=config.activation_fn,
+ num_embeds_ada_norm=config.num_embeds_ada_norm,
+ )
+ dual_transformer.transformers[0] = image_transformer
+ dual_transformer.transformers[1] = text_transformer
+
+ self.image_unet.get_sublayer(parent_name)[index] = dual_transformer
+ self.image_unet.register_to_config(dual_cross_attention=True)
+
+ def _revert_dual_attention(self):
+ """
+ Revert the image_unet `DualTransformer2DModel` blocks back to `Transformer2DModel` with image_unet weights Call
+ this function if you reuse `image_unet` in another pipeline, e.g. `VersatileDiffusionPipeline`
+ """
+ for name, module in self.image_unet.named_sublayers(include_self=True):
+ if isinstance(module, DualTransformer2DModel):
+ parent_name, index = name.rsplit(".", 1)
+ index = int(index)
+ self.image_unet.get_sublayer(parent_name)[index] = module.transformers[0]
+ self.image_unet.register_to_config(dual_cross_attention=False)
+
+ def _encode_text_prompt(self, prompt, num_images_per_prompt, do_classifier_free_guidance):
+ r"""
+ Encodes the prompt into text encoder hidden states.
+
+ Args:
+ prompt (`str` or `list(int)`):
+ prompt to be encoded
+ num_images_per_prompt (`int`):
+ number of images that should be generated per prompt
+ do_classifier_free_guidance (`bool`):
+ whether to use classifier free guidance or not
+ """
+
+ def normalize_embeddings(encoder_output):
+ embeds = paddle.matmul(encoder_output.last_hidden_state, self.text_encoder.text_projection)
+ embeds_pooled = encoder_output.text_embeds
+ embeds = embeds / paddle.norm(embeds_pooled.unsqueeze(1), axis=-1, keepdim=True)
+ return embeds
+
+ batch_size = len(prompt)
+
+ text_inputs = self.tokenizer(
+ prompt,
+ padding="max_length",
+ max_length=self.tokenizer.model_max_length,
+ truncation=True,
+ return_tensors="pd",
+ )
+ text_input_ids = text_inputs.input_ids
+ untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pd").input_ids
+
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not paddle.equal_all(
+ text_input_ids, untruncated_ids
+ ):
+ removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1])
+ logger.warning(
+ "The following part of your input was truncated because CLIP can only handle sequences up to"
+ f" {self.tokenizer.model_max_length} tokens: {removed_text}"
+ )
+
+ config = (
+ self.text_encoder.config
+ if isinstance(self.text_encoder.config, dict)
+ else self.text_encoder.config.to_dict()
+ )
+ if config.get("use_attention_mask", None) is not None and config["use_attention_mask"]:
+ attention_mask = text_inputs.attention_mask
+ else:
+ attention_mask = None
+
+ text_embeddings = self.text_encoder(text_input_ids, attention_mask=attention_mask)
+ text_embeddings = normalize_embeddings(text_embeddings)
+
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
+ bs_embed, seq_len, _ = text_embeddings.shape
+ text_embeddings = text_embeddings.tile([1, num_images_per_prompt, 1])
+ text_embeddings = text_embeddings.reshape([bs_embed * num_images_per_prompt, seq_len, -1])
+
+ # get unconditional embeddings for classifier free guidance
+ if do_classifier_free_guidance:
+ uncond_tokens = [""] * batch_size
+ max_length = text_input_ids.shape[-1]
+ uncond_input = self.tokenizer(
+ uncond_tokens,
+ padding="max_length",
+ max_length=max_length,
+ truncation=True,
+ return_tensors="pd",
+ )
+
+ if config.get("use_attention_mask", None) is not None and config["use_attention_mask"]:
+ attention_mask = uncond_input.attention_mask
+ else:
+ attention_mask = None
+
+ uncond_embeddings = self.text_encoder(uncond_input.input_ids, attention_mask=attention_mask)
+ uncond_embeddings = normalize_embeddings(uncond_embeddings)
+
+ # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
+ seq_len = uncond_embeddings.shape[1]
+ uncond_embeddings = uncond_embeddings.tile([1, num_images_per_prompt, 1])
+ uncond_embeddings = uncond_embeddings.reshape([batch_size * num_images_per_prompt, seq_len, -1])
+
+ # For classifier free guidance, we need to do two forward passes.
+ # Here we concatenate the unconditional and text embeddings into a single batch
+ # to avoid doing two forward passes
+ text_embeddings = paddle.concat([uncond_embeddings, text_embeddings])
+
+ return text_embeddings
+
+ def _encode_image_prompt(self, prompt, num_images_per_prompt, do_classifier_free_guidance):
+ r"""
+ Encodes the prompt into vision encoder hidden states.
+
+ Args:
+ prompt (`str` or `list(int)`):
+ prompt to be encoded
+ num_images_per_prompt (`int`):
+ number of images that should be generated per prompt
+ do_classifier_free_guidance (`bool`):
+ whether to use classifier free guidance or not
+ """
+
+ def normalize_embeddings(encoder_output):
+ embeds = self.image_encoder.vision_model.ln_post(encoder_output.last_hidden_state)
+ embeds = paddle.matmul(embeds, self.image_encoder.vision_projection)
+ embeds_pooled = embeds[:, 0:1]
+ embeds = embeds / paddle.norm(embeds_pooled, axis=-1, keepdim=True)
+ return embeds
+
+ batch_size = len(prompt) if isinstance(prompt, list) else 1
+
+ # get prompt text embeddings
+ image_input = self.image_feature_extractor(images=prompt, return_tensors="pd")
+ pixel_values = image_input.pixel_values.cast(self.image_encoder.dtype)
+ image_embeddings = self.image_encoder(pixel_values)
+ image_embeddings = normalize_embeddings(image_embeddings)
+
+ # duplicate image embeddings for each generation per prompt, using mps friendly method
+ bs_embed, seq_len, _ = image_embeddings.shape
+ image_embeddings = image_embeddings.tile([1, num_images_per_prompt, 1])
+ image_embeddings = image_embeddings.reshape([bs_embed * num_images_per_prompt, seq_len, -1])
+
+ # get unconditional embeddings for classifier free guidance
+ if do_classifier_free_guidance:
+ uncond_images = [np.zeros((512, 512, 3)) + 0.5] * batch_size
+ uncond_images = self.image_feature_extractor(images=uncond_images, return_tensors="pd")
+ pixel_values = uncond_images.pixel_values.cast(self.image_encoder.dtype)
+ uncond_embeddings = self.image_encoder(pixel_values)
+ uncond_embeddings = normalize_embeddings(uncond_embeddings)
+
+ # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
+ seq_len = uncond_embeddings.shape[1]
+ uncond_embeddings = uncond_embeddings.tile([1, num_images_per_prompt, 1])
+ uncond_embeddings = uncond_embeddings.reshape([batch_size * num_images_per_prompt, seq_len, -1])
+
+ # For classifier free guidance, we need to do two forward passes.
+ # Here we concatenate the unconditional and conditional embeddings into a single batch
+ # to avoid doing two forward passes
+ image_embeddings = paddle.concat([uncond_embeddings, image_embeddings])
+
+ return image_embeddings
+
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents
+ def decode_latents(self, latents):
+ latents = 1 / 0.18215 * latents
+ image = self.vae.decode(latents).sample
+ image = (image / 2 + 0.5).clip(0, 1)
+ # we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
+ image = image.transpose([0, 2, 3, 1]).cast("float32").numpy()
+ return image
+
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
+ def prepare_extra_step_kwargs(self, generator, eta):
+ # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
+ # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
+ # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
+ # and should be between [0, 1]
+
+ accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
+ extra_step_kwargs = {}
+ if accepts_eta:
+ extra_step_kwargs["eta"] = eta
+
+ # check if the scheduler accepts generator
+ accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
+ if accepts_generator:
+ extra_step_kwargs["generator"] = generator
+ return extra_step_kwargs
+
+ def check_inputs(self, prompt, image, height, width, callback_steps):
+ if not isinstance(prompt, str) and not isinstance(prompt, PIL.Image.Image) and not isinstance(prompt, list):
+ raise ValueError(f"`prompt` has to be of type `str` `PIL.Image` or `list` but is {type(prompt)}")
+ if not isinstance(image, str) and not isinstance(image, PIL.Image.Image) and not isinstance(image, list):
+ raise ValueError(f"`image` has to be of type `str` `PIL.Image` or `list` but is {type(image)}")
+
+ if height % 8 != 0 or width % 8 != 0:
+ raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
+
+ if (callback_steps is None) or (
+ callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
+ ):
+ raise ValueError(
+ f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
+ f" {type(callback_steps)}."
+ )
+
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
+ def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, generator, latents=None):
+ shape = [batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor]
+ if isinstance(generator, list) and len(generator) != batch_size:
+ raise ValueError(
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
+ )
+
+ if latents is None:
+ if isinstance(generator, list):
+ shape = [
+ 1,
+ ] + shape[1:]
+ latents = [paddle.randn(shape, generator=generator[i], dtype=dtype) for i in range(batch_size)]
+ latents = paddle.concat(latents, axis=0)
+ else:
+ latents = paddle.randn(shape, generator=generator, dtype=dtype)
+ else:
+ if latents.shape != shape:
+ raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}")
+
+ # scale the initial noise by the standard deviation required by the scheduler
+ latents = latents * self.scheduler.init_noise_sigma
+ return latents
+
+ def set_transformer_params(self, mix_ratio: float = 0.5, condition_types: Tuple = ("text", "image")):
+ for name, module in self.image_unet.named_sublayers(include_self=True):
+ if isinstance(module, DualTransformer2DModel):
+ module.mix_ratio = mix_ratio
+
+ for i, type in enumerate(condition_types):
+ if type == "text":
+ module.condition_lengths[i] = self.text_encoder.config.max_position_embeddings
+ module.transformer_index_for_condition[i] = 1 # use the second (text) transformer
+ else:
+ module.condition_lengths[i] = 257
+ module.transformer_index_for_condition[i] = 0 # use the first (image) transformer
+
+ @paddle.no_grad()
+ def __call__(
+ self,
+ prompt: Union[PIL.Image.Image, List[PIL.Image.Image]],
+ image: Union[str, List[str]],
+ text_to_image_strength: float = 0.5,
+ height: Optional[int] = None,
+ width: Optional[int] = None,
+ num_inference_steps: int = 50,
+ guidance_scale: float = 7.5,
+ num_images_per_prompt: Optional[int] = 1,
+ eta: float = 0.0,
+ generator: Optional[Union[paddle.Generator, List[paddle.Generator]]] = None,
+ latents: Optional[paddle.Tensor] = None,
+ output_type: Optional[str] = "pil",
+ return_dict: bool = True,
+ callback: Optional[Callable[[int, int, paddle.Tensor], None]] = None,
+ callback_steps: Optional[int] = 1,
+ **kwargs,
+ ):
+ r"""
+ Function invoked when calling the pipeline for generation.
+
+ Args:
+ prompt (`str` or `List[str]`):
+ The prompt or prompts to guide the image generation.
+ height (`int`, *optional*, defaults to self.image_unet.config.sample_size * self.vae_scale_factor):
+ The height in pixels of the generated image.
+ width (`int`, *optional*, defaults to self.image_unet.config.sample_size * self.vae_scale_factor):
+ The width in pixels of the generated image.
+ num_inference_steps (`int`, *optional*, defaults to 50):
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
+ expense of slower inference.
+ guidance_scale (`float`, *optional*, defaults to 7.5):
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
+ usually at the expense of lower image quality.
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
+ The number of images to generate per prompt.
+ eta (`float`, *optional*, defaults to 0.0):
+ Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
+ [`schedulers.DDIMScheduler`], will be ignored for others.
+ generator (`paddle.Generator`, *optional*):
+ A [paddle generator] to make generation
+ deterministic.
+ latents (`paddle.Tensor`, *optional*):
+ Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
+ tensor will ge generated by sampling using the supplied random `generator`.
+ output_type (`str`, *optional*, defaults to `"pil"`):
+ The output format of the generate image. Choose between
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
+ return_dict (`bool`, *optional*, defaults to `True`):
+ Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
+ plain tuple.
+ callback (`Callable`, *optional*):
+ A function that will be called every `callback_steps` steps during inference. The function will be
+ called with the following arguments: `callback(step: int, timestep: int, latents: paddle.Tensor)`.
+ callback_steps (`int`, *optional*, defaults to 1):
+ The frequency at which the `callback` function will be called. If not specified, the callback will be
+ called at every step.
+
+ Examples:
+
+ ```py
+ >>> from ppdiffusers import VersatileDiffusionDualGuidedPipeline
+ >>> import paddle
+ >>> import requests
+ >>> from io import BytesIO
+ >>> from PIL import Image
+
+ >>> # let's download an initial image
+ >>> url = "https://huggingface.co/datasets/diffusers/images/resolve/main/benz.jpg"
+
+ >>> response = requests.get(url)
+ >>> image = Image.open(BytesIO(response.content)).convert("RGB")
+ >>> text = "a red car in the sun"
+
+ >>> pipe = VersatileDiffusionDualGuidedPipeline.from_pretrained(
+ ... "shi-labs/versatile-diffusion"
+ ... )
+ >>> pipe.remove_unused_weights()
+
+ >>> generator = torch.Generator().manual_seed(0)
+ >>> text_to_image_strength = 0.75
+
+ >>> image = pipe(
+ ... prompt=text, image=image, text_to_image_strength=text_to_image_strength, generator=generator
+ ... ).images[0]
+ >>> image.save("./car_variation.png")
+ ```
+
+ Returns:
+ [`~pipelines.stable_diffusion.ImagePipelineOutput`] or `tuple`:
+ [`~pipelines.stable_diffusion.ImagePipelineOutput`] if `return_dict` is True, otherwise a `tuple. When
+ returning a tuple, the first element is a list with the generated images.
+ """
+ # 0. Default height and width to unet
+ height = height or self.image_unet.config.sample_size * self.vae_scale_factor
+ width = width or self.image_unet.config.sample_size * self.vae_scale_factor
+
+ # 1. Check inputs. Raise error if not correct
+ self.check_inputs(prompt, image, height, width, callback_steps)
+
+ # 2. Define call parameters
+ prompt = [prompt] if not isinstance(prompt, list) else prompt
+ image = [image] if not isinstance(image, list) else image
+ batch_size = len(prompt)
+
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
+ # corresponds to doing no classifier free guidance.
+ do_classifier_free_guidance = guidance_scale > 1.0
+
+ # 3. Encode input prompts
+ text_embeddings = self._encode_text_prompt(prompt, num_images_per_prompt, do_classifier_free_guidance)
+ image_embeddings = self._encode_image_prompt(image, num_images_per_prompt, do_classifier_free_guidance)
+ dual_prompt_embeddings = paddle.concat([text_embeddings, image_embeddings], axis=1)
+ prompt_types = ("text", "image")
+
+ # 4. Prepare timesteps
+ self.scheduler.set_timesteps(num_inference_steps)
+ timesteps = self.scheduler.timesteps
+
+ # 5. Prepare latent variables
+ num_channels_latents = self.image_unet.in_channels
+ latents = self.prepare_latents(
+ batch_size * num_images_per_prompt,
+ num_channels_latents,
+ height,
+ width,
+ dual_prompt_embeddings.dtype,
+ generator,
+ latents,
+ )
+
+ # 6. Prepare extra step kwargs.
+ extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
+
+ # 7. Combine the attention blocks of the image and text UNets
+ self.set_transformer_params(text_to_image_strength, prompt_types)
+
+ # 8. Denoising loop
+ for i, t in enumerate(self.progress_bar(timesteps)):
+ # expand the latents if we are doing classifier free guidance
+ latent_model_input = paddle.concat([latents] * 2) if do_classifier_free_guidance else latents
+ latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
+
+ # predict the noise residual
+ noise_pred = self.image_unet(latent_model_input, t, encoder_hidden_states=dual_prompt_embeddings).sample
+
+ # perform guidance
+ if do_classifier_free_guidance:
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
+ noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
+
+ # compute the previous noisy sample x_t -> x_t-1
+ latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
+
+ # call the callback, if provided
+ if callback is not None and i % callback_steps == 0:
+ callback(i, t, latents)
+
+ # 9. Post-processing
+ image = self.decode_latents(latents)
+
+ # 10. Convert to PIL
+ if output_type == "pil":
+ image = self.numpy_to_pil(image)
+
+ if not return_dict:
+ return (image,)
+
+ return ImagePipelineOutput(images=image)
diff --git a/ppdiffusers/pipelines/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py b/ppdiffusers/pipelines/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py
new file mode 100644
index 0000000000000000000000000000000000000000..009c8f59ef683c2077986874efe102366decfb8f
--- /dev/null
+++ b/ppdiffusers/pipelines/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py
@@ -0,0 +1,396 @@
+# Copyright 2022 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import inspect
+from typing import Callable, List, Optional, Union
+
+import numpy as np
+import paddle
+import PIL
+
+from paddlenlp.transformers import CLIPFeatureExtractor, CLIPVisionModelWithProjection
+
+from ...models import AutoencoderKL, UNet2DConditionModel
+from ...pipeline_utils import DiffusionPipeline, ImagePipelineOutput
+from ...schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler
+from ...utils import logging
+
+logger = logging.get_logger(__name__) # pylint: disable=invalid-name
+
+
+class VersatileDiffusionImageVariationPipeline(DiffusionPipeline):
+ r"""
+ Pipeline for image variation using Versatile Diffusion.
+
+ This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
+ library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
+
+ Args:
+ vae ([`AutoencoderKL`]):
+ Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
+ image_encoder ([`CLIPVisionModelWithProjection`]):
+ Frozen vision-encoder. Versatile Diffusion uses the vision portion of
+ [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPVisionModelWithProjection), specifically
+ the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
+ image_unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
+ scheduler ([`SchedulerMixin`]):
+ A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
+ [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
+ image_feature_extractor ([`CLIPFeatureExtractor`]):
+ that extracts features from generated images to be used as inputs for the `safety_checker`.
+ """
+ image_feature_extractor: CLIPFeatureExtractor
+ image_encoder: CLIPVisionModelWithProjection
+ image_unet: UNet2DConditionModel
+ vae: AutoencoderKL
+ scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler]
+
+ def __init__(
+ self,
+ image_feature_extractor: CLIPFeatureExtractor,
+ image_encoder: CLIPVisionModelWithProjection,
+ image_unet: UNet2DConditionModel,
+ vae: AutoencoderKL,
+ scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler],
+ ):
+ super().__init__()
+ self.register_modules(
+ image_feature_extractor=image_feature_extractor,
+ image_encoder=image_encoder,
+ image_unet=image_unet,
+ vae=vae,
+ scheduler=scheduler,
+ )
+ self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
+
+ def _encode_image_prompt(self, prompt, num_images_per_prompt, do_classifier_free_guidance, negative_prompt):
+ r"""
+ Encodes the prompt into image encoder hidden states.
+
+ Args:
+ prompt (`str` or `list(int)`):
+ prompt to be encoded
+ num_images_per_prompt (`int`):
+ number of images that should be generated per prompt
+ do_classifier_free_guidance (`bool`):
+ whether to use classifier free guidance or not
+ negative_prompt (`str` or `List[str]`):
+ The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
+ if `guidance_scale` is less than `1`).
+ """
+
+ def normalize_embeddings(encoder_output):
+ embeds = self.image_encoder.vision_model.ln_post(encoder_output.last_hidden_state)
+ embeds = paddle.matmul(embeds, self.image_encoder.vision_projection)
+ embeds_pooled = embeds[:, 0:1]
+ embeds = embeds / paddle.norm(embeds_pooled, axis=-1, keepdim=True)
+ return embeds
+
+ if isinstance(prompt, paddle.Tensor) and len(prompt.shape) == 4:
+ prompt = [p for p in prompt]
+
+ batch_size = len(prompt) if isinstance(prompt, list) else 1
+
+ # get prompt text embeddings
+ image_input = self.image_feature_extractor(images=prompt, return_tensors="pd")
+ pixel_values = image_input.pixel_values.cast(self.image_encoder.dtype)
+ image_embeddings = self.image_encoder(pixel_values)
+ image_embeddings = normalize_embeddings(image_embeddings)
+
+ # duplicate image embeddings for each generation per prompt, using mps friendly method
+ bs_embed, seq_len, _ = image_embeddings.shape
+ image_embeddings = image_embeddings.tile([1, num_images_per_prompt, 1])
+ image_embeddings = image_embeddings.reshape([bs_embed * num_images_per_prompt, seq_len, -1])
+
+ # get unconditional embeddings for classifier free guidance
+ if do_classifier_free_guidance:
+ uncond_images: List[str]
+ if negative_prompt is None:
+ uncond_images = [np.zeros((512, 512, 3)) + 0.5] * batch_size
+ elif type(prompt) is not type(negative_prompt):
+ raise TypeError(
+ f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
+ f" {type(prompt)}."
+ )
+ elif isinstance(negative_prompt, PIL.Image.Image):
+ uncond_images = [negative_prompt]
+ elif batch_size != len(negative_prompt):
+ raise ValueError(
+ f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
+ f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
+ " the batch size of `prompt`."
+ )
+ else:
+ uncond_images = negative_prompt
+
+ uncond_images = self.image_feature_extractor(images=uncond_images, return_tensors="pd")
+ pixel_values = uncond_images.pixel_values.cast(self.image_encoder.dtype)
+ uncond_embeddings = self.image_encoder(pixel_values)
+ uncond_embeddings = normalize_embeddings(uncond_embeddings)
+
+ # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
+ seq_len = uncond_embeddings.shape[1]
+ uncond_embeddings = uncond_embeddings.tile([1, num_images_per_prompt, 1])
+ uncond_embeddings = uncond_embeddings.reshape([batch_size * num_images_per_prompt, seq_len, -1])
+
+ # For classifier free guidance, we need to do two forward passes.
+ # Here we concatenate the unconditional and conditional embeddings into a single batch
+ # to avoid doing two forward passes
+ image_embeddings = paddle.concat([uncond_embeddings, image_embeddings])
+
+ return image_embeddings
+
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents
+ def decode_latents(self, latents):
+ latents = 1 / 0.18215 * latents
+ image = self.vae.decode(latents).sample
+ image = (image / 2 + 0.5).clip(0, 1)
+ # we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
+ image = image.transpose([0, 2, 3, 1]).cast("float32").numpy()
+ return image
+
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
+ def prepare_extra_step_kwargs(self, generator, eta):
+ # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
+ # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
+ # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
+ # and should be between [0, 1]
+
+ accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
+ extra_step_kwargs = {}
+ if accepts_eta:
+ extra_step_kwargs["eta"] = eta
+
+ # check if the scheduler accepts generator
+ accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
+ if accepts_generator:
+ extra_step_kwargs["generator"] = generator
+ return extra_step_kwargs
+
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_image_variation.StableDiffusionImageVariationPipeline.check_inputs
+ def check_inputs(self, image, height, width, callback_steps):
+ if (
+ not isinstance(image, paddle.Tensor)
+ and not isinstance(image, PIL.Image.Image)
+ and not isinstance(image, list)
+ ):
+ raise ValueError(
+ "`image` has to be of type `paddle.Tensor` or `PIL.Image.Image` or `List[PIL.Image.Image]` but is"
+ f" {type(image)}"
+ )
+
+ if height % 8 != 0 or width % 8 != 0:
+ raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
+
+ if (callback_steps is None) or (
+ callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
+ ):
+ raise ValueError(
+ f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
+ f" {type(callback_steps)}."
+ )
+
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
+ def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, generator, latents=None):
+ shape = [batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor]
+ if isinstance(generator, list) and len(generator) != batch_size:
+ raise ValueError(
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
+ )
+
+ if latents is None:
+ if isinstance(generator, list):
+ shape = [
+ 1,
+ ] + shape[1:]
+ latents = [paddle.randn(shape, generator=generator[i], dtype=dtype) for i in range(batch_size)]
+ latents = paddle.concat(latents, axis=0)
+ else:
+ latents = paddle.randn(shape, generator=generator, dtype=dtype)
+ else:
+ if latents.shape != shape:
+ raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}")
+
+ # scale the initial noise by the standard deviation required by the scheduler
+ latents = latents * self.scheduler.init_noise_sigma
+ return latents
+
+ @paddle.no_grad()
+ def __call__(
+ self,
+ image: Union[PIL.Image.Image, List[PIL.Image.Image], paddle.Tensor],
+ height: Optional[int] = None,
+ width: Optional[int] = None,
+ num_inference_steps: int = 50,
+ guidance_scale: float = 7.5,
+ negative_prompt: Optional[Union[str, List[str]]] = None,
+ num_images_per_prompt: Optional[int] = 1,
+ eta: float = 0.0,
+ generator: Optional[Union[paddle.Generator, List[paddle.Generator]]] = None,
+ latents: Optional[paddle.Tensor] = None,
+ output_type: Optional[str] = "pil",
+ return_dict: bool = True,
+ callback: Optional[Callable[[int, int, paddle.Tensor], None]] = None,
+ callback_steps: Optional[int] = 1,
+ **kwargs,
+ ):
+ r"""
+ Function invoked when calling the pipeline for generation.
+
+ Args:
+ image (`PIL.Image.Image`, `List[PIL.Image.Image]` or `paddle.Tensor`):
+ The image prompt or prompts to guide the image generation.
+ height (`int`, *optional*, defaults to self.image_unet.config.sample_size * self.vae_scale_factor):
+ The height in pixels of the generated image.
+ width (`int`, *optional*, defaults to self.image_unet.config.sample_size * self.vae_scale_factor):
+ The width in pixels of the generated image.
+ num_inference_steps (`int`, *optional*, defaults to 50):
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
+ expense of slower inference.
+ guidance_scale (`float`, *optional*, defaults to 7.5):
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
+ usually at the expense of lower image quality.
+ negative_prompt (`str` or `List[str]`, *optional*):
+ The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
+ if `guidance_scale` is less than `1`).
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
+ The number of images to generate per prompt.
+ eta (`float`, *optional*, defaults to 0.0):
+ Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
+ [`schedulers.DDIMScheduler`], will be ignored for others.
+ generator (`paddle.Generator`, *optional*):
+ A [paddle generator] to make generation
+ deterministic.
+ latents (`paddle.Tensor`, *optional*):
+ Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
+ tensor will ge generated by sampling using the supplied random `generator`.
+ output_type (`str`, *optional*, defaults to `"pil"`):
+ The output format of the generate image. Choose between
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
+ return_dict (`bool`, *optional*, defaults to `True`):
+ Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
+ plain tuple.
+ callback (`Callable`, *optional*):
+ A function that will be called every `callback_steps` steps during inference. The function will be
+ called with the following arguments: `callback(step: int, timestep: int, latents: paddle.Tensor)`.
+ callback_steps (`int`, *optional*, defaults to 1):
+ The frequency at which the `callback` function will be called. If not specified, the callback will be
+ called at every step.
+
+ Examples:
+
+ ```py
+ >>> from ppdiffusers import VersatileDiffusionImageVariationPipeline
+ >>> import paddle
+ >>> import requests
+ >>> from io import BytesIO
+ >>> from PIL import Image
+
+ >>> # let's download an initial image
+ >>> url = "https://huggingface.co/datasets/diffusers/images/resolve/main/benz.jpg"
+
+ >>> response = requests.get(url)
+ >>> image = Image.open(BytesIO(response.content)).convert("RGB")
+
+ >>> pipe = VersatileDiffusionImageVariationPipeline.from_pretrained(
+ ... "shi-labs/versatile-diffusion"
+ ... )
+
+ >>> generator = paddle.Generator().manual_seed(0)
+ >>> image = pipe(image, generator=generator).images[0]
+ >>> image.save("./car_variation.png")
+ ```
+
+ Returns:
+ [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
+ [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
+ When returning a tuple, the first element is a list with the generated images, and the second element is a
+ list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
+ (nsfw) content, according to the `safety_checker`.
+ """
+ # 0. Default height and width to unet
+ height = height or self.image_unet.config.sample_size * self.vae_scale_factor
+ width = width or self.image_unet.config.sample_size * self.vae_scale_factor
+
+ # 1. Check inputs. Raise error if not correct
+ self.check_inputs(image, height, width, callback_steps)
+
+ # 2. Define call parameters
+ batch_size = 1 if isinstance(image, PIL.Image.Image) else len(image)
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
+ # corresponds to doing no classifier free guidance.
+ do_classifier_free_guidance = guidance_scale > 1.0
+
+ # 3. Encode input prompt
+ image_embeddings = self._encode_image_prompt(
+ image, num_images_per_prompt, do_classifier_free_guidance, negative_prompt
+ )
+
+ # 4. Prepare timesteps
+ self.scheduler.set_timesteps(num_inference_steps)
+ timesteps = self.scheduler.timesteps
+
+ # 5. Prepare latent variables
+ num_channels_latents = self.image_unet.in_channels
+ latents = self.prepare_latents(
+ batch_size * num_images_per_prompt,
+ num_channels_latents,
+ height,
+ width,
+ image_embeddings.dtype,
+ generator,
+ latents,
+ )
+
+ # 6. Prepare extra step kwargs.
+ extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
+
+ # 7. Denoising loop
+ for i, t in enumerate(self.progress_bar(timesteps)):
+ # expand the latents if we are doing classifier free guidance
+ latent_model_input = paddle.concat([latents] * 2) if do_classifier_free_guidance else latents
+ latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
+
+ # predict the noise residual
+ noise_pred = self.image_unet(latent_model_input, t, encoder_hidden_states=image_embeddings).sample
+
+ # perform guidance
+ if do_classifier_free_guidance:
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
+ noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
+
+ # compute the previous noisy sample x_t -> x_t-1
+ latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
+
+ # call the callback, if provided
+ if callback is not None and i % callback_steps == 0:
+ callback(i, t, latents)
+
+ # 8. Post-processing
+ image = self.decode_latents(latents)
+
+ # 9. Convert to PIL
+ if output_type == "pil":
+ image = self.numpy_to_pil(image)
+
+ if not return_dict:
+ return (image,)
+
+ return ImagePipelineOutput(images=image)
diff --git a/ppdiffusers/pipelines/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py b/ppdiffusers/pipelines/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py
new file mode 100644
index 0000000000000000000000000000000000000000..dd1646320548f536c425dc07aa5e6e96bd6e1e91
--- /dev/null
+++ b/ppdiffusers/pipelines/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py
@@ -0,0 +1,443 @@
+# Copyright 2022 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import inspect
+from typing import Callable, List, Optional, Union
+
+import paddle
+
+from paddlenlp.transformers import CLIPTextModelWithProjection, CLIPTokenizer
+
+from ...models import AutoencoderKL, UNet2DConditionModel
+from ...models.attention import Transformer2DModel
+from ...pipeline_utils import DiffusionPipeline, ImagePipelineOutput
+from ...schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler
+from ...utils import logging
+from .modeling_text_unet import UNetFlatConditionModel
+
+logger = logging.get_logger(__name__) # pylint: disable=invalid-name
+
+
+class VersatileDiffusionTextToImagePipeline(DiffusionPipeline):
+ r"""
+ Pipeline for text-to-image generation using Versatile Diffusion.
+
+ This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
+ library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
+
+ Args:
+ vae ([`AutoencoderKL`]):
+ Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
+ text_encoder ([`CLIPTextModelWithProjection`]):
+ Frozen text-encoder. Versatile Diffusion uses the text portion of
+ [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection), specifically
+ the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
+ image_encoder ([`CLIPVisionModelWithProjection`]):
+ Frozen vision-encoder. Versatile Diffusion uses the vision portion of
+ [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPVisionModelWithProjection), specifically
+ the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
+ tokenizer (`CLIPTokenizer`):
+ Tokenizer of class
+ [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
+ image_unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
+ text_unet ([`UNetFlatConditionModel`]): xxx.
+ scheduler ([`SchedulerMixin`]):
+ A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
+ [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
+ """
+ tokenizer: CLIPTokenizer
+ text_encoder: CLIPTextModelWithProjection
+ image_unet: UNet2DConditionModel
+ text_unet: UNetFlatConditionModel
+ vae: AutoencoderKL
+ scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler]
+ _optional_components = ["text_unet"]
+
+ def __init__(
+ self,
+ tokenizer: CLIPTokenizer,
+ text_encoder: CLIPTextModelWithProjection,
+ image_unet: UNet2DConditionModel,
+ text_unet: UNetFlatConditionModel,
+ vae: AutoencoderKL,
+ scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler],
+ ):
+ super().__init__()
+ self.register_modules(
+ tokenizer=tokenizer,
+ text_encoder=text_encoder,
+ image_unet=image_unet,
+ text_unet=text_unet,
+ vae=vae,
+ scheduler=scheduler,
+ )
+ self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
+ if self.text_unet is not None:
+ self._swap_unet_attention_blocks()
+
+ def _swap_unet_attention_blocks(self):
+ """
+ Swap the `Transformer2DModel` blocks between the image and text UNets
+ """
+ for name, module in self.image_unet.named_sublayers(include_self=True):
+ if isinstance(module, Transformer2DModel):
+ parent_name, index = name.rsplit(".", 1)
+ index = int(index)
+ self.image_unet.get_sublayer(parent_name)[index], self.text_unet.get_sublayer(parent_name)[index] = (
+ self.text_unet.get_sublayer(parent_name)[index],
+ self.image_unet.get_sublayer(parent_name)[index],
+ )
+
+ def remove_unused_weights(self):
+ self.register_modules(text_unet=None)
+
+ def _encode_text_prompt(self, prompt, num_images_per_prompt, do_classifier_free_guidance, negative_prompt):
+ r"""
+ Encodes the prompt into text encoder hidden states.
+
+ Args:
+ prompt (`str` or `list(int)`):
+ prompt to be encoded
+ num_images_per_prompt (`int`):
+ number of images that should be generated per prompt
+ do_classifier_free_guidance (`bool`):
+ whether to use classifier free guidance or not
+ negative_prompt (`str` or `List[str]`):
+ The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
+ if `guidance_scale` is less than `1`).
+ """
+
+ def normalize_embeddings(encoder_output):
+ embeds = paddle.matmul(encoder_output.last_hidden_state, self.text_encoder.text_projection)
+ embeds_pooled = encoder_output.text_embeds
+ embeds = embeds / paddle.norm(embeds_pooled.unsqueeze(1), axis=-1, keepdim=True)
+ return embeds
+
+ batch_size = len(prompt) if isinstance(prompt, list) else 1
+
+ text_inputs = self.tokenizer(
+ prompt,
+ padding="max_length",
+ max_length=self.tokenizer.model_max_length,
+ truncation=True,
+ return_tensors="pd",
+ )
+ text_input_ids = text_inputs.input_ids
+ untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pd").input_ids
+
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not paddle.equal_all(
+ text_input_ids, untruncated_ids
+ ):
+ removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1])
+ logger.warning(
+ "The following part of your input was truncated because CLIP can only handle sequences up to"
+ f" {self.tokenizer.model_max_length} tokens: {removed_text}"
+ )
+
+ config = (
+ self.text_encoder.config
+ if isinstance(self.text_encoder.config, dict)
+ else self.text_encoder.config.to_dict()
+ )
+ if config.get("use_attention_mask", None) is not None and config["use_attention_mask"]:
+ attention_mask = text_inputs.attention_mask
+ else:
+ attention_mask = None
+
+ text_embeddings = self.text_encoder(text_input_ids, attention_mask=attention_mask)
+ text_embeddings = normalize_embeddings(text_embeddings)
+
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
+ bs_embed, seq_len, _ = text_embeddings.shape
+ text_embeddings = text_embeddings.tile([1, num_images_per_prompt, 1])
+ text_embeddings = text_embeddings.reshape([bs_embed * num_images_per_prompt, seq_len, -1])
+
+ # get unconditional embeddings for classifier free guidance
+ if do_classifier_free_guidance:
+ uncond_tokens: List[str]
+ if negative_prompt is None:
+ uncond_tokens = [""] * batch_size
+ elif type(prompt) is not type(negative_prompt):
+ raise TypeError(
+ f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
+ f" {type(prompt)}."
+ )
+ elif isinstance(negative_prompt, str):
+ uncond_tokens = [negative_prompt]
+ elif batch_size != len(negative_prompt):
+ raise ValueError(
+ f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
+ f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
+ " the batch size of `prompt`."
+ )
+ else:
+ uncond_tokens = negative_prompt
+
+ max_length = text_input_ids.shape[-1]
+ uncond_input = self.tokenizer(
+ uncond_tokens,
+ padding="max_length",
+ max_length=max_length,
+ truncation=True,
+ return_tensors="pd",
+ )
+
+ if config.get("use_attention_mask", None) is not None and config["use_attention_mask"]:
+ attention_mask = uncond_input.attention_mask
+ else:
+ attention_mask = None
+
+ uncond_embeddings = self.text_encoder(uncond_input.input_ids, attention_mask=attention_mask)
+ uncond_embeddings = normalize_embeddings(uncond_embeddings)
+
+ # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
+ seq_len = uncond_embeddings.shape[1]
+ uncond_embeddings = uncond_embeddings.tile([1, num_images_per_prompt, 1])
+ uncond_embeddings = uncond_embeddings.reshape([batch_size * num_images_per_prompt, seq_len, -1])
+
+ # For classifier free guidance, we need to do two forward passes.
+ # Here we concatenate the unconditional and text embeddings into a single batch
+ # to avoid doing two forward passes
+ text_embeddings = paddle.concat([uncond_embeddings, text_embeddings])
+
+ return text_embeddings
+
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents
+ def decode_latents(self, latents):
+ latents = 1 / 0.18215 * latents
+ image = self.vae.decode(latents).sample
+ image = (image / 2 + 0.5).clip(0, 1)
+ # we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
+ image = image.transpose([0, 2, 3, 1]).cast("float32").numpy()
+ return image
+
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
+ def prepare_extra_step_kwargs(self, generator, eta):
+ # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
+ # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
+ # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
+ # and should be between [0, 1]
+
+ accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
+ extra_step_kwargs = {}
+ if accepts_eta:
+ extra_step_kwargs["eta"] = eta
+
+ # check if the scheduler accepts generator
+ accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
+ if accepts_generator:
+ extra_step_kwargs["generator"] = generator
+ return extra_step_kwargs
+
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.check_inputs
+ def check_inputs(self, prompt, height, width, callback_steps):
+ if not isinstance(prompt, str) and not isinstance(prompt, list):
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
+
+ if height % 8 != 0 or width % 8 != 0:
+ raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
+
+ if (callback_steps is None) or (
+ callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
+ ):
+ raise ValueError(
+ f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
+ f" {type(callback_steps)}."
+ )
+
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
+ def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, generator, latents=None):
+ shape = [batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor]
+ if isinstance(generator, list) and len(generator) != batch_size:
+ raise ValueError(
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
+ )
+
+ if latents is None:
+ if isinstance(generator, list):
+ shape = [
+ 1,
+ ] + shape[1:]
+ latents = [paddle.randn(shape, generator=generator[i], dtype=dtype) for i in range(batch_size)]
+ latents = paddle.concat(latents, axis=0)
+ else:
+ latents = paddle.randn(shape, generator=generator, dtype=dtype)
+ else:
+ if latents.shape != shape:
+ raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}")
+
+ # scale the initial noise by the standard deviation required by the scheduler
+ latents = latents * self.scheduler.init_noise_sigma
+ return latents
+
+ @paddle.no_grad()
+ def __call__(
+ self,
+ prompt: Union[str, List[str]],
+ height: Optional[int] = None,
+ width: Optional[int] = None,
+ num_inference_steps: int = 50,
+ guidance_scale: float = 7.5,
+ negative_prompt: Optional[Union[str, List[str]]] = None,
+ num_images_per_prompt: Optional[int] = 1,
+ eta: float = 0.0,
+ generator: Optional[Union[paddle.Generator, List[paddle.Generator]]] = None,
+ latents: Optional[paddle.Tensor] = None,
+ output_type: Optional[str] = "pil",
+ return_dict: bool = True,
+ callback: Optional[Callable[[int, int, paddle.Tensor], None]] = None,
+ callback_steps: Optional[int] = 1,
+ **kwargs,
+ ):
+ r"""
+ Function invoked when calling the pipeline for generation.
+
+ Args:
+ prompt (`str` or `List[str]`):
+ The prompt or prompts to guide the image generation.
+ height (`int`, *optional*, defaults to self.image_unet.config.sample_size * self.vae_scale_factor):
+ The height in pixels of the generated image.
+ width (`int`, *optional*, defaults to self.image_unet.config.sample_size * self.vae_scale_factor):
+ The width in pixels of the generated image.
+ num_inference_steps (`int`, *optional*, defaults to 50):
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
+ expense of slower inference.
+ guidance_scale (`float`, *optional*, defaults to 7.5):
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
+ usually at the expense of lower image quality.
+ negative_prompt (`str` or `List[str]`, *optional*):
+ The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
+ if `guidance_scale` is less than `1`).
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
+ The number of images to generate per prompt.
+ eta (`float`, *optional*, defaults to 0.0):
+ Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
+ [`schedulers.DDIMScheduler`], will be ignored for others.
+ generator (`paddle.Generator`, *optional*):
+ A [paddle generator] to make generation
+ deterministic.
+ latents (`paddle.Tensor`, *optional*):
+ Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
+ tensor will ge generated by sampling using the supplied random `generator`.
+ output_type (`str`, *optional*, defaults to `"pil"`):
+ The output format of the generate image. Choose between
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
+ return_dict (`bool`, *optional*, defaults to `True`):
+ Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
+ plain tuple.
+ callback (`Callable`, *optional*):
+ A function that will be called every `callback_steps` steps during inference. The function will be
+ called with the following arguments: `callback(step: int, timestep: int, latents: paddle.Tensor)`.
+ callback_steps (`int`, *optional*, defaults to 1):
+ The frequency at which the `callback` function will be called. If not specified, the callback will be
+ called at every step.
+
+ Examples:
+
+ ```py
+ >>> from ppdiffusers import VersatileDiffusionTextToImagePipeline
+ >>> import paddle
+
+ >>> pipe = VersatileDiffusionTextToImagePipeline.from_pretrained(
+ ... "shi-labs/versatile-diffusion"
+ ... )
+ >>> pipe.remove_unused_weights()
+
+ >>> generator = paddle.Generator().manual_seed(0)
+ >>> image = pipe("an astronaut riding on a horse on mars", generator=generator).images[0]
+ >>> image.save("./astronaut.png")
+ ```
+
+ Returns:
+ [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
+ [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
+ When returning a tuple, the first element is a list with the generated images, and the second element is a
+ list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
+ (nsfw) content, according to the `safety_checker`.
+ """
+ # 0. Default height and width to unet
+ height = height or self.image_unet.config.sample_size * self.vae_scale_factor
+ width = width or self.image_unet.config.sample_size * self.vae_scale_factor
+
+ # 1. Check inputs. Raise error if not correct
+ self.check_inputs(prompt, height, width, callback_steps)
+
+ # 2. Define call parameters
+ batch_size = 1 if isinstance(prompt, str) else len(prompt)
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
+ # corresponds to doing no classifier free guidance.
+ do_classifier_free_guidance = guidance_scale > 1.0
+
+ # 3. Encode input prompt
+ text_embeddings = self._encode_text_prompt(
+ prompt, num_images_per_prompt, do_classifier_free_guidance, negative_prompt
+ )
+
+ # 4. Prepare timesteps
+ self.scheduler.set_timesteps(num_inference_steps)
+ timesteps = self.scheduler.timesteps
+
+ # 5. Prepare latent variables
+ num_channels_latents = self.image_unet.in_channels
+ latents = self.prepare_latents(
+ batch_size * num_images_per_prompt,
+ num_channels_latents,
+ height,
+ width,
+ text_embeddings.dtype,
+ generator,
+ latents,
+ )
+
+ # 6. Prepare extra step kwargs.
+ extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
+
+ # 7. Denoising loop
+ for i, t in enumerate(self.progress_bar(timesteps)):
+ # expand the latents if we are doing classifier free guidance
+ latent_model_input = paddle.concat([latents] * 2) if do_classifier_free_guidance else latents
+ latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
+
+ # predict the noise residual
+ noise_pred = self.image_unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample
+
+ # perform guidance
+ if do_classifier_free_guidance:
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
+ noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
+
+ # compute the previous noisy sample x_t -> x_t-1
+ latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
+
+ # call the callback, if provided
+ if callback is not None and i % callback_steps == 0:
+ callback(i, t, latents)
+
+ # 9. Post-processing
+ image = self.decode_latents(latents)
+
+ # 10. Convert to PIL
+ if output_type == "pil":
+ image = self.numpy_to_pil(image)
+
+ if not return_dict:
+ return (image,)
+
+ return ImagePipelineOutput(images=image)
diff --git a/ppdiffusers/pipelines/vq_diffusion/__init__.py b/ppdiffusers/pipelines/vq_diffusion/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..87e756edf0efab65460e3df55bea3d8e45669e1e
--- /dev/null
+++ b/ppdiffusers/pipelines/vq_diffusion/__init__.py
@@ -0,0 +1,23 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+# Copyright 2022 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+# flake8: noqa
+
+from ...utils import is_paddle_available, is_paddlenlp_available
+
+if is_paddle_available() and is_paddlenlp_available():
+ from .pipeline_vq_diffusion import (
+ LearnedClassifierFreeSamplingEmbeddings,
+ VQDiffusionPipeline,
+ )
diff --git a/ppdiffusers/pipelines/vq_diffusion/__pycache__/__init__.cpython-37.pyc b/ppdiffusers/pipelines/vq_diffusion/__pycache__/__init__.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..7fa5d2a044987ff276c950d756fe3a2dd38e4cb6
Binary files /dev/null and b/ppdiffusers/pipelines/vq_diffusion/__pycache__/__init__.cpython-37.pyc differ
diff --git a/ppdiffusers/pipelines/vq_diffusion/__pycache__/pipeline_vq_diffusion.cpython-37.pyc b/ppdiffusers/pipelines/vq_diffusion/__pycache__/pipeline_vq_diffusion.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..745419cba73ab1516e7fd8066db0341fc6109a29
Binary files /dev/null and b/ppdiffusers/pipelines/vq_diffusion/__pycache__/pipeline_vq_diffusion.cpython-37.pyc differ
diff --git a/ppdiffusers/pipelines/vq_diffusion/pipeline_vq_diffusion.py b/ppdiffusers/pipelines/vq_diffusion/pipeline_vq_diffusion.py
new file mode 100644
index 0000000000000000000000000000000000000000..98b179141855d1aced0177024022563d4df7995b
--- /dev/null
+++ b/ppdiffusers/pipelines/vq_diffusion/pipeline_vq_diffusion.py
@@ -0,0 +1,346 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+# Copyright 2022 Microsoft and The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from typing import Callable, List, Optional, Tuple, Union
+
+import paddle
+import paddle.nn as nn
+
+from paddlenlp.transformers import CLIPTextModel, CLIPTokenizer
+
+from ...configuration_utils import ConfigMixin, register_to_config
+from ...modeling_utils import ModelMixin
+from ...models import Transformer2DModel, VQModel
+from ...pipeline_utils import DiffusionPipeline, ImagePipelineOutput
+from ...schedulers import VQDiffusionScheduler
+from ...utils import logging
+
+logger = logging.get_logger(__name__) # pylint: disable=invalid-name
+
+INF = 1e9
+
+
+# paddle logsumexp may has bug
+def logsumexp(x, axis=None, keepdim=False):
+ return paddle.log(x.exp().sum(axis=axis, keepdim=keepdim))
+
+
+class LearnedClassifierFreeSamplingEmbeddings(ModelMixin, ConfigMixin):
+ """
+ Utility class for storing learned text embeddings for classifier free sampling
+ """
+
+ @register_to_config
+ def __init__(self, learnable: bool, hidden_size: Optional[int] = None, length: Optional[int] = None):
+ super().__init__()
+
+ self.learnable = learnable
+
+ if self.learnable:
+ assert hidden_size is not None, "learnable=True requires `hidden_size` to be set"
+ assert length is not None, "learnable=True requires `length` to be set"
+
+ embeddings = paddle.zeros([length, hidden_size])
+ self.embeddings = self.create_parameter(
+ embeddings.shape, default_initializer=nn.initializer.Assign(embeddings)
+ )
+ else:
+ self.embeddings = None
+
+
+class VQDiffusionPipeline(DiffusionPipeline):
+ r"""
+ Pipeline for text-to-image generation using VQ Diffusion
+
+ This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
+ library implements for all the pipelines (such as downloading or saving, running on a particular xxxx, etc.)
+
+ Args:
+ vqvae ([`VQModel`]):
+ Vector Quantized Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent
+ representations.
+ text_encoder ([`CLIPTextModel`]):
+ Frozen text-encoder. VQ Diffusion uses the text portion of
+ [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
+ the [clip-vit-base-patch32](https://huggingface.co/openai/clip-vit-base-patch32) variant.
+ tokenizer (`CLIPTokenizer`):
+ Tokenizer of class
+ [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
+ transformer ([`Transformer2DModel`]):
+ Conditional transformer to denoise the encoded image latents.
+ scheduler ([`VQDiffusionScheduler`]):
+ A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
+ """
+
+ vqvae: VQModel
+ text_encoder: CLIPTextModel
+ tokenizer: CLIPTokenizer
+ transformer: Transformer2DModel
+ learned_classifier_free_sampling_embeddings: LearnedClassifierFreeSamplingEmbeddings
+ scheduler: VQDiffusionScheduler
+
+ def __init__(
+ self,
+ vqvae: VQModel,
+ text_encoder: CLIPTextModel,
+ tokenizer: CLIPTokenizer,
+ transformer: Transformer2DModel,
+ scheduler: VQDiffusionScheduler,
+ learned_classifier_free_sampling_embeddings: LearnedClassifierFreeSamplingEmbeddings,
+ ):
+ super().__init__()
+
+ self.register_modules(
+ vqvae=vqvae,
+ transformer=transformer,
+ text_encoder=text_encoder,
+ tokenizer=tokenizer,
+ scheduler=scheduler,
+ learned_classifier_free_sampling_embeddings=learned_classifier_free_sampling_embeddings,
+ )
+
+ def _encode_prompt(self, prompt, num_images_per_prompt, do_classifier_free_guidance):
+ batch_size = len(prompt) if isinstance(prompt, list) else 1
+
+ # get prompt text embeddings
+ text_inputs = self.tokenizer(
+ prompt,
+ padding="max_length",
+ max_length=self.tokenizer.model_max_length,
+ return_tensors="pd",
+ )
+ text_input_ids = text_inputs.input_ids
+
+ if text_input_ids.shape[-1] > self.tokenizer.model_max_length:
+ removed_text = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :])
+ logger.warning(
+ "The following part of your input was truncated because CLIP can only handle sequences up to"
+ f" {self.tokenizer.model_max_length} tokens: {removed_text}"
+ )
+ text_input_ids = text_input_ids[:, : self.tokenizer.model_max_length]
+ text_embeddings = self.text_encoder(text_input_ids)[0]
+
+ # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion.
+ # While CLIP does normalize the pooled output of the text transformer when combining
+ # the image and text embeddings, CLIP does not directly normalize the last hidden state.
+ #
+ # CLIP normalizing the pooled output.
+ # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053
+ text_embeddings = text_embeddings / text_embeddings.norm(axis=-1, keepdim=True)
+
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
+ bs_embed, seq_len, _ = text_embeddings.shape
+ text_embeddings = text_embeddings.tile([1, num_images_per_prompt, 1])
+ text_embeddings = text_embeddings.reshape([bs_embed * num_images_per_prompt, seq_len, -1])
+
+ if do_classifier_free_guidance:
+ if self.learned_classifier_free_sampling_embeddings.learnable:
+ uncond_embeddings = self.learned_classifier_free_sampling_embeddings.embeddings
+ uncond_embeddings = uncond_embeddings.unsqueeze(0).tile([batch_size, 1, 1])
+ else:
+ uncond_tokens = [""] * batch_size
+
+ max_length = text_input_ids.shape[-1]
+ uncond_input = self.tokenizer(
+ uncond_tokens,
+ padding="max_length",
+ max_length=max_length,
+ truncation=True,
+ return_tensors="pd",
+ )
+ uncond_embeddings = self.text_encoder(uncond_input.input_ids)[0]
+ # See comment for normalizing text embeddings
+ uncond_embeddings = uncond_embeddings / uncond_embeddings.norm(axis=-1, keepdim=True)
+
+ # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
+ seq_len = uncond_embeddings.shape[1]
+ uncond_embeddings = uncond_embeddings.tile([1, num_images_per_prompt, 1])
+ uncond_embeddings = uncond_embeddings.reshape([batch_size * num_images_per_prompt, seq_len, -1])
+
+ # For classifier free guidance, we need to do two forward passes.
+ # Here we concatenate the unconditional and text embeddings into a single batch
+ # to avoid doing two forward passes
+ text_embeddings = paddle.concat([uncond_embeddings, text_embeddings])
+
+ return text_embeddings
+
+ @paddle.no_grad()
+ def __call__(
+ self,
+ prompt: Union[str, List[str]],
+ num_inference_steps: int = 100,
+ guidance_scale: float = 5.0,
+ truncation_rate: float = 1.0,
+ num_images_per_prompt: int = 1,
+ generator: Optional[Union[paddle.Generator, List[paddle.Generator]]] = None,
+ latents: Optional[paddle.Tensor] = None,
+ output_type: Optional[str] = "pil",
+ return_dict: bool = True,
+ callback: Optional[Callable[[int, int, paddle.Tensor], None]] = None,
+ callback_steps: Optional[int] = 1,
+ ) -> Union[ImagePipelineOutput, Tuple]:
+ """
+ Function invoked when calling the pipeline for generation.
+
+ Args:
+ prompt (`str` or `List[str]`):
+ The prompt or prompts to guide the image generation.
+ num_inference_steps (`int`, *optional*, defaults to 100):
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
+ expense of slower inference.
+ guidance_scale (`float`, *optional*, defaults to 7.5):
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
+ usually at the expense of lower image quality.
+ truncation_rate (`float`, *optional*, defaults to 1.0 (equivalent to no truncation)):
+ Used to "truncate" the predicted classes for x_0 such that the cumulative probability for a pixel is at
+ most `truncation_rate`. The lowest probabilities that would increase the cumulative probability above
+ `truncation_rate` are set to zero.
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
+ The number of images to generate per prompt.
+ generator (`paddle.Generator`, *optional*):
+ One or a list of paddle generator(s) to make generation deterministic.
+ latents (`paddle.Tensor` of shape (batch), *optional*):
+ Pre-generated noisy latents to be used as inputs for image generation. Must be valid embedding indices.
+ Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will
+ be generated of completely masked latent pixels.
+ output_type (`str`, *optional*, defaults to `"pil"`):
+ The output format of the generated image. Choose between
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
+ return_dict (`bool`, *optional*, defaults to `True`):
+ Whether or not to return a [`~pipeline_utils.ImagePipelineOutput`] instead of a plain tuple.
+ callback (`Callable`, *optional*):
+ A function that will be called every `callback_steps` steps during inference. The function will be
+ called with the following arguments: `callback(step: int, timestep: int, latents: paddle.Tensor)`.
+ callback_steps (`int`, *optional*, defaults to 1):
+ The frequency at which the `callback` function will be called. If not specified, the callback will be
+ called at every step.
+
+ Returns:
+ [`~pipeline_utils.ImagePipelineOutput`] or `tuple`: [`~ pipeline_utils.ImagePipelineOutput `] if
+ `return_dict` is True, otherwise a `tuple. When returning a tuple, the first element is a list with the
+ generated images.
+ """
+ if isinstance(prompt, str):
+ batch_size = 1
+ elif isinstance(prompt, list):
+ batch_size = len(prompt)
+ else:
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
+
+ batch_size = batch_size * num_images_per_prompt
+
+ do_classifier_free_guidance = guidance_scale > 1.0
+
+ text_embeddings = self._encode_prompt(prompt, num_images_per_prompt, do_classifier_free_guidance)
+
+ if (callback_steps is None) or (
+ callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
+ ):
+ raise ValueError(
+ f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
+ f" {type(callback_steps)}."
+ )
+
+ # get the initial completely masked latents unless the user supplied it
+
+ latents_shape = [batch_size, self.transformer.num_latent_pixels]
+ if latents is None:
+ mask_class = self.transformer.num_vector_embeds - 1
+ latents = paddle.full(latents_shape, mask_class, dtype="int64")
+ else:
+ if latents.shape != latents_shape:
+ raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}")
+ if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any():
+ raise ValueError(
+ "Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,"
+ f" {self.transformer.num_vector_embeds - 1} (inclusive)."
+ )
+
+ # set timesteps
+ self.scheduler.set_timesteps(num_inference_steps)
+
+ timesteps_tensor = self.scheduler.timesteps
+
+ sample = latents
+
+ for i, t in enumerate(self.progress_bar(timesteps_tensor)):
+ # expand the sample if we are doing classifier free guidance
+ latent_model_input = paddle.concat([sample] * 2) if do_classifier_free_guidance else sample
+
+ # predict the un-noised image
+ # model_output == `log_p_x_0`
+ model_output = self.transformer(
+ latent_model_input, encoder_hidden_states=text_embeddings, timestep=t
+ ).sample
+
+ if do_classifier_free_guidance:
+ model_output_uncond, model_output_text = model_output.chunk(2)
+ model_output = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond)
+ model_output -= logsumexp(model_output, axis=1, keepdim=True)
+
+ model_output = self.truncate(model_output, truncation_rate)
+
+ # remove `log(0)`'s (`-inf`s)
+ model_output = model_output.clip(-70)
+
+ # compute the previous noisy sample x_t -> x_t-1
+ sample = self.scheduler.step(model_output, timestep=t, sample=sample, generator=generator).prev_sample
+
+ # call the callback, if provided
+ if callback is not None and i % callback_steps == 0:
+ callback(i, t, sample)
+
+ embedding_channels = self.vqvae.config.vq_embed_dim
+ embeddings_shape = (batch_size, self.transformer.height, self.transformer.width, embedding_channels)
+ embeddings = self.vqvae.quantize.get_codebook_entry(sample, shape=embeddings_shape)
+ image = self.vqvae.decode(embeddings, force_not_quantize=True).sample
+
+ image = (image / 2 + 0.5).clip(0, 1)
+ image = image.transpose([0, 2, 3, 1]).cast("float32").numpy()
+
+ if output_type == "pil":
+ image = self.numpy_to_pil(image)
+
+ if not return_dict:
+ return (image,)
+
+ return ImagePipelineOutput(images=image)
+
+ def truncate(self, log_p_x_0: paddle.Tensor, truncation_rate: float) -> paddle.Tensor:
+ """
+ Truncates log_p_x_0 such that for each column vector, the total cumulative probability is `truncation_rate` The
+ lowest probabilities that would increase the cumulative probability above `truncation_rate` are set to zero.
+ """
+ sorted_log_p_x_0, indices = paddle.topk(log_p_x_0, k=log_p_x_0.shape[1], axis=1)
+ sorted_p_x_0 = paddle.exp(sorted_log_p_x_0)
+ keep_mask = (sorted_p_x_0.cumsum(axis=1) < truncation_rate).cast("int64")
+
+ # Ensure that at least the largest probability is not zeroed out
+ all_true = paddle.full_like(keep_mask[:, 0:1, :], 1)
+ keep_mask = paddle.concat((all_true, keep_mask), axis=1)
+ keep_mask = keep_mask[:, :-1, :]
+
+ keep_mask = paddle.take_along_axis(keep_mask, indices.argsort(1), axis=1).cast(
+ "bool"
+ ) # keep_mask.gather(indices.argsort(1), axis=1)
+
+ rv = log_p_x_0.clone()
+ # rv[~keep_mask] = -INF # -inf = log(0)
+ rv = paddle.where(keep_mask, rv, paddle.to_tensor(-INF, dtype="float32"))
+
+ return rv
diff --git a/ppdiffusers/ppnlp_patch_utils.py b/ppdiffusers/ppnlp_patch_utils.py
new file mode 100644
index 0000000000000000000000000000000000000000..8d13a8a837ffeff61bf0cada9bc702d4dd133b52
--- /dev/null
+++ b/ppdiffusers/ppnlp_patch_utils.py
@@ -0,0 +1,509 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import builtins
+import contextlib
+import copy
+import functools
+import time
+import weakref
+from collections import OrderedDict
+from types import FunctionType, MethodType
+from typing import Any, Callable, Dict, List, Optional, Tuple
+
+from .utils import is_paddle_available, is_paddlenlp_available
+
+
+def copy_func(f):
+ "Copy a non-builtin function (NB `copy.copy` does not work for this)"
+ if not isinstance(f, FunctionType):
+ return copy.copy(f)
+ fn = FunctionType(f.__code__, f.__globals__, f.__name__, f.__defaults__, f.__closure__)
+ fn.__kwdefaults__ = f.__kwdefaults__
+ fn.__dict__.update(f.__dict__)
+ fn.__annotations__.update(f.__annotations__)
+ fn.__qualname__ = f.__qualname__
+ return fn
+
+
+# copied from https://github.com/fastai/fastcore/blob/c9b4c088d3706569c076e7c197c724730be190ab/fastcore/basics.py#L938-L954
+def patch_to(cls, as_prop=False, cls_method=False):
+ "Decorator: add `f` to `cls`"
+ if not isinstance(cls, (tuple, list)):
+ cls = (cls,)
+
+ def _inner(f):
+ for c_ in cls:
+ nf = copy_func(f)
+ nm = f.__name__
+ # `functools.update_wrapper` when passing patched function to `Pipeline`, so we do it manually
+ for o in functools.WRAPPER_ASSIGNMENTS:
+ setattr(nf, o, getattr(f, o))
+ nf.__qualname__ = f"{c_.__name__}.{nm}"
+ if cls_method:
+ setattr(c_, nm, MethodType(nf, c_))
+ else:
+ setattr(c_, nm, property(nf) if as_prop else nf)
+ # Avoid clobbering existing functions
+ return globals().get(nm, builtins.__dict__.get(nm, None))
+
+ return _inner
+
+
+if is_paddle_available():
+ import paddle
+ import paddle.nn as nn
+
+ @contextlib.contextmanager
+ def device_scope(device="cpu"):
+ new_device = device.replace("cuda", "gpu")
+ old_device = paddle.get_device()
+ if str(new_device) == str(old_device):
+ yield
+ else:
+ try:
+ paddle.set_device(new_device)
+ yield
+ finally:
+ paddle.set_device(old_device)
+
+ paddle.device_scope = device_scope
+
+ class RNGStatesTracker:
+ def __init__(self):
+ self.states_ = {}
+
+ def reset(self):
+ self.states_ = {}
+
+ def remove(self, generator_name=None):
+ if generator_name is not None:
+ del self.states_[generator_name]
+
+ def manual_seed(self, seed, generator_name=None):
+ if generator_name is None:
+ generator_name = str(time.time())
+ if generator_name in self.states_:
+ raise ValueError("state {} already exists".format(generator_name))
+ orig_rng_state = paddle.get_cuda_rng_state()
+ paddle.seed(seed)
+ self.states_[generator_name] = paddle.get_cuda_rng_state()
+ paddle.set_cuda_rng_state(orig_rng_state)
+ return generator_name
+
+ @contextlib.contextmanager
+ def rng_state(self, generator_name=None):
+ if generator_name is not None:
+ if generator_name not in self.states_:
+ raise ValueError("state {} does not exist".format(generator_name))
+ orig_cuda_rng_state = paddle.get_cuda_rng_state()
+ paddle.set_cuda_rng_state(self.states_[generator_name])
+ try:
+ yield
+ finally:
+ self.states_[generator_name] = paddle.get_cuda_rng_state()
+ paddle.set_cuda_rng_state(orig_cuda_rng_state)
+ else:
+ yield
+
+ RNG_STATE_TRACKER = RNGStatesTracker()
+
+ def get_rng_state_tracker(*args, **kwargs):
+ return RNG_STATE_TRACKER
+
+ paddle.Generator = get_rng_state_tracker
+ randn = paddle.randn
+
+ def randn_pt(shape, dtype=None, name=None, **kwargs):
+ generator = kwargs.get("generator", None)
+ if generator is None:
+ return randn(shape, dtype=dtype, name=name)
+ else:
+ with get_rng_state_tracker().rng_state(generator):
+ return randn(shape, dtype=dtype, name=name)
+
+ paddle.randn = randn_pt
+
+ rand = paddle.rand
+
+ def rand_pt(shape, dtype=None, name=None, **kwargs):
+ generator = kwargs.get("generator", None)
+ if generator is None:
+ return randn(shape, dtype=dtype, name=name)
+ else:
+ with get_rng_state_tracker().rng_state(generator):
+ return rand(shape, dtype=dtype, name=name)
+
+ paddle.rand = rand_pt
+
+ @patch_to(nn.Layer)
+ def get_sublayer(self, target: str):
+ if target == "":
+ return self
+
+ atoms: List[str] = target.split(".")
+ mod: nn.Layer = self
+
+ for item in atoms:
+ if not hasattr(mod, item):
+ raise AttributeError(mod.__class__.__name__ + " has no " "attribute `" + item + "`")
+
+ mod = getattr(mod, item)
+
+ if not isinstance(mod, nn.Layer):
+ raise AttributeError("`" + item + "` is not " "an nn.Layer")
+ return mod
+
+ class _WrappedHook:
+ def __init__(self, hook: Callable, module: Optional["nn.Layer"] = None):
+ self.hook: Callable = hook
+ functools.update_wrapper(self, hook)
+
+ self.with_module: bool = False
+
+ if module is not None:
+ self.module: weakref.ReferenceType["nn.Layer"] = weakref.ref(module)
+ self.with_module = True
+
+ def __call__(self, *args: Any, **kwargs: Any) -> Any:
+ if self.with_module:
+ module = self.module()
+ if module is None:
+ raise RuntimeError("You are trying to call the hook of a dead Module!")
+ return self.hook(module, *args, **kwargs)
+ return self.hook(*args, **kwargs)
+
+ def __getstate__(self) -> Dict:
+ result = {"hook": self.hook, "with_module": self.with_module}
+ if self.with_module:
+ result["module"] = self.module()
+
+ return result
+
+ def __setstate__(self, state: Dict):
+ self.hook = state["hook"]
+ self.with_module = state["with_module"]
+
+ if self.with_module:
+ if state["module"] is None:
+ raise RuntimeError("You are trying to revive the hook of a dead Module!")
+ self.module = weakref.ref(state["module"])
+
+ from paddle.fluid.dygraph.layers import HookRemoveHelper
+
+ @patch_to(nn.Layer)
+ def register_load_state_dict_pre_hook(self, hook, with_module=False):
+ handle = HookRemoveHelper(self.load_state_dict_pre_hooks)
+ self.load_state_dict_pre_hooks[handle._hook_id] = _WrappedHook(hook, self if with_module else None)
+ return handle
+
+ raw_set_state_dict = nn.Layer.set_state_dict
+
+ @patch_to(nn.Layer)
+ def set_state_dict(self, state_dict, use_structured_name: bool = True):
+ for hook in self.load_state_dict_pre_hooks.values():
+ hook(state_dict)
+ return raw_set_state_dict(self, state_dict, use_structured_name=use_structured_name)
+
+ nn.Layer.load_dict = nn.Layer.set_state_dict
+ nn.Layer.set_dict = nn.Layer.set_state_dict
+
+ raw_init = nn.Layer.__init__
+
+ @patch_to(nn.Layer)
+ def __init__(self, name_scope=None, dtype="float32"):
+ raw_init(self, name_scope=name_scope, dtype=dtype)
+ self.load_state_dict_pre_hooks = OrderedDict()
+
+
+if is_paddle_available() and is_paddlenlp_available():
+ import paddle
+
+ import paddlenlp.transformers
+ from paddlenlp.transformers import PretrainedModel
+
+ @patch_to(PretrainedModel, as_prop=True)
+ def dtype(self):
+ try:
+ return next(self.named_parameters())[1].dtype
+ except StopIteration:
+ return paddle.get_default_dtype()
+
+ @patch_to(PretrainedModel, as_prop=True)
+ def device(self):
+ try:
+ return next(self.named_parameters())[1].place
+ except StopIteration:
+ return paddle.get_device()
+
+ try:
+ from paddlenlp.transformers import XLMRobertaTokenizer
+ except ImportError:
+ # patch xlm-roberta tokenizer
+ """Tokenization classes for XLM-RoBERTa model."""
+ import os
+ from shutil import copyfile
+
+ import sentencepiece as spm
+
+ from paddlenlp.transformers.tokenizer_utils import (
+ AddedToken,
+ PretrainedTokenizer,
+ )
+ from paddlenlp.utils.log import logger
+
+ SPIECE_UNDERLINE = "▁"
+
+ class XLMRobertaTokenizer(PretrainedTokenizer):
+
+ resource_files_names = {"vocab_file": "sentencepiece.bpe.model"}
+ pretrained_resource_files_map = {}
+ pretrained_init_configuration = {}
+ max_model_input_sizes = {
+ "xlm-roberta-base": 512,
+ "xlm-roberta-large": 512,
+ "xlm-roberta-large-finetuned-conll02-dutch": 512,
+ "xlm-roberta-large-finetuned-conll02-spanish": 512,
+ "xlm-roberta-large-finetuned-conll03-english": 512,
+ "xlm-roberta-large-finetuned-conll03-german": 512,
+ }
+ model_input_names = ["input_ids", "attention_mask"]
+
+ def __init__(
+ self,
+ vocab_file,
+ bos_token="",
+ eos_token="",
+ sep_token="",
+ cls_token="",
+ unk_token="",
+ pad_token="",
+ mask_token="",
+ sp_model_kwargs: Optional[Dict[str, Any]] = None,
+ **kwargs
+ ) -> None:
+ # Mask token behave like a normal word, i.e. include the space before it
+ mask_token = (
+ AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token
+ )
+
+ self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
+
+ super().__init__(
+ bos_token=bos_token,
+ eos_token=eos_token,
+ unk_token=unk_token,
+ sep_token=sep_token,
+ cls_token=cls_token,
+ pad_token=pad_token,
+ mask_token=mask_token,
+ sp_model_kwargs=self.sp_model_kwargs,
+ **kwargs,
+ )
+
+ self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
+ self.sp_model.Load(str(vocab_file))
+ self.vocab_file = vocab_file
+
+ # Original fairseq vocab and spm vocab must be "aligned":
+ # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
+ # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ----
+ # fairseq | '' | '' | '' | '' | ',' | '.' | '▁' | 's' | '▁de' | '-'
+ # spm | '' | '' | '' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a'
+
+ # Mimic fairseq token-to-id alignment for the first 4 token
+ self.fairseq_tokens_to_ids = {"": 0, "": 1, "": 2, "": 3}
+
+ # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab
+ self.fairseq_offset = 1
+
+ self.fairseq_tokens_to_ids[""] = len(self.sp_model) + self.fairseq_offset
+ self.fairseq_ids_to_tokens = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
+
+ def __getstate__(self):
+ state = self.__dict__.copy()
+ state["sp_model"] = None
+ state["sp_model_proto"] = self.sp_model.serialized_model_proto()
+ return state
+
+ def __setstate__(self, d):
+ self.__dict__ = d
+
+ # for backward compatibility
+ if not hasattr(self, "sp_model_kwargs"):
+ self.sp_model_kwargs = {}
+
+ self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
+ self.sp_model.LoadFromSerializedProto(self.sp_model_proto)
+
+ def build_inputs_with_special_tokens(
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
+ ) -> List[int]:
+ """
+ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
+ adding special tokens. An XLM-RoBERTa sequence has the following format:
+ - single sequence: ` X `
+ - pair of sequences: ` A B `
+ Args:
+ token_ids_0 (`List[int]`):
+ List of IDs to which the special tokens will be added.
+ token_ids_1 (`List[int]`, *optional*):
+ Optional second list of IDs for sequence pairs.
+ Returns:
+ `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
+ """
+
+ if token_ids_1 is None:
+ return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
+ cls = [self.cls_token_id]
+ sep = [self.sep_token_id]
+ return cls + token_ids_0 + sep + sep + token_ids_1 + sep
+
+ def get_special_tokens_mask(
+ self,
+ token_ids_0: List[int],
+ token_ids_1: Optional[List[int]] = None,
+ already_has_special_tokens: bool = False,
+ ) -> List[int]:
+ """
+ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
+ special tokens using the tokenizer `prepare_for_model` method.
+ Args:
+ token_ids_0 (`List[int]`):
+ List of IDs.
+ token_ids_1 (`List[int]`, *optional*):
+ Optional second list of IDs for sequence pairs.
+ already_has_special_tokens (`bool`, *optional*, defaults to `False`):
+ Whether or not the token list is already formatted with special tokens for the model.
+ Returns:
+ `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
+ """
+
+ if already_has_special_tokens:
+ return super().get_special_tokens_mask(
+ token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
+ )
+
+ if token_ids_1 is None:
+ return [1] + ([0] * len(token_ids_0)) + [1]
+ return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]
+
+ def create_token_type_ids_from_sequences(
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
+ ) -> List[int]:
+ """
+ Create a mask from the two sequences passed to be used in a sequence-pair classification task. XLM-RoBERTa does
+ not make use of token type ids, therefore a list of zeros is returned.
+ Args:
+ token_ids_0 (`List[int]`):
+ List of IDs.
+ token_ids_1 (`List[int]`, *optional*):
+ Optional second list of IDs for sequence pairs.
+ Returns:
+ `List[int]`: List of zeros.
+ """
+
+ sep = [self.sep_token_id]
+ cls = [self.cls_token_id]
+
+ if token_ids_1 is None:
+ return len(cls + token_ids_0 + sep) * [0]
+ return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0]
+
+ @property
+ def vocab_size(self):
+ return len(self.sp_model) + self.fairseq_offset + 1 # Add the token
+
+ def get_vocab(self):
+ vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
+ vocab.update(self.added_tokens_encoder)
+ return vocab
+
+ def _tokenize(self, text: str) -> List[str]:
+ return self.sp_model.encode(text, out_type=str)
+
+ def _convert_token_to_id(self, token):
+ """Converts a token (str) in an id using the vocab."""
+ if token in self.fairseq_tokens_to_ids:
+ return self.fairseq_tokens_to_ids[token]
+ spm_id = self.sp_model.PieceToId(token)
+
+ # Need to return unknown token if the SP model returned 0
+ return spm_id + self.fairseq_offset if spm_id else self.unk_token_id
+
+ def _convert_id_to_token(self, index):
+ """Converts an index (integer) in a token (str) using the vocab."""
+ if index in self.fairseq_ids_to_tokens:
+ return self.fairseq_ids_to_tokens[index]
+ return self.sp_model.IdToPiece(index - self.fairseq_offset)
+
+ def convert_tokens_to_string(self, tokens):
+ """Converts a sequence of tokens (strings for sub-words) in a single string."""
+ out_string = "".join(tokens).replace(SPIECE_UNDERLINE, " ").strip()
+ return out_string
+
+ def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
+ if not os.path.isdir(save_directory):
+ logger.error(f"Vocabulary path ({save_directory}) should be a directory")
+ return
+ out_vocab_file = os.path.join(
+ save_directory,
+ (filename_prefix + "-" if filename_prefix else "") + self.resource_files_names["vocab_file"],
+ )
+
+ if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(
+ self.vocab_file
+ ):
+ copyfile(self.vocab_file, out_vocab_file)
+ elif not os.path.isfile(self.vocab_file):
+ with open(out_vocab_file, "wb") as fi:
+ content_spiece_model = self.sp_model.serialized_model_proto()
+ fi.write(content_spiece_model)
+
+ return (out_vocab_file,)
+
+ paddlenlp.transformers.XLMRobertaTokenizer = XLMRobertaTokenizer
+
+ # patch BertModel forward
+ from paddlenlp.transformers import BertModel
+
+ raw_forward = BertModel.forward
+
+ @patch_to(BertModel)
+ def forward(
+ self,
+ input_ids: paddle.Tensor,
+ token_type_ids: Optional[paddle.Tensor] = None,
+ position_ids: Optional[paddle.Tensor] = None,
+ attention_mask: Optional[paddle.Tensor] = None,
+ past_key_values: Optional[Tuple[Tuple[paddle.Tensor]]] = None,
+ use_cache: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ):
+ if attention_mask is None:
+ attention_mask = paddle.ones_like(input_ids)
+ return raw_forward(
+ self,
+ input_ids,
+ token_type_ids,
+ position_ids,
+ attention_mask,
+ past_key_values,
+ use_cache,
+ output_hidden_states,
+ output_attentions,
+ return_dict,
+ )
diff --git a/ppdiffusers/schedulers/__init__.py b/ppdiffusers/schedulers/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..1b29c1df0c3adce155a1c62fce8e78eb2e7402e0
--- /dev/null
+++ b/ppdiffusers/schedulers/__init__.py
@@ -0,0 +1,54 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+# Copyright 2022 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+# flake8: noqa
+
+from ..utils import (
+ OptionalDependencyNotAvailable,
+ is_paddle_available,
+ is_scipy_available,
+)
+
+try:
+ if not is_paddle_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ from ..utils.dummy_paddle_objects import * # noqa F403
+else:
+ from .scheduling_ddim import DDIMScheduler
+ from .scheduling_ddpm import DDPMScheduler
+ from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler
+ from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler
+ from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler
+ from .scheduling_euler_discrete import EulerDiscreteScheduler
+ from .scheduling_heun_discrete import HeunDiscreteScheduler
+ from .scheduling_ipndm import IPNDMScheduler
+ from .scheduling_k_dpm_2_ancestral_discrete import KDPM2AncestralDiscreteScheduler
+ from .scheduling_k_dpm_2_discrete import KDPM2DiscreteScheduler
+ from .scheduling_karras_ve import KarrasVeScheduler
+ from .scheduling_pndm import PNDMScheduler
+ from .scheduling_repaint import RePaintScheduler
+ from .scheduling_sde_ve import ScoreSdeVeScheduler
+ from .scheduling_sde_vp import ScoreSdeVpScheduler
+ from .scheduling_unclip import UnCLIPScheduler
+ from .scheduling_utils import SchedulerMixin
+ from .scheduling_vq_diffusion import VQDiffusionScheduler
+
+try:
+ if not (is_paddle_available() and is_scipy_available()):
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ from ..utils.dummy_paddle_and_scipy_objects import * # noqa F403
+else:
+ from .scheduling_lms_discrete import LMSDiscreteScheduler
diff --git a/ppdiffusers/schedulers/__pycache__/__init__.cpython-37.pyc b/ppdiffusers/schedulers/__pycache__/__init__.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..f53e2c3fe2a3f40effbaa1f9f1283ffcaad3487a
Binary files /dev/null and b/ppdiffusers/schedulers/__pycache__/__init__.cpython-37.pyc differ
diff --git a/ppdiffusers/schedulers/__pycache__/scheduling_ddim.cpython-37.pyc b/ppdiffusers/schedulers/__pycache__/scheduling_ddim.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..5074e6b91524ef30e221bd958fcf2416ebc15be7
Binary files /dev/null and b/ppdiffusers/schedulers/__pycache__/scheduling_ddim.cpython-37.pyc differ
diff --git a/ppdiffusers/schedulers/__pycache__/scheduling_ddpm.cpython-37.pyc b/ppdiffusers/schedulers/__pycache__/scheduling_ddpm.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..4b86436b8313636cddff1bbfd735fe01e1d43062
Binary files /dev/null and b/ppdiffusers/schedulers/__pycache__/scheduling_ddpm.cpython-37.pyc differ
diff --git a/ppdiffusers/schedulers/__pycache__/scheduling_dpmsolver_multistep.cpython-37.pyc b/ppdiffusers/schedulers/__pycache__/scheduling_dpmsolver_multistep.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..0d39ae33a26db8df5633fe81b17cbcce455c8dac
Binary files /dev/null and b/ppdiffusers/schedulers/__pycache__/scheduling_dpmsolver_multistep.cpython-37.pyc differ
diff --git a/ppdiffusers/schedulers/__pycache__/scheduling_dpmsolver_singlestep.cpython-37.pyc b/ppdiffusers/schedulers/__pycache__/scheduling_dpmsolver_singlestep.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..5bb4590d1e0fef54699c43727d1a203f13221c75
Binary files /dev/null and b/ppdiffusers/schedulers/__pycache__/scheduling_dpmsolver_singlestep.cpython-37.pyc differ
diff --git a/ppdiffusers/schedulers/__pycache__/scheduling_euler_ancestral_discrete.cpython-37.pyc b/ppdiffusers/schedulers/__pycache__/scheduling_euler_ancestral_discrete.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..88cd6fa18d94afdb8277eabecb8b40606b5eaaeb
Binary files /dev/null and b/ppdiffusers/schedulers/__pycache__/scheduling_euler_ancestral_discrete.cpython-37.pyc differ
diff --git a/ppdiffusers/schedulers/__pycache__/scheduling_euler_discrete.cpython-37.pyc b/ppdiffusers/schedulers/__pycache__/scheduling_euler_discrete.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..225e452f1550f0099ed8992ee51de46ab9c7fd70
Binary files /dev/null and b/ppdiffusers/schedulers/__pycache__/scheduling_euler_discrete.cpython-37.pyc differ
diff --git a/ppdiffusers/schedulers/__pycache__/scheduling_heun_discrete.cpython-37.pyc b/ppdiffusers/schedulers/__pycache__/scheduling_heun_discrete.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..2d1a78fa8e89bd44936f0913646ae9e751f78707
Binary files /dev/null and b/ppdiffusers/schedulers/__pycache__/scheduling_heun_discrete.cpython-37.pyc differ
diff --git a/ppdiffusers/schedulers/__pycache__/scheduling_ipndm.cpython-37.pyc b/ppdiffusers/schedulers/__pycache__/scheduling_ipndm.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..de902a620e2560c22315280703339cf6749e6e1a
Binary files /dev/null and b/ppdiffusers/schedulers/__pycache__/scheduling_ipndm.cpython-37.pyc differ
diff --git a/ppdiffusers/schedulers/__pycache__/scheduling_k_dpm_2_ancestral_discrete.cpython-37.pyc b/ppdiffusers/schedulers/__pycache__/scheduling_k_dpm_2_ancestral_discrete.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..5df422d086603b9cd8874d208036f6dd1dcaf1e5
Binary files /dev/null and b/ppdiffusers/schedulers/__pycache__/scheduling_k_dpm_2_ancestral_discrete.cpython-37.pyc differ
diff --git a/ppdiffusers/schedulers/__pycache__/scheduling_k_dpm_2_discrete.cpython-37.pyc b/ppdiffusers/schedulers/__pycache__/scheduling_k_dpm_2_discrete.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..7d02adfa0ee198d5a9515ae17bd9557b172cb121
Binary files /dev/null and b/ppdiffusers/schedulers/__pycache__/scheduling_k_dpm_2_discrete.cpython-37.pyc differ
diff --git a/ppdiffusers/schedulers/__pycache__/scheduling_karras_ve.cpython-37.pyc b/ppdiffusers/schedulers/__pycache__/scheduling_karras_ve.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..f4c57d115b9e3d6042c162fdab28f7c42321b52e
Binary files /dev/null and b/ppdiffusers/schedulers/__pycache__/scheduling_karras_ve.cpython-37.pyc differ
diff --git a/ppdiffusers/schedulers/__pycache__/scheduling_lms_discrete.cpython-37.pyc b/ppdiffusers/schedulers/__pycache__/scheduling_lms_discrete.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..3d63c78c71df6ab8a0b24be7dfd5b8fc6cf2c0d9
Binary files /dev/null and b/ppdiffusers/schedulers/__pycache__/scheduling_lms_discrete.cpython-37.pyc differ
diff --git a/ppdiffusers/schedulers/__pycache__/scheduling_pndm.cpython-37.pyc b/ppdiffusers/schedulers/__pycache__/scheduling_pndm.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..c9dc989421c742541f11f76199b79d60a546adae
Binary files /dev/null and b/ppdiffusers/schedulers/__pycache__/scheduling_pndm.cpython-37.pyc differ
diff --git a/ppdiffusers/schedulers/__pycache__/scheduling_repaint.cpython-37.pyc b/ppdiffusers/schedulers/__pycache__/scheduling_repaint.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..49d86cba5eddee04ccfba8969e78d0f357e57908
Binary files /dev/null and b/ppdiffusers/schedulers/__pycache__/scheduling_repaint.cpython-37.pyc differ
diff --git a/ppdiffusers/schedulers/__pycache__/scheduling_sde_ve.cpython-37.pyc b/ppdiffusers/schedulers/__pycache__/scheduling_sde_ve.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..573594db16aeed670647c9c65666f96232f755a8
Binary files /dev/null and b/ppdiffusers/schedulers/__pycache__/scheduling_sde_ve.cpython-37.pyc differ
diff --git a/ppdiffusers/schedulers/__pycache__/scheduling_sde_vp.cpython-37.pyc b/ppdiffusers/schedulers/__pycache__/scheduling_sde_vp.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..e3864395c13bd879ad8045b3268ab45e4face5df
Binary files /dev/null and b/ppdiffusers/schedulers/__pycache__/scheduling_sde_vp.cpython-37.pyc differ
diff --git a/ppdiffusers/schedulers/__pycache__/scheduling_unclip.cpython-37.pyc b/ppdiffusers/schedulers/__pycache__/scheduling_unclip.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..a3794b6be8bb8a0ce4fd5d358a31f265e47d3a19
Binary files /dev/null and b/ppdiffusers/schedulers/__pycache__/scheduling_unclip.cpython-37.pyc differ
diff --git a/ppdiffusers/schedulers/__pycache__/scheduling_utils.cpython-37.pyc b/ppdiffusers/schedulers/__pycache__/scheduling_utils.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..5d8c2953830c1e5e7de30c9e9caec5858b3cae87
Binary files /dev/null and b/ppdiffusers/schedulers/__pycache__/scheduling_utils.cpython-37.pyc differ
diff --git a/ppdiffusers/schedulers/__pycache__/scheduling_vq_diffusion.cpython-37.pyc b/ppdiffusers/schedulers/__pycache__/scheduling_vq_diffusion.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..7adcc58c69ad049539cc743af7bc8cefae2ed6f5
Binary files /dev/null and b/ppdiffusers/schedulers/__pycache__/scheduling_vq_diffusion.cpython-37.pyc differ
diff --git a/ppdiffusers/schedulers/preconfig/__init__.py b/ppdiffusers/schedulers/preconfig/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..87c951f5425a5f62aa7aee7db3a281f453dca6f1
--- /dev/null
+++ b/ppdiffusers/schedulers/preconfig/__init__.py
@@ -0,0 +1,38 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+# Copyright 2022 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+# flake8: noqa
+
+from ...utils import (
+ OptionalDependencyNotAvailable,
+ is_paddle_available,
+ is_scipy_available,
+)
+
+try:
+ if not is_paddle_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ from ...utils.dummy_paddle_objects import * # noqa F403
+else:
+ from .preconfig_scheduling_euler_ancestral_discrete import (
+ PreconfigEulerAncestralDiscreteScheduler,
+ )
+try:
+ if not (is_paddle_available() and is_scipy_available()):
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ from ...utils.dummy_paddle_and_scipy_objects import * # noqa F403
+else:
+ from .preconfig_scheduling_lms_discrete import PreconfigLMSDiscreteScheduler
diff --git a/ppdiffusers/schedulers/preconfig/__pycache__/__init__.cpython-37.pyc b/ppdiffusers/schedulers/preconfig/__pycache__/__init__.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..b1d26cdbccbcec05c8a30adea355212ad1accfb9
Binary files /dev/null and b/ppdiffusers/schedulers/preconfig/__pycache__/__init__.cpython-37.pyc differ
diff --git a/ppdiffusers/schedulers/preconfig/__pycache__/preconfig_scheduling_euler_ancestral_discrete.cpython-37.pyc b/ppdiffusers/schedulers/preconfig/__pycache__/preconfig_scheduling_euler_ancestral_discrete.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..83e24b7c78d4a29509245676ea13f87e5ec60d9b
Binary files /dev/null and b/ppdiffusers/schedulers/preconfig/__pycache__/preconfig_scheduling_euler_ancestral_discrete.cpython-37.pyc differ
diff --git a/ppdiffusers/schedulers/preconfig/__pycache__/preconfig_scheduling_lms_discrete.cpython-37.pyc b/ppdiffusers/schedulers/preconfig/__pycache__/preconfig_scheduling_lms_discrete.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..559ac9a92b2720ed9af3b81de85536d7abe0abd8
Binary files /dev/null and b/ppdiffusers/schedulers/preconfig/__pycache__/preconfig_scheduling_lms_discrete.cpython-37.pyc differ
diff --git a/ppdiffusers/schedulers/preconfig/preconfig_scheduling_euler_ancestral_discrete.py b/ppdiffusers/schedulers/preconfig/preconfig_scheduling_euler_ancestral_discrete.py
new file mode 100644
index 0000000000000000000000000000000000000000..ac5aef7bcfcab208a9d4cad699e41b895a29ba64
--- /dev/null
+++ b/ppdiffusers/schedulers/preconfig/preconfig_scheduling_euler_ancestral_discrete.py
@@ -0,0 +1,267 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+# Copyright 2022 Katherine Crowson and The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from dataclasses import dataclass
+from typing import List, Optional, Tuple, Union
+
+import numpy as np
+import paddle
+
+from ...configuration_utils import ConfigMixin, register_to_config
+from ...utils import _COMPATIBLE_STABLE_DIFFUSION_SCHEDULERS, BaseOutput, logging
+from ..scheduling_utils import SchedulerMixin
+
+logger = logging.get_logger(__name__) # pylint: disable=invalid-name
+
+
+@dataclass
+# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->EulerAncestralDiscrete
+class PreconfigEulerAncestralDiscreteSchedulerOutput(BaseOutput):
+ """
+ Output class for the scheduler's step function output.
+
+ Args:
+ prev_sample (`paddle.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
+ Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the
+ denoising loop.
+ pred_original_sample (`paddle.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
+ The predicted denoised sample (x_{0}) based on the model output from the current timestep.
+ `pred_original_sample` can be used to preview progress or for guidance.
+ """
+
+ prev_sample: paddle.Tensor
+ pred_original_sample: Optional[paddle.Tensor] = None
+
+
+class PreconfigEulerAncestralDiscreteScheduler(SchedulerMixin, ConfigMixin):
+ """
+ Ancestral sampling with Euler method steps. Based on the original k-diffusion implementation by Katherine Crowson:
+ https://github.com/crowsonkb/k-diffusion/blob/481677d114f6ea445aa009cf5bd7a9cdee909e47/k_diffusion/sampling.py#L72
+
+ [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__`
+ function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`.
+ [`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and
+ [`~SchedulerMixin.from_pretrained`] functions.
+
+ Args:
+ num_train_timesteps (`int`): number of diffusion steps used to train the model.
+ beta_start (`float`): the starting `beta` value of inference.
+ beta_end (`float`): the final `beta` value.
+ beta_schedule (`str`):
+ the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
+ `linear` or `scaled_linear`.
+ trained_betas (`np.ndarray`, optional):
+ option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc.
+ prediction_type (`str`, default `epsilon`, optional):
+ prediction type of the scheduler function, one of `epsilon` (predicting the noise of the diffusion
+ process), `sample` (directly predicting the noisy sample`) or `v_prediction` (see section 2.4
+ https://imagen.research.google/video/paper.pdf)
+ """
+
+ _compatibles = _COMPATIBLE_STABLE_DIFFUSION_SCHEDULERS.copy()
+ order = 1
+
+ @register_to_config
+ def __init__(
+ self,
+ num_train_timesteps: int = 1000,
+ beta_start: float = 0.0001,
+ beta_end: float = 0.02,
+ beta_schedule: str = "linear",
+ trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
+ prediction_type: str = "epsilon",
+ preconfig: bool = True,
+ ):
+ if trained_betas is not None:
+ self.betas = paddle.to_tensor(trained_betas, dtype="float32")
+ elif beta_schedule == "linear":
+ self.betas = paddle.linspace(beta_start, beta_end, num_train_timesteps, dtype="float32")
+ elif beta_schedule == "scaled_linear":
+ # this schedule is very specific to the latent diffusion model.
+ self.betas = paddle.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype="float32") ** 2
+ else:
+ raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")
+
+ self.alphas = 1.0 - self.betas
+ self.alphas_cumprod = paddle.cumprod(self.alphas, 0)
+
+ sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
+ sigmas = np.concatenate([sigmas[::-1], [0.0]]).astype(np.float32)
+ self.sigmas = paddle.to_tensor(sigmas)
+
+ # standard deviation of the initial noise distribution
+ self.init_noise_sigma = self.sigmas.max()
+
+ # setable values
+ self.num_inference_steps = None
+ timesteps = np.linspace(0, num_train_timesteps - 1, num_train_timesteps, dtype=float)[::-1].copy()
+ self.timesteps = paddle.to_tensor(timesteps, dtype="float32")
+ self.is_scale_input_called = False
+ self.preconfig = preconfig
+
+ def scale_model_input(
+ self, sample: paddle.Tensor, timestep: Union[float, paddle.Tensor], **kwargs
+ ) -> paddle.Tensor:
+ """
+ Scales the denoising model input by `(sigma**2 + 1) ** 0.5` to match the Euler algorithm.
+
+ Args:
+ sample (`paddle.Tensor`): input sample
+ timestep (`float` or `paddle.Tensor`): the current timestep in the diffusion chain
+
+ Returns:
+ `paddle.Tensor`: scaled input sample
+ """
+ self.is_scale_input_called = True
+ if kwargs.get("step_index") is not None:
+ step_index = kwargs["step_index"]
+ else:
+ step_index = (self.timesteps == timestep).nonzero().item()
+
+ if not self.preconfig:
+ sigma = self.sigmas[step_index]
+ sample = sample / ((sigma**2 + 1) ** 0.5)
+ return sample
+ else:
+ return sample * self.latent_scales[step_index]
+
+ def set_timesteps(self, num_inference_steps: int):
+ """
+ Sets the timesteps used for the diffusion chain. Supporting function to be run before inference.
+
+ Args:
+ num_inference_steps (`int`):
+ the number of diffusion steps used when generating samples with a pre-trained model.
+ """
+ self.num_inference_steps = num_inference_steps
+
+ timesteps = np.linspace(0, self.config.num_train_timesteps - 1, num_inference_steps, dtype=float)[::-1].copy()
+ sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
+ sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas)
+ sigmas = np.concatenate([sigmas, [0.0]]).astype(np.float32)
+ self.sigmas = paddle.to_tensor(sigmas)
+ self.timesteps = paddle.to_tensor(timesteps, dtype="float32")
+ if self.preconfig:
+ self.sigma_up = []
+ self.sigma_down = []
+ for step_index_i in range(len(self.timesteps)):
+ sigma_from = self.sigmas[step_index_i]
+ sigma_to = self.sigmas[step_index_i + 1]
+ sigma_up = (sigma_to**2 * (sigma_from**2 - sigma_to**2) / sigma_from**2) ** 0.5
+ sigma_down = (sigma_to**2 - sigma_up**2) ** 0.5
+ self.sigma_up.append(sigma_up)
+ self.sigma_down.append(sigma_down)
+ self.latent_scales = 1 / ((self.sigmas**2 + 1) ** 0.5)
+
+ def step(
+ self,
+ model_output: paddle.Tensor,
+ timestep: Union[float, paddle.Tensor],
+ sample: paddle.Tensor,
+ generator: Optional[Union[paddle.Generator, List[paddle.Generator]]] = None,
+ return_dict: bool = True,
+ **kwargs
+ ) -> Union[PreconfigEulerAncestralDiscreteSchedulerOutput, Tuple]:
+ """
+ Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
+ process from the learned model outputs (most often the predicted noise).
+
+ Args:
+ model_output (`paddle.Tensor`): direct output from learned diffusion model.
+ timestep (`float`): current timestep in the diffusion chain.
+ sample (`paddle.Tensor`):
+ current instance of sample being created by diffusion process.
+ generator (`paddle.Generator`, optional): Random number generator.
+ return_dict (`bool`): option for returning tuple rather than PreconfigEulerAncestralDiscreteSchedulerOutput class
+
+ Returns:
+ [`~schedulers.scheduling_utils.PreconfigEulerAncestralDiscreteSchedulerOutput`] or `tuple`:
+ [`~schedulers.scheduling_utils.PreconfigEulerAncestralDiscreteSchedulerOutput`] if `return_dict` is True, otherwise
+ a `tuple`. When returning a tuple, the first element is the sample tensor.
+
+ """
+ if not self.is_scale_input_called:
+ logger.warning(
+ "The `scale_model_input` function should be called before `step` to ensure correct denoising. "
+ "See `StableDiffusionPipeline` for a usage example."
+ )
+ if kwargs.get("return_pred_original_sample") is not None:
+ return_pred_original_sample = kwargs["return_pred_original_sample"]
+ else:
+ return_pred_original_sample = True
+ if kwargs.get("step_index") is not None:
+ step_index = kwargs["step_index"]
+ else:
+ step_index = (self.timesteps == timestep).nonzero().item()
+ sigma = self.sigmas[step_index]
+ if self.config.prediction_type == "epsilon" and not return_pred_original_sample:
+ derivative = model_output
+ pred_original_sample = None
+ else:
+ # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise
+ if self.config.prediction_type == "epsilon":
+ pred_original_sample = sample - sigma * model_output
+ elif self.config.prediction_type == "v_prediction":
+ # * c_out + input * c_skip
+ pred_original_sample = model_output * (-sigma / (sigma**2 + 1) ** 0.5) + (sample / (sigma**2 + 1))
+ else:
+ raise ValueError(
+ f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`"
+ )
+ derivative = (sample - pred_original_sample) / sigma
+ if not self.preconfig:
+ sigma_from = self.sigmas[step_index]
+ sigma_to = self.sigmas[step_index + 1]
+ sigma_up = (sigma_to**2 * (sigma_from**2 - sigma_to**2) / sigma_from**2) ** 0.5
+ sigma_down = (sigma_to**2 - sigma_up**2) ** 0.5
+ else:
+ sigma_up = self.sigma_up[step_index]
+ sigma_down = self.sigma_down[step_index]
+ # 2. Convert to an ODE derivative
+ dt = sigma_down - sigma
+ prev_sample = sample + derivative * dt
+ noise = paddle.randn(model_output.shape, dtype=model_output.dtype, generator=generator)
+ prev_sample = prev_sample + noise * sigma_up
+ if not return_dict:
+ if not return_pred_original_sample:
+ return (prev_sample,)
+ else:
+ return (prev_sample, pred_original_sample)
+
+ return PreconfigEulerAncestralDiscreteSchedulerOutput(
+ prev_sample=prev_sample, pred_original_sample=pred_original_sample
+ )
+
+ def add_noise(
+ self,
+ original_samples: paddle.Tensor,
+ noise: paddle.Tensor,
+ timesteps: paddle.Tensor,
+ ) -> paddle.Tensor:
+ # Make sure sigmas and timesteps have the same dtype as original_samples
+ self.sigmas = self.sigmas.cast(original_samples.dtype)
+
+ schedule_timesteps = self.timesteps
+ step_indices = [(schedule_timesteps == t).nonzero().item() for t in timesteps]
+
+ sigma = self.sigmas[step_indices].flatten()
+ while len(sigma.shape) < len(original_samples.shape):
+ sigma = sigma.unsqueeze(-1)
+
+ noisy_samples = original_samples + noise * sigma
+ return noisy_samples
+
+ def __len__(self):
+ return self.config.num_train_timesteps
diff --git a/ppdiffusers/schedulers/preconfig/preconfig_scheduling_lms_discrete.py b/ppdiffusers/schedulers/preconfig/preconfig_scheduling_lms_discrete.py
new file mode 100644
index 0000000000000000000000000000000000000000..13a567113246ecd0646d297c1bd9fd86dd7ee2bf
--- /dev/null
+++ b/ppdiffusers/schedulers/preconfig/preconfig_scheduling_lms_discrete.py
@@ -0,0 +1,299 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+# Copyright 2022 Katherine Crowson and The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+import warnings
+from dataclasses import dataclass
+from typing import List, Optional, Tuple, Union
+
+import numpy as np
+import paddle
+from scipy import integrate
+
+from ...configuration_utils import ConfigMixin, register_to_config
+from ...utils import _COMPATIBLE_STABLE_DIFFUSION_SCHEDULERS, BaseOutput
+from ..scheduling_utils import SchedulerMixin
+
+
+@dataclass
+# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->LMSDiscrete
+class PreconfigLMSDiscreteSchedulerOutput(BaseOutput):
+ """
+ Output class for the scheduler's step function output.
+
+ Args:
+ prev_sample (`paddle.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
+ Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the
+ denoising loop.
+ pred_original_sample (`paddle.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
+ The predicted denoised sample (x_{0}) based on the model output from the current timestep.
+ `pred_original_sample` can be used to preview progress or for guidance.
+ """
+
+ prev_sample: paddle.Tensor
+ pred_original_sample: Optional[paddle.Tensor] = None
+
+
+class PreconfigLMSDiscreteScheduler(SchedulerMixin, ConfigMixin):
+ """
+ Linear Multistep Scheduler for discrete beta schedules. Based on the original k-diffusion implementation by
+ Katherine Crowson:
+ https://github.com/crowsonkb/k-diffusion/blob/481677d114f6ea445aa009cf5bd7a9cdee909e47/k_diffusion/sampling.py#L181
+
+ [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__`
+ function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`.
+ [`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and
+ [`~SchedulerMixin.from_pretrained`] functions.
+
+ Args:
+ num_train_timesteps (`int`): number of diffusion steps used to train the model.
+ beta_start (`float`): the starting `beta` value of inference.
+ beta_end (`float`): the final `beta` value.
+ beta_schedule (`str`):
+ the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
+ `linear` or `scaled_linear`.
+ trained_betas (`np.ndarray`, optional):
+ option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc.
+ prediction_type (`str`, default `epsilon`, optional):
+ prediction type of the scheduler function, one of `epsilon` (predicting the noise of the diffusion
+ process), `sample` (directly predicting the noisy sample`) or `v_prediction` (see section 2.4
+ https://imagen.research.google/video/paper.pdf)
+ """
+
+ _compatibles = _COMPATIBLE_STABLE_DIFFUSION_SCHEDULERS.copy()
+ order = 1
+
+ @register_to_config
+ def __init__(
+ self,
+ num_train_timesteps: int = 1000,
+ beta_start: float = 0.0001,
+ beta_end: float = 0.02,
+ beta_schedule: str = "linear",
+ trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
+ prediction_type: str = "epsilon",
+ preconfig=True,
+ ):
+ if trained_betas is not None:
+ self.betas = paddle.to_tensor(trained_betas, dtype="float32")
+ elif beta_schedule == "linear":
+ self.betas = paddle.linspace(beta_start, beta_end, num_train_timesteps, dtype="float32")
+ elif beta_schedule == "scaled_linear":
+ # this schedule is very specific to the latent diffusion model.
+ self.betas = paddle.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype="float32") ** 2
+ else:
+ raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")
+
+ self.alphas = 1.0 - self.betas
+ self.alphas_cumprod = paddle.cumprod(self.alphas, 0)
+
+ sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
+ sigmas = np.concatenate([sigmas[::-1], [0.0]]).astype(np.float32)
+ self.sigmas = paddle.to_tensor(sigmas)
+
+ # standard deviation of the initial noise distribution
+ self.init_noise_sigma = self.sigmas.max()
+
+ # setable values
+ self.num_inference_steps = None
+ timesteps = np.linspace(0, num_train_timesteps - 1, num_train_timesteps, dtype=float)[::-1].copy()
+ self.timesteps = paddle.to_tensor(timesteps, dtype="float32")
+ self.derivatives = []
+ self.is_scale_input_called = False
+ self.preconfig = preconfig
+
+ def scale_model_input(
+ self, sample: paddle.Tensor, timestep: Union[float, paddle.Tensor], **kwargs
+ ) -> paddle.Tensor:
+ """
+ Scales the denoising model input by `(sigma**2 + 1) ** 0.5` to match the K-LMS algorithm.
+
+ Args:
+ sample (`paddle.Tensor`): input sample
+ timestep (`float` or `paddle.Tensor`): the current timestep in the diffusion chain
+
+ Returns:
+ `paddle.Tensor`: scaled input sample
+ """
+ if kwargs.get("step_index") is not None:
+ step_index = kwargs["step_index"]
+ else:
+ step_index = (self.timesteps == timestep).nonzero().item()
+ self.is_scale_input_called = True
+ if not self.preconfig:
+ sigma = self.sigmas[step_index]
+ sample = sample / ((sigma**2 + 1) ** 0.5)
+ return sample
+ else:
+ return sample * self.latent_scales[step_index]
+
+ def get_lms_coefficient(self, order, t, current_order):
+ """
+ Compute a linear multistep coefficient.
+
+ Args:
+ order (TODO):
+ t (TODO):
+ current_order (TODO):
+ """
+
+ def lms_derivative(tau):
+ prod = 1.0
+ for k in range(order):
+ if current_order == k:
+ continue
+ prod *= (tau - self.sigmas[t - k]) / (self.sigmas[t - current_order] - self.sigmas[t - k])
+ return prod
+
+ integrated_coeff = integrate.quad(lms_derivative, self.sigmas[t], self.sigmas[t + 1], epsrel=1e-4)[0]
+
+ return integrated_coeff
+
+ def set_timesteps(self, num_inference_steps: int, preconfig_order: int = 4):
+ """
+ Sets the timesteps used for the diffusion chain. Supporting function to be run before inference.
+
+ Args:
+ num_inference_steps (`int`):
+ the number of diffusion steps used when generating samples with a pre-trained model.
+ """
+ self.num_inference_steps = num_inference_steps
+
+ timesteps = np.linspace(0, self.config.num_train_timesteps - 1, num_inference_steps, dtype=float)[::-1].copy()
+ sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
+ sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas)
+ sigmas = np.concatenate([sigmas, [0.0]]).astype(np.float32)
+ self.sigmas = paddle.to_tensor(sigmas)
+ self.timesteps = paddle.to_tensor(timesteps, dtype="float32")
+
+ self.derivatives = []
+ if self.preconfig:
+ self.order = preconfig_order
+ self.lms_coeffs = []
+ self.latent_scales = [1.0 / ((sigma**2 + 1) ** 0.5) for sigma in self.sigmas]
+ for step_index in range(self.num_inference_steps):
+ order = min(step_index + 1, preconfig_order)
+ self.lms_coeffs.append(
+ [self.get_lms_coefficient(order, step_index, curr_order) for curr_order in range(order)]
+ )
+
+ def step(
+ self,
+ model_output: paddle.Tensor,
+ timestep: Union[float, paddle.Tensor],
+ sample: paddle.Tensor,
+ order: int = 4,
+ return_dict: bool = True,
+ **kwargs
+ ) -> Union[PreconfigLMSDiscreteSchedulerOutput, Tuple]:
+ """
+ Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
+ process from the learned model outputs (most often the predicted noise).
+
+ Args:
+ model_output (`paddle.Tensor`): direct output from learned diffusion model.
+ timestep (`float`): current timestep in the diffusion chain.
+ sample (`paddle.Tensor`):
+ current instance of sample being created by diffusion process.
+ order: coefficient for multi-step inference.
+ return_dict (`bool`): option for returning tuple rather than PreconfigLMSDiscreteSchedulerOutput class
+ Args in kwargs:
+ step_index (`int`):
+ return_pred_original_sample (`bool`): option for return pred_original_sample
+
+ Returns:
+ [`~schedulers.scheduling_utils.PreconfigLMSDiscreteSchedulerOutput`] or `tuple`:
+ [`~schedulers.scheduling_utils.PreconfigLMSDiscreteSchedulerOutput`] if `return_dict` is True, otherwise a `tuple`.
+ When returning a tuple, the first element is the sample tensor.
+
+ """
+ if not self.is_scale_input_called:
+ warnings.warn(
+ "The `scale_model_input` function should be called before `step` to ensure correct denoising. "
+ "See `StableDiffusionPipeline` for a usage example."
+ )
+ if kwargs.get("return_pred_original_sample") is not None:
+ return_pred_original_sample = kwargs["return_pred_original_sample"]
+ else:
+ return_pred_original_sample = True
+ if kwargs.get("step_index") is not None:
+ step_index = kwargs["step_index"]
+ else:
+ step_index = (self.timesteps == timestep).nonzero().item()
+ if self.config.prediction_type == "epsilon" and not return_pred_original_sample:
+ # if pred_original_sample is no need
+ self.derivatives.append(model_output)
+ pred_original_sample = None
+ else:
+ sigma = self.sigmas[step_index]
+ # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise
+ if self.config.prediction_type == "epsilon":
+ pred_original_sample = sample - sigma * model_output
+ elif self.config.prediction_type == "v_prediction":
+ # * c_out + input * c_skip
+ pred_original_sample = model_output * (-sigma / (sigma**2 + 1) ** 0.5) + (sample / (sigma**2 + 1))
+ else:
+ raise ValueError(
+ f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`"
+ )
+ # 2. Convert to an ODE derivative
+ derivative = (sample - pred_original_sample) / sigma
+ self.derivatives.append(derivative)
+
+ if len(self.derivatives) > order:
+ self.derivatives.pop(0)
+
+ if not self.preconfig:
+ # 3. If not preconfiged, compute linear multistep coefficients.
+ order = min(step_index + 1, order)
+ lms_coeffs = [self.get_lms_coefficient(order, step_index, curr_order) for curr_order in range(order)]
+ # 4. Compute previous sample based on the derivatives path
+ prev_sample = sample + sum(
+ coeff * derivative for coeff, derivative in zip(lms_coeffs, reversed(self.derivatives))
+ )
+ else:
+ # 3. If preconfiged, direct compute previous sample based on the derivatives path
+ prev_sample = sample + sum(
+ coeff * derivative
+ for coeff, derivative in zip(self.lms_coeffs[step_index], reversed(self.derivatives))
+ )
+
+ if not return_dict:
+ if not return_pred_original_sample:
+ return (prev_sample,)
+ else:
+ return (prev_sample, pred_original_sample)
+
+ return PreconfigLMSDiscreteSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_original_sample)
+
+ def add_noise(
+ self,
+ original_samples: paddle.Tensor,
+ noise: paddle.Tensor,
+ timesteps: paddle.Tensor,
+ ) -> paddle.Tensor:
+ # Make sure sigmas and timesteps have the same dtype as original_samples
+ sigmas = self.sigmas.cast(original_samples.dtype)
+ schedule_timesteps = self.timesteps
+
+ step_indices = [(schedule_timesteps == t).nonzero().item() for t in timesteps]
+
+ sigma = sigmas[step_indices].flatten()
+ while len(sigma.shape) < len(original_samples.shape):
+ sigma = sigma.unsqueeze(-1)
+
+ noisy_samples = original_samples + noise * sigma
+ return noisy_samples
+
+ def __len__(self):
+ return self.config.num_train_timesteps
diff --git a/ppdiffusers/schedulers/scheduling_ddim.py b/ppdiffusers/schedulers/scheduling_ddim.py
new file mode 100644
index 0000000000000000000000000000000000000000..7e32e3e2934d219bb75c0a4b4e81b6331529f84d
--- /dev/null
+++ b/ppdiffusers/schedulers/scheduling_ddim.py
@@ -0,0 +1,366 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+# Copyright 2022 Stanford University Team and The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+# DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion
+# and https://github.com/hojonathanho/diffusion
+
+import math
+from dataclasses import dataclass
+from typing import List, Optional, Tuple, Union
+
+import numpy as np
+import paddle
+
+from ..configuration_utils import ConfigMixin, register_to_config
+from ..utils import _COMPATIBLE_STABLE_DIFFUSION_SCHEDULERS, BaseOutput, deprecate
+from .scheduling_utils import SchedulerMixin
+
+
+@dataclass
+# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM
+class DDIMSchedulerOutput(BaseOutput):
+ """
+ Output class for the scheduler's step function output.
+
+ Args:
+ prev_sample (`paddle.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
+ Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the
+ denoising loop.
+ pred_original_sample (`paddle.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
+ The predicted denoised sample (x_{0}) based on the model output from the current timestep.
+ `pred_original_sample` can be used to preview progress or for guidance.
+ """
+
+ prev_sample: paddle.Tensor
+ pred_original_sample: Optional[paddle.Tensor] = None
+
+
+def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999) -> paddle.Tensor:
+ """
+ Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
+ (1-beta) over time from t = [0,1].
+
+ Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
+ to that part of the diffusion process.
+
+
+ Args:
+ num_diffusion_timesteps (`int`): the number of betas to produce.
+ max_beta (`float`): the maximum beta to use; use values lower than 1 to
+ prevent singularities.
+
+ Returns:
+ betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
+ """
+
+ def alpha_bar(time_step):
+ return math.cos((time_step + 0.008) / 1.008 * math.pi / 2) ** 2
+
+ betas = []
+ for i in range(num_diffusion_timesteps):
+ t1 = i / num_diffusion_timesteps
+ t2 = (i + 1) / num_diffusion_timesteps
+ betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
+ return paddle.to_tensor(betas)
+
+
+class DDIMScheduler(SchedulerMixin, ConfigMixin):
+ """
+ Denoising diffusion implicit models is a scheduler that extends the denoising procedure introduced in denoising
+ diffusion probabilistic models (DDPMs) with non-Markovian guidance.
+
+ [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__`
+ function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`.
+ [`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and
+ [`~SchedulerMixin.from_pretrained`] functions.
+
+ For more details, see the original paper: https://arxiv.org/abs/2010.02502
+
+ Args:
+ num_train_timesteps (`int`): number of diffusion steps used to train the model.
+ beta_start (`float`): the starting `beta` value of inference.
+ beta_end (`float`): the final `beta` value.
+ beta_schedule (`str`):
+ the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
+ `linear`, `scaled_linear`, or `squaredcos_cap_v2`.
+ trained_betas (`np.ndarray`, optional):
+ option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc.
+ clip_sample (`bool`, default `True`):
+ option to clip predicted sample between -1 and 1 for numerical stability.
+ set_alpha_to_one (`bool`, default `True`):
+ each diffusion step uses the value of alphas product at that step and at the previous one. For the final
+ step there is no previous alpha. When this option is `True` the previous alpha product is fixed to `1`,
+ otherwise it uses the value of alpha at step 0.
+ steps_offset (`int`, default `0`):
+ an offset added to the inference steps. You can use a combination of `offset=1` and
+ `set_alpha_to_one=False`, to make the last step use step 0 for the previous alpha product, as done in
+ stable diffusion.
+ prediction_type (`str`, default `epsilon`, optional):
+ prediction type of the scheduler function, one of `epsilon` (predicting the noise of the diffusion
+ process), `sample` (directly predicting the noisy sample`) or `v_prediction` (see section 2.4
+ https://imagen.research.google/video/paper.pdf)
+ """
+
+ _compatibles = _COMPATIBLE_STABLE_DIFFUSION_SCHEDULERS.copy()
+ _deprecated_kwargs = ["predict_epsilon"]
+ order = 1
+
+ @register_to_config
+ def __init__(
+ self,
+ num_train_timesteps: int = 1000,
+ beta_start: float = 0.0001,
+ beta_end: float = 0.02,
+ beta_schedule: str = "linear",
+ trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
+ clip_sample: bool = True,
+ set_alpha_to_one: bool = True,
+ steps_offset: int = 0,
+ prediction_type: str = "epsilon",
+ **kwargs,
+ ):
+ message = (
+ "Please make sure to instantiate your scheduler with `prediction_type` instead. E.g. `scheduler ="
+ " DDIMScheduler.from_pretrained(, prediction_type='epsilon')`."
+ )
+ predict_epsilon = deprecate("predict_epsilon", "0.13.0", message, take_from=kwargs)
+ if predict_epsilon is not None:
+ self.register_to_config(prediction_type="epsilon" if predict_epsilon else "sample")
+ if trained_betas is not None:
+ self.betas = paddle.to_tensor(trained_betas, dtype="float32")
+ elif beta_schedule == "linear":
+ self.betas = paddle.linspace(beta_start, beta_end, num_train_timesteps, dtype="float32")
+ elif beta_schedule == "scaled_linear":
+ # this schedule is very specific to the latent diffusion model.
+ self.betas = paddle.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype="float32") ** 2
+ elif beta_schedule == "squaredcos_cap_v2":
+ # Glide cosine schedule
+ self.betas = betas_for_alpha_bar(num_train_timesteps)
+ else:
+ raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")
+
+ self.alphas = 1.0 - self.betas
+ self.alphas_cumprod = paddle.cumprod(self.alphas, 0)
+
+ # At every step in ddim, we are looking into the previous alphas_cumprod
+ # For the final step, there is no previous alphas_cumprod because we are already at 0
+ # `set_alpha_to_one` decides whether we set this parameter simply to one or
+ # whether we use the final alpha of the "non-previous" one.
+ self.final_alpha_cumprod = paddle.to_tensor(1.0) if set_alpha_to_one else self.alphas_cumprod[0]
+
+ # standard deviation of the initial noise distribution
+ self.init_noise_sigma = 1.0
+
+ # setable values
+ self.num_inference_steps = None
+ self.timesteps = paddle.to_tensor(np.arange(0, num_train_timesteps)[::-1].copy().astype(np.int64))
+
+ def scale_model_input(self, sample: paddle.Tensor, timestep: Optional[int] = None) -> paddle.Tensor:
+ """
+ Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
+ current timestep.
+
+ Args:
+ sample (`paddle.Tensor`): input sample
+ timestep (`int`, optional): current timestep
+
+ Returns:
+ `paddle.Tensor`: scaled input sample
+ """
+ return sample
+
+ def _get_variance(self, timestep, prev_timestep):
+ alpha_prod_t = self.alphas_cumprod[timestep]
+ alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod
+ beta_prod_t = 1 - alpha_prod_t
+ beta_prod_t_prev = 1 - alpha_prod_t_prev
+
+ variance = (beta_prod_t_prev / beta_prod_t) * (1 - alpha_prod_t / alpha_prod_t_prev)
+
+ return variance
+
+ def set_timesteps(self, num_inference_steps: int):
+ """
+ Sets the discrete timesteps used for the diffusion chain. Supporting function to be run before inference.
+
+ Args:
+ num_inference_steps (`int`):
+ the number of diffusion steps used when generating samples with a pre-trained model.
+ """
+ self.num_inference_steps = num_inference_steps
+ step_ratio = self.config.num_train_timesteps // self.num_inference_steps
+ # creates integer timesteps by multiplying by ratio
+ # casting to int to avoid issues when num_inference_step is power of 3
+ timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(np.int64)
+ self.timesteps = paddle.to_tensor(timesteps)
+ self.timesteps += self.config.steps_offset
+
+ def step(
+ self,
+ model_output: paddle.Tensor,
+ timestep: int,
+ sample: paddle.Tensor,
+ eta: float = 0.0,
+ use_clipped_model_output: bool = False,
+ generator=None,
+ variance_noise: Optional[paddle.Tensor] = None,
+ return_dict: bool = True,
+ ) -> Union[DDIMSchedulerOutput, Tuple]:
+ """
+ Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
+ process from the learned model outputs (most often the predicted noise).
+
+ Args:
+ model_output (`paddle.Tensor`): direct output from learned diffusion model.
+ timestep (`int`): current discrete timestep in the diffusion chain.
+ sample (`paddle.Tensor`):
+ current instance of sample being created by diffusion process.
+ eta (`float`): weight of noise for added noise in diffusion step.
+ use_clipped_model_output (`bool`): if `True`, compute "corrected" `model_output` from the clipped
+ predicted original sample. Necessary because predicted original sample is clipped to [-1, 1] when
+ `self.config.clip_sample` is `True`. If no clipping has happened, "corrected" `model_output` would
+ coincide with the one provided as input and `use_clipped_model_output` will have not effect.
+ generator: random number generator.
+ variance_noise (`paddle.Tensor`): instead of generating noise for the variance using `generator`, we
+ can directly provide the noise for the variance itself. This is useful for methods such as
+ CycleDiffusion. (https://arxiv.org/abs/2210.05559)
+ return_dict (`bool`): option for returning tuple rather than DDIMSchedulerOutput class
+
+ Returns:
+ [`~schedulers.scheduling_utils.DDIMSchedulerOutput`] or `tuple`:
+ [`~schedulers.scheduling_utils.DDIMSchedulerOutput`] if `return_dict` is True, otherwise a `tuple`. When
+ returning a tuple, the first element is the sample tensor.
+
+ """
+ if self.num_inference_steps is None:
+ raise ValueError(
+ "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
+ )
+
+ # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf
+ # Ideally, read DDIM paper in-detail understanding
+
+ # Notation ( ->
+ # - pred_noise_t -> e_theta(x_t, t)
+ # - pred_original_sample -> f_theta(x_t, t) or x_0
+ # - std_dev_t -> sigma_t
+ # - eta -> η
+ # - pred_sample_direction -> "direction pointing to x_t"
+ # - pred_prev_sample -> "x_t-1"
+
+ # 1. get previous step value (=t-1)
+ prev_timestep = timestep - self.config.num_train_timesteps // self.num_inference_steps
+
+ # 2. compute alphas, betas
+ alpha_prod_t = self.alphas_cumprod[timestep]
+ alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod
+
+ beta_prod_t = 1 - alpha_prod_t
+
+ # 3. compute predicted original sample from predicted noise also called
+ # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
+ if self.config.prediction_type == "epsilon":
+ pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
+ elif self.config.prediction_type == "sample":
+ pred_original_sample = model_output
+ elif self.config.prediction_type == "v_prediction":
+ pred_original_sample = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output
+ # predict V
+ model_output = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample
+ else:
+ raise ValueError(
+ f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or"
+ " `v_prediction`"
+ )
+
+ # 4. Clip "predicted x_0"
+ if self.config.clip_sample:
+ pred_original_sample = paddle.clip(pred_original_sample, -1, 1)
+
+ # 5. compute variance: "sigma_t(η)" -> see formula (16)
+ # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1)
+ variance = self._get_variance(timestep, prev_timestep)
+ std_dev_t = eta * variance ** (0.5)
+
+ if use_clipped_model_output:
+ # the model_output is always re-derived from the clipped x_0 in Glide
+ model_output = (sample - alpha_prod_t ** (0.5) * pred_original_sample) / beta_prod_t ** (0.5)
+
+ # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
+ pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t**2) ** (0.5) * model_output
+
+ # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
+ prev_sample = alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction
+
+ if eta > 0:
+ # randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072
+ if variance_noise is not None and generator is not None:
+ raise ValueError(
+ "Cannot pass both generator and variance_noise. Please make sure that either `generator` or"
+ " `variance_noise` stays `None`."
+ )
+
+ if variance_noise is None:
+ variance_noise = paddle.randn(model_output.shape, generator=generator, dtype=model_output.dtype)
+ variance = self._get_variance(timestep, prev_timestep) ** (0.5) * eta * variance_noise
+
+ prev_sample = prev_sample + variance
+
+ if not return_dict:
+ return (prev_sample,)
+
+ return DDIMSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_original_sample)
+
+ def add_noise(
+ self,
+ original_samples: paddle.Tensor,
+ noise: paddle.Tensor,
+ timesteps: paddle.Tensor,
+ ) -> paddle.Tensor:
+ # Make sure alphas_cumprod and timestep have same dtype as original_samples
+ self.alphas_cumprod = self.alphas_cumprod.cast(original_samples.dtype)
+
+ sqrt_alpha_prod = self.alphas_cumprod[timesteps] ** 0.5
+ sqrt_alpha_prod = sqrt_alpha_prod.flatten()
+ while len(sqrt_alpha_prod.shape) < len(original_samples.shape):
+ sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)
+
+ sqrt_one_minus_alpha_prod = (1 - self.alphas_cumprod[timesteps]) ** 0.5
+ sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
+ while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape):
+ sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
+
+ noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
+ return noisy_samples
+
+ def get_velocity(self, sample: paddle.Tensor, noise: paddle.Tensor, timesteps: paddle.Tensor) -> paddle.Tensor:
+ # Make sure alphas_cumprod and timestep have same dtype as sample
+ self.alphas_cumprod = self.alphas_cumprod.cast(sample.dtype)
+
+ sqrt_alpha_prod = self.alphas_cumprod[timesteps] ** 0.5
+ sqrt_alpha_prod = sqrt_alpha_prod.flatten()
+ while len(sqrt_alpha_prod.shape) < len(sample.shape):
+ sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)
+
+ sqrt_one_minus_alpha_prod = (1 - self.alphas_cumprod[timesteps]) ** 0.5
+ sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
+ while len(sqrt_one_minus_alpha_prod.shape) < len(sample.shape):
+ sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
+
+ velocity = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample
+ return velocity
+
+ def __len__(self):
+ return self.config.num_train_timesteps
diff --git a/ppdiffusers/schedulers/scheduling_ddpm.py b/ppdiffusers/schedulers/scheduling_ddpm.py
new file mode 100644
index 0000000000000000000000000000000000000000..32a3b3f73222ffabd52d2b119b0f9bd5831a116f
--- /dev/null
+++ b/ppdiffusers/schedulers/scheduling_ddpm.py
@@ -0,0 +1,360 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+# Copyright 2022 UC Berkeley Team and The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim
+
+import math
+from dataclasses import dataclass
+from typing import List, Optional, Tuple, Union
+
+import numpy as np
+import paddle
+import paddle.nn.functional as F
+
+from ..configuration_utils import ConfigMixin, FrozenDict, register_to_config
+from ..utils import _COMPATIBLE_STABLE_DIFFUSION_SCHEDULERS, BaseOutput, deprecate
+from .scheduling_utils import SchedulerMixin
+
+
+@dataclass
+class DDPMSchedulerOutput(BaseOutput):
+ """
+ Output class for the scheduler's step function output.
+
+ Args:
+ prev_sample (`paddle.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
+ Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the
+ denoising loop.
+ pred_original_sample (`paddle.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
+ The predicted denoised sample (x_{0}) based on the model output from the current timestep.
+ `pred_original_sample` can be used to preview progress or for guidance.
+ """
+
+ prev_sample: paddle.Tensor
+ pred_original_sample: Optional[paddle.Tensor] = None
+
+
+def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999):
+ """
+ Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
+ (1-beta) over time from t = [0,1].
+
+ Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
+ to that part of the diffusion process.
+
+
+ Args:
+ num_diffusion_timesteps (`int`): the number of betas to produce.
+ max_beta (`float`): the maximum beta to use; use values lower than 1 to
+ prevent singularities.
+
+ Returns:
+ betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
+ """
+
+ def alpha_bar(time_step):
+ return math.cos((time_step + 0.008) / 1.008 * math.pi / 2) ** 2
+
+ betas = []
+ for i in range(num_diffusion_timesteps):
+ t1 = i / num_diffusion_timesteps
+ t2 = (i + 1) / num_diffusion_timesteps
+ betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
+ return paddle.to_tensor(betas, dtype="float32")
+
+
+class DDPMScheduler(SchedulerMixin, ConfigMixin):
+ """
+ Denoising diffusion probabilistic models (DDPMs) explores the connections between denoising score matching and
+ Langevin dynamics sampling.
+
+ [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__`
+ function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`.
+ [`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and
+ [`~SchedulerMixin.from_pretrained`] functions.
+
+ For more details, see the original paper: https://arxiv.org/abs/2006.11239
+
+ Args:
+ num_train_timesteps (`int`): number of diffusion steps used to train the model.
+ beta_start (`float`): the starting `beta` value of inference.
+ beta_end (`float`): the final `beta` value.
+ beta_schedule (`str`):
+ the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
+ `linear`, `scaled_linear`, or `squaredcos_cap_v2`.
+ trained_betas (`np.ndarray`, optional):
+ option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc.
+ variance_type (`str`):
+ options to clip the variance used when adding noise to the denoised sample. Choose from `fixed_small`,
+ `fixed_small_log`, `fixed_large`, `fixed_large_log`, `learned` or `learned_range`.
+ clip_sample (`bool`, default `True`):
+ option to clip predicted sample between -1 and 1 for numerical stability.
+ prediction_type (`str`, default `epsilon`, optional):
+ prediction type of the scheduler function, one of `epsilon` (predicting the noise of the diffusion
+ process), `sample` (directly predicting the noisy sample`) or `v_prediction` (see section 2.4
+ https://imagen.research.google/video/paper.pdf)
+ """
+
+ _compatibles = _COMPATIBLE_STABLE_DIFFUSION_SCHEDULERS.copy()
+ _deprecated_kwargs = ["predict_epsilon"]
+ order = 1
+
+ @register_to_config
+ def __init__(
+ self,
+ num_train_timesteps: int = 1000,
+ beta_start: float = 0.0001,
+ beta_end: float = 0.02,
+ beta_schedule: str = "linear",
+ trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
+ variance_type: str = "fixed_small",
+ clip_sample: bool = True,
+ prediction_type: str = "epsilon",
+ **kwargs,
+ ):
+ message = (
+ "Please make sure to instantiate your scheduler with `prediction_type` instead. E.g. `scheduler ="
+ " DDPMScheduler.from_pretrained(, prediction_type='epsilon')`."
+ )
+ predict_epsilon = deprecate("predict_epsilon", "0.13.0", message, take_from=kwargs)
+ if predict_epsilon is not None:
+ self.register_to_config(prediction_type="epsilon" if predict_epsilon else "sample")
+ if trained_betas is not None:
+ self.betas = paddle.to_tensor(trained_betas, dtype="float32")
+ elif beta_schedule == "linear":
+ self.betas = paddle.linspace(beta_start, beta_end, num_train_timesteps, dtype="float32")
+ elif beta_schedule == "scaled_linear":
+ # this schedule is very specific to the latent diffusion model.
+ self.betas = paddle.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype="float32") ** 2
+ elif beta_schedule == "squaredcos_cap_v2":
+ # Glide cosine schedule
+ self.betas = betas_for_alpha_bar(num_train_timesteps)
+ elif beta_schedule == "sigmoid":
+ # GeoDiff sigmoid schedule
+ betas = paddle.linspace(-6, 6, num_train_timesteps)
+ self.betas = F.sigmoid(betas) * (beta_end - beta_start) + beta_start
+ else:
+ raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")
+
+ self.alphas = 1.0 - self.betas
+ self.alphas_cumprod = paddle.cumprod(self.alphas, 0)
+ self.one = paddle.to_tensor(1.0)
+
+ # standard deviation of the initial noise distribution
+ self.init_noise_sigma = 1.0
+
+ # setable values
+ self.num_inference_steps = None
+ self.timesteps = paddle.to_tensor(np.arange(0, num_train_timesteps)[::-1].copy())
+
+ self.variance_type = variance_type
+
+ def scale_model_input(self, sample: paddle.Tensor, timestep: Optional[int] = None) -> paddle.Tensor:
+ """
+ Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
+ current timestep.
+
+ Args:
+ sample (`paddle.Tensor`): input sample
+ timestep (`int`, optional): current timestep
+
+ Returns:
+ `paddle.Tensor`: scaled input sample
+ """
+ return sample
+
+ def set_timesteps(self, num_inference_steps: int):
+ """
+ Sets the discrete timesteps used for the diffusion chain. Supporting function to be run before inference.
+
+ Args:
+ num_inference_steps (`int`):
+ the number of diffusion steps used when generating samples with a pre-trained model.
+ """
+ num_inference_steps = min(self.config.num_train_timesteps, num_inference_steps)
+ self.num_inference_steps = num_inference_steps
+ timesteps = np.arange(
+ 0, self.config.num_train_timesteps, self.config.num_train_timesteps // self.num_inference_steps
+ )[::-1].copy()
+ self.timesteps = paddle.to_tensor(timesteps)
+
+ def _get_variance(self, t, predicted_variance=None, variance_type=None):
+ alpha_prod_t = self.alphas_cumprod[t]
+ alpha_prod_t_prev = self.alphas_cumprod[t - 1] if t > 0 else self.one
+
+ # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf)
+ # and sample from it to get previous sample
+ # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample
+ variance = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * self.betas[t]
+
+ if variance_type is None:
+ variance_type = self.config.variance_type
+
+ # hacks - were probably added for training stability
+ if variance_type == "fixed_small":
+ variance = paddle.clip(variance, min=1e-20)
+ # for rl-diffuser https://arxiv.org/abs/2205.09991
+ elif variance_type == "fixed_small_log":
+ variance = paddle.log(paddle.clip(variance, min=1e-20))
+ variance = paddle.exp(0.5 * variance)
+ elif variance_type == "fixed_large":
+ variance = self.betas[t]
+ elif variance_type == "fixed_large_log":
+ # Glide max_log
+ variance = paddle.log(self.betas[t])
+ elif variance_type == "learned":
+ return predicted_variance
+ elif variance_type == "learned_range":
+ min_log = variance
+ max_log = self.betas[t]
+ frac = (predicted_variance + 1) / 2
+ variance = frac * max_log + (1 - frac) * min_log
+
+ return variance
+
+ def step(
+ self,
+ model_output: paddle.Tensor,
+ timestep: int,
+ sample: paddle.Tensor,
+ generator=None,
+ return_dict: bool = True,
+ **kwargs,
+ ) -> Union[DDPMSchedulerOutput, Tuple]:
+ """
+ Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
+ process from the learned model outputs (most often the predicted noise).
+
+ Args:
+ model_output (`paddle.Tensor`): direct output from learned diffusion model.
+ timestep (`int`): current discrete timestep in the diffusion chain.
+ sample (`paddle.Tensor`):
+ current instance of sample being created by diffusion process.
+ generator: random number generator.
+ return_dict (`bool`): option for returning tuple rather than DDPMSchedulerOutput class
+
+ Returns:
+ [`~schedulers.scheduling_utils.DDPMSchedulerOutput`] or `tuple`:
+ [`~schedulers.scheduling_utils.DDPMSchedulerOutput`] if `return_dict` is True, otherwise a `tuple`. When
+ returning a tuple, the first element is the sample tensor.
+
+ """
+ message = (
+ "Please make sure to instantiate your scheduler with `prediction_type` instead. E.g. `scheduler ="
+ " DDPMScheduler.from_pretrained(, prediction_type='epsilon')`."
+ )
+ predict_epsilon = deprecate("predict_epsilon", "0.13.0", message, take_from=kwargs)
+ if predict_epsilon is not None:
+ new_config = dict(self.config)
+ new_config["prediction_type"] = "epsilon" if predict_epsilon else "sample"
+ self._internal_dict = FrozenDict(new_config)
+
+ t = timestep
+
+ if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]:
+ model_output, predicted_variance = paddle.split(model_output, sample.shape[1], axis=1)
+ else:
+ predicted_variance = None
+
+ # 1. compute alphas, betas
+ alpha_prod_t = self.alphas_cumprod[t]
+ alpha_prod_t_prev = self.alphas_cumprod[t - 1] if t > 0 else self.one
+ beta_prod_t = 1 - alpha_prod_t
+ beta_prod_t_prev = 1 - alpha_prod_t_prev
+
+ # 2. compute predicted original sample from predicted noise also called
+ # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
+ if self.config.prediction_type == "epsilon":
+ pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
+ elif self.config.prediction_type == "sample":
+ pred_original_sample = model_output
+ elif self.config.prediction_type == "v_prediction":
+ pred_original_sample = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output
+ else:
+ raise ValueError(
+ f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` or"
+ " `v_prediction` for the DDPMScheduler."
+ )
+
+ # 3. Clip "predicted x_0"
+ if self.config.clip_sample:
+ pred_original_sample = paddle.clip(pred_original_sample, -1, 1)
+
+ # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
+ # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
+ pred_original_sample_coeff = (alpha_prod_t_prev ** (0.5) * self.betas[t]) / beta_prod_t
+ current_sample_coeff = self.alphas[t] ** (0.5) * beta_prod_t_prev / beta_prod_t
+
+ # 5. Compute predicted previous sample µ_t
+ # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
+ pred_prev_sample = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample
+
+ # 6. Add noise
+ variance = 0
+ if t > 0:
+ variance_noise = paddle.randn(model_output.shape, generator=generator, dtype=model_output.dtype)
+ if self.variance_type == "fixed_small_log":
+ variance = self._get_variance(t, predicted_variance=predicted_variance) * variance_noise
+ else:
+ variance = (self._get_variance(t, predicted_variance=predicted_variance) ** 0.5) * variance_noise
+
+ pred_prev_sample = pred_prev_sample + variance
+
+ if not return_dict:
+ return (pred_prev_sample,)
+
+ return DDPMSchedulerOutput(prev_sample=pred_prev_sample, pred_original_sample=pred_original_sample)
+
+ def add_noise(
+ self,
+ original_samples: paddle.Tensor,
+ noise: paddle.Tensor,
+ timesteps: paddle.Tensor,
+ ) -> paddle.Tensor:
+ # Make sure alphas_cumprod and timestep have same dtype as original_samples
+ self.alphas_cumprod = self.alphas_cumprod.cast(original_samples.dtype)
+
+ sqrt_alpha_prod = self.alphas_cumprod[timesteps] ** 0.5
+ sqrt_alpha_prod = sqrt_alpha_prod.flatten()
+ while len(sqrt_alpha_prod.shape) < len(original_samples.shape):
+ sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)
+
+ sqrt_one_minus_alpha_prod = (1 - self.alphas_cumprod[timesteps]) ** 0.5
+ sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
+ while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape):
+ sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
+
+ noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
+ return noisy_samples
+
+ def get_velocity(self, sample: paddle.Tensor, noise: paddle.Tensor, timesteps: paddle.Tensor) -> paddle.Tensor:
+ # Make sure alphas_cumprod and timestep have same dtype as original_samples
+ self.alphas_cumprod = self.alphas_cumprod.cast(sample.dtype)
+
+ sqrt_alpha_prod = self.alphas_cumprod[timesteps] ** 0.5
+ sqrt_alpha_prod = sqrt_alpha_prod.flatten()
+ while len(sqrt_alpha_prod.shape) < len(sample.shape):
+ sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)
+
+ sqrt_one_minus_alpha_prod = (1 - self.alphas_cumprod[timesteps]) ** 0.5
+ sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
+ while len(sqrt_one_minus_alpha_prod.shape) < len(sample.shape):
+ sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
+
+ velocity = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample
+ return velocity
+
+ def __len__(self):
+ return self.config.num_train_timesteps
diff --git a/ppdiffusers/schedulers/scheduling_dpmsolver_multistep.py b/ppdiffusers/schedulers/scheduling_dpmsolver_multistep.py
new file mode 100644
index 0000000000000000000000000000000000000000..ac93600eb6fdea3d18475e845a9f934e4ec7e341
--- /dev/null
+++ b/ppdiffusers/schedulers/scheduling_dpmsolver_multistep.py
@@ -0,0 +1,524 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+# Copyright 2022 TSAIL Team and The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+# DISCLAIMER: This file is strongly influenced by https://github.com/LuChengTHU/dpm-solver
+
+import math
+from typing import List, Optional, Tuple, Union
+
+import numpy as np
+import paddle
+
+from ..configuration_utils import ConfigMixin, register_to_config
+from ..utils import _COMPATIBLE_STABLE_DIFFUSION_SCHEDULERS, deprecate
+from .scheduling_utils import SchedulerMixin, SchedulerOutput
+
+
+def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999):
+ """
+ Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
+ (1-beta) over time from t = [0,1].
+
+ Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
+ to that part of the diffusion process.
+
+
+ Args:
+ num_diffusion_timesteps (`int`): the number of betas to produce.
+ max_beta (`float`): the maximum beta to use; use values lower than 1 to
+ prevent singularities.
+
+ Returns:
+ betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
+ """
+
+ def alpha_bar(time_step):
+ return math.cos((time_step + 0.008) / 1.008 * math.pi / 2) ** 2
+
+ betas = []
+ for i in range(num_diffusion_timesteps):
+ t1 = i / num_diffusion_timesteps
+ t2 = (i + 1) / num_diffusion_timesteps
+ betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
+ return paddle.to_tensor(betas, dtype="float32")
+
+
+class DPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
+ """
+ DPM-Solver (and the improved version DPM-Solver++) is a fast dedicated high-order solver for diffusion ODEs with
+ the convergence order guarantee. Empirically, sampling by DPM-Solver with only 20 steps can generate high-quality
+ samples, and it can generate quite good samples even in only 10 steps.
+
+ For more details, see the original paper: https://arxiv.org/abs/2206.00927 and https://arxiv.org/abs/2211.01095
+
+ Currently, we support the multistep DPM-Solver for both noise prediction models and data prediction models. We
+ recommend to use `solver_order=2` for guided sampling, and `solver_order=3` for unconditional sampling.
+
+ We also support the "dynamic thresholding" method in Imagen (https://arxiv.org/abs/2205.11487). For pixel-space
+ diffusion models, you can set both `algorithm_type="dpmsolver++"` and `thresholding=True` to use the dynamic
+ thresholding. Note that the thresholding method is unsuitable for latent-space diffusion models (such as
+ stable-diffusion).
+
+ [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__`
+ function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`.
+ [`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and
+ [`~SchedulerMixin.from_pretrained`] functions.
+
+ Args:
+ num_train_timesteps (`int`): number of diffusion steps used to train the model.
+ beta_start (`float`): the starting `beta` value of inference.
+ beta_end (`float`): the final `beta` value.
+ beta_schedule (`str`):
+ the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
+ `linear`, `scaled_linear`, or `squaredcos_cap_v2`.
+ trained_betas (`np.ndarray`, optional):
+ option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc.
+ solver_order (`int`, default `2`):
+ the order of DPM-Solver; can be `1` or `2` or `3`. We recommend to use `solver_order=2` for guided
+ sampling, and `solver_order=3` for unconditional sampling.
+ prediction_type (`str`, default `epsilon`, optional):
+ prediction type of the scheduler function, one of `epsilon` (predicting the noise of the diffusion
+ process), `sample` (directly predicting the noisy sample`) or `v_prediction` (see section 2.4
+ https://imagen.research.google/video/paper.pdf)
+ thresholding (`bool`, default `False`):
+ whether to use the "dynamic thresholding" method (introduced by Imagen, https://arxiv.org/abs/2205.11487).
+ For pixel-space diffusion models, you can set both `algorithm_type=dpmsolver++` and `thresholding=True` to
+ use the dynamic thresholding. Note that the thresholding method is unsuitable for latent-space diffusion
+ models (such as stable-diffusion).
+ dynamic_thresholding_ratio (`float`, default `0.995`):
+ the ratio for the dynamic thresholding method. Default is `0.995`, the same as Imagen
+ (https://arxiv.org/abs/2205.11487).
+ sample_max_value (`float`, default `1.0`):
+ the threshold value for dynamic thresholding. Valid only when `thresholding=True` and
+ `algorithm_type="dpmsolver++`.
+ algorithm_type (`str`, default `dpmsolver++`):
+ the algorithm type for the solver. Either `dpmsolver` or `dpmsolver++`. The `dpmsolver` type implements the
+ algorithms in https://arxiv.org/abs/2206.00927, and the `dpmsolver++` type implements the algorithms in
+ https://arxiv.org/abs/2211.01095. We recommend to use `dpmsolver++` with `solver_order=2` for guided
+ sampling (e.g. stable-diffusion).
+ solver_type (`str`, default `midpoint`):
+ the solver type for the second-order solver. Either `midpoint` or `heun`. The solver type slightly affects
+ the sample quality, especially for small number of steps. We empirically find that `midpoint` solvers are
+ slightly better, so we recommend to use the `midpoint` type.
+ lower_order_final (`bool`, default `True`):
+ whether to use lower-order solvers in the final steps. Only valid for < 15 inference steps. We empirically
+ find this trick can stabilize the sampling of DPM-Solver for steps < 15, especially for steps <= 10.
+
+ """
+
+ _compatibles = _COMPATIBLE_STABLE_DIFFUSION_SCHEDULERS.copy()
+ _deprecated_kwargs = ["predict_epsilon"]
+ order = 1
+
+ @register_to_config
+ def __init__(
+ self,
+ num_train_timesteps: int = 1000,
+ beta_start: float = 0.0001,
+ beta_end: float = 0.02,
+ beta_schedule: str = "linear",
+ trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
+ solver_order: int = 2,
+ prediction_type: str = "epsilon",
+ thresholding: bool = False,
+ dynamic_thresholding_ratio: float = 0.995,
+ sample_max_value: float = 1.0,
+ algorithm_type: str = "dpmsolver++",
+ solver_type: str = "midpoint",
+ lower_order_final: bool = True,
+ **kwargs,
+ ):
+ message = (
+ "Please make sure to instantiate your scheduler with `prediction_type` instead. E.g. `scheduler ="
+ " DPMSolverMultistepScheduler.from_pretrained(, prediction_type='epsilon')`."
+ )
+ predict_epsilon = deprecate("predict_epsilon", "0.13.0", message, take_from=kwargs)
+ if predict_epsilon is not None:
+ self.register_to_config(prediction_type="epsilon" if predict_epsilon else "sample")
+ if trained_betas is not None:
+ self.betas = paddle.to_tensor(trained_betas, dtype="float32")
+ elif beta_schedule == "linear":
+ self.betas = paddle.linspace(beta_start, beta_end, num_train_timesteps, dtype="float32")
+ elif beta_schedule == "scaled_linear":
+ # this schedule is very specific to the latent diffusion model.
+ self.betas = paddle.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype="float32") ** 2
+ elif beta_schedule == "squaredcos_cap_v2":
+ # Glide cosine schedule
+ self.betas = betas_for_alpha_bar(num_train_timesteps)
+ else:
+ raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")
+
+ self.alphas = 1.0 - self.betas
+ self.alphas_cumprod = paddle.cumprod(self.alphas, 0)
+ # Currently we only support VP-type noise schedule
+ self.alpha_t = paddle.sqrt(self.alphas_cumprod)
+ self.sigma_t = paddle.sqrt(1 - self.alphas_cumprod)
+ self.lambda_t = paddle.log(self.alpha_t) - paddle.log(self.sigma_t)
+
+ # standard deviation of the initial noise distribution
+ self.init_noise_sigma = 1.0
+
+ # settings for DPM-Solver
+ if algorithm_type not in ["dpmsolver", "dpmsolver++"]:
+ raise NotImplementedError(f"{algorithm_type} does is not implemented for {self.__class__}")
+ if solver_type not in ["midpoint", "heun"]:
+ raise NotImplementedError(f"{solver_type} does is not implemented for {self.__class__}")
+
+ # setable values
+ self.num_inference_steps = None
+ timesteps = np.linspace(0, num_train_timesteps - 1, num_train_timesteps, dtype=np.float32)[::-1].copy()
+ self.timesteps = paddle.to_tensor(timesteps)
+ self.model_outputs = [None] * solver_order
+ self.lower_order_nums = 0
+
+ def set_timesteps(self, num_inference_steps: int):
+ """
+ Sets the timesteps used for the diffusion chain. Supporting function to be run before inference.
+
+ Args:
+ num_inference_steps (`int`):
+ the number of diffusion steps used when generating samples with a pre-trained model.
+ """
+ self.num_inference_steps = num_inference_steps
+ timesteps = (
+ np.linspace(0, self.num_train_timesteps - 1, num_inference_steps + 1)
+ .round()[::-1][:-1]
+ .copy()
+ .astype(np.int64)
+ )
+ self.timesteps = paddle.to_tensor(timesteps)
+ self.model_outputs = [
+ None,
+ ] * self.config.solver_order
+ self.lower_order_nums = 0
+
+ def convert_model_output(self, model_output: paddle.Tensor, timestep: int, sample: paddle.Tensor) -> paddle.Tensor:
+ """
+ Convert the model output to the corresponding type that the algorithm (DPM-Solver / DPM-Solver++) needs.
+
+ DPM-Solver is designed to discretize an integral of the noise prediction model, and DPM-Solver++ is designed to
+ discretize an integral of the data prediction model. So we need to first convert the model output to the
+ corresponding type to match the algorithm.
+
+ Note that the algorithm type and the model type is decoupled. That is to say, we can use either DPM-Solver or
+ DPM-Solver++ for both noise prediction model and data prediction model.
+
+ Args:
+ model_output (`paddle.Tensor`): direct output from learned diffusion model.
+ timestep (`int`): current discrete timestep in the diffusion chain.
+ sample (`paddle.Tensor`):
+ current instance of sample being created by diffusion process.
+
+ Returns:
+ `paddle.Tensor`: the converted model output.
+ """
+ # DPM-Solver++ needs to solve an integral of the data prediction model.
+ if self.config.algorithm_type == "dpmsolver++":
+ if self.config.prediction_type == "epsilon":
+ alpha_t, sigma_t = self.alpha_t[timestep], self.sigma_t[timestep]
+ x0_pred = (sample - sigma_t * model_output) / alpha_t
+ elif self.config.prediction_type == "sample":
+ x0_pred = model_output
+ elif self.config.prediction_type == "v_prediction":
+ alpha_t, sigma_t = self.alpha_t[timestep], self.sigma_t[timestep]
+ x0_pred = alpha_t * sample - sigma_t * model_output
+ else:
+ raise ValueError(
+ f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or"
+ " `v_prediction` for the DPMSolverMultistepScheduler."
+ )
+
+ if self.config.thresholding:
+ # Dynamic thresholding in https://arxiv.org/abs/2205.11487
+ orig_dtype = x0_pred.dtype
+ if orig_dtype not in [paddle.float32, paddle.float64]:
+ x0_pred = x0_pred.cast("float32")
+ dynamic_max_val = paddle.quantile(
+ paddle.abs(x0_pred).reshape((x0_pred.shape[0], -1)), self.config.dynamic_thresholding_ratio, axis=1
+ )
+ dynamic_max_val = paddle.maximum(
+ dynamic_max_val,
+ self.config.sample_max_value * paddle.ones_like(dynamic_max_val),
+ )[(...,) + (None,) * (x0_pred.ndim - 1)]
+ x0_pred = paddle.clip(x0_pred, -dynamic_max_val, dynamic_max_val) / dynamic_max_val
+ x0_pred = x0_pred.cast(orig_dtype)
+ return x0_pred
+ # DPM-Solver needs to solve an integral of the noise prediction model.
+ elif self.config.algorithm_type == "dpmsolver":
+ if self.config.prediction_type == "epsilon":
+ return model_output
+ elif self.config.prediction_type == "sample":
+ alpha_t, sigma_t = self.alpha_t[timestep], self.sigma_t[timestep]
+ epsilon = (sample - alpha_t * model_output) / sigma_t
+ return epsilon
+ elif self.config.prediction_type == "v_prediction":
+ alpha_t, sigma_t = self.alpha_t[timestep], self.sigma_t[timestep]
+ epsilon = alpha_t * model_output + sigma_t * sample
+ return epsilon
+ else:
+ raise ValueError(
+ f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or"
+ " `v_prediction` for the DPMSolverMultistepScheduler."
+ )
+
+ def dpm_solver_first_order_update(
+ self,
+ model_output: paddle.Tensor,
+ timestep: int,
+ prev_timestep: int,
+ sample: paddle.Tensor,
+ ) -> paddle.Tensor:
+ """
+ One step for the first-order DPM-Solver (equivalent to DDIM).
+
+ See https://arxiv.org/abs/2206.00927 for the detailed derivation.
+
+ Args:
+ model_output (`paddle.Tensor`): direct output from learned diffusion model.
+ timestep (`int`): current discrete timestep in the diffusion chain.
+ prev_timestep (`int`): previous discrete timestep in the diffusion chain.
+ sample (`paddle.Tensor`):
+ current instance of sample being created by diffusion process.
+
+ Returns:
+ `paddle.Tensor`: the sample tensor at the previous timestep.
+ """
+ lambda_t, lambda_s = self.lambda_t[prev_timestep], self.lambda_t[timestep]
+ alpha_t, alpha_s = self.alpha_t[prev_timestep], self.alpha_t[timestep]
+ sigma_t, sigma_s = self.sigma_t[prev_timestep], self.sigma_t[timestep]
+ h = lambda_t - lambda_s
+ if self.config.algorithm_type == "dpmsolver++":
+ x_t = (sigma_t / sigma_s) * sample - (alpha_t * (paddle.exp(-h) - 1.0)) * model_output
+ elif self.config.algorithm_type == "dpmsolver":
+ x_t = (alpha_t / alpha_s) * sample - (sigma_t * (paddle.exp(h) - 1.0)) * model_output
+ return x_t
+
+ def multistep_dpm_solver_second_order_update(
+ self,
+ model_output_list: List[paddle.Tensor],
+ timestep_list: List[int],
+ prev_timestep: int,
+ sample: paddle.Tensor,
+ ) -> paddle.Tensor:
+ """
+ One step for the second-order multistep DPM-Solver.
+
+ Args:
+ model_output_list (`List[paddle.Tensor]`):
+ direct outputs from learned diffusion model at current and latter timesteps.
+ timestep (`int`): current and latter discrete timestep in the diffusion chain.
+ prev_timestep (`int`): previous discrete timestep in the diffusion chain.
+ sample (`paddle.Tensor`):
+ current instance of sample being created by diffusion process.
+
+ Returns:
+ `paddle.Tensor`: the sample tensor at the previous timestep.
+ """
+ t, s0, s1 = prev_timestep, timestep_list[-1], timestep_list[-2]
+ m0, m1 = model_output_list[-1], model_output_list[-2]
+ lambda_t, lambda_s0, lambda_s1 = self.lambda_t[t], self.lambda_t[s0], self.lambda_t[s1]
+ alpha_t, alpha_s0 = self.alpha_t[t], self.alpha_t[s0]
+ sigma_t, sigma_s0 = self.sigma_t[t], self.sigma_t[s0]
+ h, h_0 = lambda_t - lambda_s0, lambda_s0 - lambda_s1
+ r0 = h_0 / h
+ D0, D1 = m0, (1.0 / r0) * (m0 - m1)
+ if self.config.algorithm_type == "dpmsolver++":
+ # See https://arxiv.org/abs/2211.01095 for detailed derivations
+ if self.config.solver_type == "midpoint":
+ x_t = (
+ (sigma_t / sigma_s0) * sample
+ - (alpha_t * (paddle.exp(-h) - 1.0)) * D0
+ - 0.5 * (alpha_t * (paddle.exp(-h) - 1.0)) * D1
+ )
+ elif self.config.solver_type == "heun":
+ x_t = (
+ (sigma_t / sigma_s0) * sample
+ - (alpha_t * (paddle.exp(-h) - 1.0)) * D0
+ + (alpha_t * ((paddle.exp(-h) - 1.0) / h + 1.0)) * D1
+ )
+ elif self.config.algorithm_type == "dpmsolver":
+ # See https://arxiv.org/abs/2206.00927 for detailed derivations
+ if self.config.solver_type == "midpoint":
+ x_t = (
+ (alpha_t / alpha_s0) * sample
+ - (sigma_t * (paddle.exp(h) - 1.0)) * D0
+ - 0.5 * (sigma_t * (paddle.exp(h) - 1.0)) * D1
+ )
+ elif self.config.solver_type == "heun":
+ x_t = (
+ (alpha_t / alpha_s0) * sample
+ - (sigma_t * (paddle.exp(h) - 1.0)) * D0
+ - (sigma_t * ((paddle.exp(h) - 1.0) / h - 1.0)) * D1
+ )
+ return x_t
+
+ def multistep_dpm_solver_third_order_update(
+ self,
+ model_output_list: List[paddle.Tensor],
+ timestep_list: List[int],
+ prev_timestep: int,
+ sample: paddle.Tensor,
+ ) -> paddle.Tensor:
+ """
+ One step for the third-order multistep DPM-Solver.
+
+ Args:
+ model_output_list (`List[paddle.Tensor]`):
+ direct outputs from learned diffusion model at current and latter timesteps.
+ timestep (`int`): current and latter discrete timestep in the diffusion chain.
+ prev_timestep (`int`): previous discrete timestep in the diffusion chain.
+ sample (`paddle.Tensor`):
+ current instance of sample being created by diffusion process.
+
+ Returns:
+ `paddle.Tensor`: the sample tensor at the previous timestep.
+ """
+ t, s0, s1, s2 = prev_timestep, timestep_list[-1], timestep_list[-2], timestep_list[-3]
+ m0, m1, m2 = model_output_list[-1], model_output_list[-2], model_output_list[-3]
+ lambda_t, lambda_s0, lambda_s1, lambda_s2 = (
+ self.lambda_t[t],
+ self.lambda_t[s0],
+ self.lambda_t[s1],
+ self.lambda_t[s2],
+ )
+ alpha_t, alpha_s0 = self.alpha_t[t], self.alpha_t[s0]
+ sigma_t, sigma_s0 = self.sigma_t[t], self.sigma_t[s0]
+ h, h_0, h_1 = lambda_t - lambda_s0, lambda_s0 - lambda_s1, lambda_s1 - lambda_s2
+ r0, r1 = h_0 / h, h_1 / h
+ D0 = m0
+ D1_0, D1_1 = (1.0 / r0) * (m0 - m1), (1.0 / r1) * (m1 - m2)
+ D1 = D1_0 + (r0 / (r0 + r1)) * (D1_0 - D1_1)
+ D2 = (1.0 / (r0 + r1)) * (D1_0 - D1_1)
+ if self.config.algorithm_type == "dpmsolver++":
+ # See https://arxiv.org/abs/2206.00927 for detailed derivations
+ x_t = (
+ (sigma_t / sigma_s0) * sample
+ - (alpha_t * (paddle.exp(-h) - 1.0)) * D0
+ + (alpha_t * ((paddle.exp(-h) - 1.0) / h + 1.0)) * D1
+ - (alpha_t * ((paddle.exp(-h) - 1.0 + h) / h**2 - 0.5)) * D2
+ )
+ elif self.config.algorithm_type == "dpmsolver":
+ # See https://arxiv.org/abs/2206.00927 for detailed derivations
+ x_t = (
+ (alpha_t / alpha_s0) * sample
+ - (sigma_t * (paddle.exp(h) - 1.0)) * D0
+ - (sigma_t * ((paddle.exp(h) - 1.0) / h - 1.0)) * D1
+ - (sigma_t * ((paddle.exp(h) - 1.0 - h) / h**2 - 0.5)) * D2
+ )
+ return x_t
+
+ def step(
+ self,
+ model_output: paddle.Tensor,
+ timestep: int,
+ sample: paddle.Tensor,
+ return_dict: bool = True,
+ ) -> Union[SchedulerOutput, Tuple]:
+ """
+ Step function propagating the sample with the multistep DPM-Solver.
+
+ Args:
+ model_output (`paddle.Tensor`): direct output from learned diffusion model.
+ timestep (`int`): current discrete timestep in the diffusion chain.
+ sample (`paddle.Tensor`):
+ current instance of sample being created by diffusion process.
+ return_dict (`bool`): option for returning tuple rather than SchedulerOutput class
+
+ Returns:
+ [`~scheduling_utils.SchedulerOutput`] or `tuple`: [`~scheduling_utils.SchedulerOutput`] if `return_dict` is
+ True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor.
+
+ """
+ if self.num_inference_steps is None:
+ raise ValueError(
+ "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
+ )
+
+ step_index = (self.timesteps == timestep).nonzero()
+ if len(step_index) == 0:
+ step_index = len(self.timesteps) - 1
+ else:
+ step_index = step_index.item()
+ prev_timestep = 0 if step_index == len(self.timesteps) - 1 else self.timesteps[step_index + 1]
+ lower_order_final = (
+ (step_index == len(self.timesteps) - 1) and self.config.lower_order_final and len(self.timesteps) < 15
+ )
+ lower_order_second = (
+ (step_index == len(self.timesteps) - 2) and self.config.lower_order_final and len(self.timesteps) < 15
+ )
+
+ model_output = self.convert_model_output(model_output, timestep, sample)
+ for i in range(self.config.solver_order - 1):
+ self.model_outputs[i] = self.model_outputs[i + 1]
+ self.model_outputs[-1] = model_output
+
+ if self.config.solver_order == 1 or self.lower_order_nums < 1 or lower_order_final:
+ prev_sample = self.dpm_solver_first_order_update(model_output, timestep, prev_timestep, sample)
+ elif self.config.solver_order == 2 or self.lower_order_nums < 2 or lower_order_second:
+ timestep_list = [self.timesteps[step_index - 1], timestep]
+ prev_sample = self.multistep_dpm_solver_second_order_update(
+ self.model_outputs, timestep_list, prev_timestep, sample
+ )
+ else:
+ timestep_list = [self.timesteps[step_index - 2], self.timesteps[step_index - 1], timestep]
+ prev_sample = self.multistep_dpm_solver_third_order_update(
+ self.model_outputs, timestep_list, prev_timestep, sample
+ )
+
+ if self.lower_order_nums < self.config.solver_order:
+ self.lower_order_nums += 1
+
+ if not return_dict:
+ return (prev_sample,)
+
+ return SchedulerOutput(prev_sample=prev_sample)
+
+ def scale_model_input(self, sample: paddle.Tensor, *args, **kwargs) -> paddle.Tensor:
+ """
+ Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
+ current timestep.
+
+ Args:
+ sample (`paddle.Tensor`): input sample
+
+ Returns:
+ `paddle.Tensor`: scaled input sample
+ """
+ return sample
+
+ def add_noise(
+ self,
+ original_samples: paddle.Tensor,
+ noise: paddle.Tensor,
+ timesteps: paddle.Tensor,
+ ) -> paddle.Tensor:
+ # Make sure alphas_cumprod and timestep have same dtype as original_samples
+ self.alphas_cumprod = self.alphas_cumprod.cast(original_samples.dtype)
+
+ sqrt_alpha_prod = self.alphas_cumprod[timesteps] ** 0.5
+ sqrt_alpha_prod = sqrt_alpha_prod.flatten()
+ while len(sqrt_alpha_prod.shape) < len(original_samples.shape):
+ sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)
+
+ sqrt_one_minus_alpha_prod = (1 - self.alphas_cumprod[timesteps]) ** 0.5
+ sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
+ while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape):
+ sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
+
+ noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
+ return noisy_samples
+
+ def __len__(self):
+ return self.config.num_train_timesteps
diff --git a/ppdiffusers/schedulers/scheduling_dpmsolver_singlestep.py b/ppdiffusers/schedulers/scheduling_dpmsolver_singlestep.py
new file mode 100644
index 0000000000000000000000000000000000000000..6a8f8cae80259114aa4fd46117fa0c2e3bd3b617
--- /dev/null
+++ b/ppdiffusers/schedulers/scheduling_dpmsolver_singlestep.py
@@ -0,0 +1,592 @@
+# Copyright 2022 TSAIL Team and The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+# DISCLAIMER: This file is strongly influenced by https://github.com/LuChengTHU/dpm-solver
+
+import math
+from typing import List, Optional, Tuple, Union
+
+import numpy as np
+import paddle
+
+from ..configuration_utils import ConfigMixin, register_to_config
+from ..utils import _COMPATIBLE_STABLE_DIFFUSION_SCHEDULERS
+from .scheduling_utils import SchedulerMixin, SchedulerOutput
+
+
+def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999):
+ """
+ Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
+ (1-beta) over time from t = [0,1].
+
+ Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
+ to that part of the diffusion process.
+
+
+ Args:
+ num_diffusion_timesteps (`int`): the number of betas to produce.
+ max_beta (`float`): the maximum beta to use; use values lower than 1 to
+ prevent singularities.
+
+ Returns:
+ betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
+ """
+
+ def alpha_bar(time_step):
+ return math.cos((time_step + 0.008) / 1.008 * math.pi / 2) ** 2
+
+ betas = []
+ for i in range(num_diffusion_timesteps):
+ t1 = i / num_diffusion_timesteps
+ t2 = (i + 1) / num_diffusion_timesteps
+ betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
+ return paddle.to_tensor(betas, dtype=paddle.float32)
+
+
+class DPMSolverSinglestepScheduler(SchedulerMixin, ConfigMixin):
+ """
+ DPM-Solver (and the improved version DPM-Solver++) is a fast dedicated high-order solver for diffusion ODEs with
+ the convergence order guarantee. Empirically, sampling by DPM-Solver with only 20 steps can generate high-quality
+ samples, and it can generate quite good samples even in only 10 steps.
+
+ For more details, see the original paper: https://arxiv.org/abs/2206.00927 and https://arxiv.org/abs/2211.01095
+
+ Currently, we support the singlestep DPM-Solver for both noise prediction models and data prediction models. We
+ recommend to use `solver_order=2` for guided sampling, and `solver_order=3` for unconditional sampling.
+
+ We also support the "dynamic thresholding" method in Imagen (https://arxiv.org/abs/2205.11487). For pixel-space
+ diffusion models, you can set both `algorithm_type="dpmsolver++"` and `thresholding=True` to use the dynamic
+ thresholding. Note that the thresholding method is unsuitable for latent-space diffusion models (such as
+ stable-diffusion).
+
+ [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__`
+ function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`.
+ [`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and
+ [`~SchedulerMixin.from_pretrained`] functions.
+
+ Args:
+ num_train_timesteps (`int`): number of diffusion steps used to train the model.
+ beta_start (`float`): the starting `beta` value of inference.
+ beta_end (`float`): the final `beta` value.
+ beta_schedule (`str`):
+ the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
+ `linear`, `scaled_linear`, or `squaredcos_cap_v2`.
+ trained_betas (`np.ndarray`, optional):
+ option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc.
+ solver_order (`int`, default `2`):
+ the order of DPM-Solver; can be `1` or `2` or `3`. We recommend to use `solver_order=2` for guided
+ sampling, and `solver_order=3` for unconditional sampling.
+ prediction_type (`str`, default `epsilon`):
+ indicates whether the model predicts the noise (epsilon), or the data / `x0`. One of `epsilon`, `sample`,
+ or `v-prediction`.
+ thresholding (`bool`, default `False`):
+ whether to use the "dynamic thresholding" method (introduced by Imagen, https://arxiv.org/abs/2205.11487).
+ For pixel-space diffusion models, you can set both `algorithm_type=dpmsolver++` and `thresholding=True` to
+ use the dynamic thresholding. Note that the thresholding method is unsuitable for latent-space diffusion
+ models (such as stable-diffusion).
+ dynamic_thresholding_ratio (`float`, default `0.995`):
+ the ratio for the dynamic thresholding method. Default is `0.995`, the same as Imagen
+ (https://arxiv.org/abs/2205.11487).
+ sample_max_value (`float`, default `1.0`):
+ the threshold value for dynamic thresholding. Valid only when `thresholding=True` and
+ `algorithm_type="dpmsolver++`.
+ algorithm_type (`str`, default `dpmsolver++`):
+ the algorithm type for the solver. Either `dpmsolver` or `dpmsolver++`. The `dpmsolver` type implements the
+ algorithms in https://arxiv.org/abs/2206.00927, and the `dpmsolver++` type implements the algorithms in
+ https://arxiv.org/abs/2211.01095. We recommend to use `dpmsolver++` with `solver_order=2` for guided
+ sampling (e.g. stable-diffusion).
+ solver_type (`str`, default `midpoint`):
+ the solver type for the second-order solver. Either `midpoint` or `heun`. The solver type slightly affects
+ the sample quality, especially for small number of steps. We empirically find that `midpoint` solvers are
+ slightly better, so we recommend to use the `midpoint` type.
+ lower_order_final (`bool`, default `True`):
+ whether to use lower-order solvers in the final steps. For singlestep schedulers, we recommend to enable
+ this to use up all the function evaluations.
+
+ """
+
+ _compatibles = _COMPATIBLE_STABLE_DIFFUSION_SCHEDULERS.copy()
+ order = 1
+
+ @register_to_config
+ def __init__(
+ self,
+ num_train_timesteps: int = 1000,
+ beta_start: float = 0.0001,
+ beta_end: float = 0.02,
+ beta_schedule: str = "linear",
+ trained_betas: Optional[np.ndarray] = None,
+ solver_order: int = 2,
+ prediction_type: str = "epsilon",
+ thresholding: bool = False,
+ dynamic_thresholding_ratio: float = 0.995,
+ sample_max_value: float = 1.0,
+ algorithm_type: str = "dpmsolver++",
+ solver_type: str = "midpoint",
+ lower_order_final: bool = True,
+ ):
+ if trained_betas is not None:
+ self.betas = paddle.to_tensor(trained_betas, dtype=paddle.float32)
+ elif beta_schedule == "linear":
+ self.betas = paddle.linspace(beta_start, beta_end, num_train_timesteps, dtype=paddle.float32)
+ elif beta_schedule == "scaled_linear":
+ # this schedule is very specific to the latent diffusion model.
+ self.betas = (
+ paddle.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=paddle.float32) ** 2
+ )
+ elif beta_schedule == "squaredcos_cap_v2":
+ # Glide cosine schedule
+ self.betas = betas_for_alpha_bar(num_train_timesteps)
+ else:
+ raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")
+
+ self.alphas = 1.0 - self.betas
+ self.alphas_cumprod = paddle.cumprod(self.alphas, 0)
+ # Currently we only support VP-type noise schedule
+ self.alpha_t = paddle.sqrt(self.alphas_cumprod)
+ self.sigma_t = paddle.sqrt(1 - self.alphas_cumprod)
+ self.lambda_t = paddle.log(self.alpha_t) - paddle.log(self.sigma_t)
+
+ # standard deviation of the initial noise distribution
+ self.init_noise_sigma = 1.0
+
+ # settings for DPM-Solver
+ if algorithm_type not in ["dpmsolver", "dpmsolver++"]:
+ raise NotImplementedError(f"{algorithm_type} does is not implemented for {self.__class__}")
+ if solver_type not in ["midpoint", "heun"]:
+ raise NotImplementedError(f"{solver_type} does is not implemented for {self.__class__}")
+
+ # setable values
+ self.num_inference_steps = None
+ timesteps = np.linspace(0, num_train_timesteps - 1, num_train_timesteps, dtype=np.float32)[::-1].copy()
+ self.timesteps = paddle.to_tensor(timesteps)
+ self.model_outputs = [None] * solver_order
+ self.sample = None
+ self.order_list = self.get_order_list(num_train_timesteps)
+
+ def get_order_list(self, num_inference_steps: int) -> List[int]:
+ """
+ Computes the solver order at each time step.
+
+ Args:
+ num_inference_steps (`int`):
+ the number of diffusion steps used when generating samples with a pre-trained model.
+ """
+ steps = num_inference_steps
+ order = self.solver_order
+ if self.lower_order_final:
+ if order == 3:
+ if steps % 3 == 0:
+ orders = [1, 2, 3] * (steps // 3 - 1) + [1, 2] + [1]
+ elif steps % 3 == 1:
+ orders = [1, 2, 3] * (steps // 3) + [1]
+ else:
+ orders = [1, 2, 3] * (steps // 3) + [1, 2]
+ elif order == 2:
+ if steps % 2 == 0:
+ orders = [1, 2] * (steps // 2)
+ else:
+ orders = [1, 2] * (steps // 2) + [1]
+ elif order == 1:
+ orders = [1] * steps
+ else:
+ if order == 3:
+ orders = [1, 2, 3] * (steps // 3)
+ elif order == 2:
+ orders = [1, 2] * (steps // 2)
+ elif order == 1:
+ orders = [1] * steps
+ return orders
+
+ def set_timesteps(self, num_inference_steps: int):
+ """
+ Sets the timesteps used for the diffusion chain. Supporting function to be run before inference.
+
+ Args:
+ num_inference_steps (`int`):
+ the number of diffusion steps used when generating samples with a pre-trained model.
+ """
+ self.num_inference_steps = num_inference_steps
+ timesteps = (
+ np.linspace(0, self.num_train_timesteps - 1, num_inference_steps + 1)
+ .round()[::-1][:-1]
+ .copy()
+ .astype(np.int64)
+ )
+ self.timesteps = paddle.to_tensor(timesteps)
+ self.model_outputs = [None] * self.config.solver_order
+ self.sample = None
+ self.orders = self.get_order_list(num_inference_steps)
+
+ def convert_model_output(self, model_output: paddle.Tensor, timestep: int, sample: paddle.Tensor) -> paddle.Tensor:
+ """
+ Convert the model output to the corresponding type that the algorithm (DPM-Solver / DPM-Solver++) needs.
+
+ DPM-Solver is designed to discretize an integral of the noise prediction model, and DPM-Solver++ is designed to
+ discretize an integral of the data prediction model. So we need to first convert the model output to the
+ corresponding type to match the algorithm.
+
+ Note that the algorithm type and the model type is decoupled. That is to say, we can use either DPM-Solver or
+ DPM-Solver++ for both noise prediction model and data prediction model.
+
+ Args:
+ model_output (`paddle.Tensor`): direct output from learned diffusion model.
+ timestep (`int`): current discrete timestep in the diffusion chain.
+ sample (`paddle.Tensor`):
+ current instance of sample being created by diffusion process.
+
+ Returns:
+ `paddle.Tensor`: the converted model output.
+ """
+ # DPM-Solver++ needs to solve an integral of the data prediction model.
+ if self.config.algorithm_type == "dpmsolver++":
+ if self.config.prediction_type == "epsilon":
+ alpha_t, sigma_t = self.alpha_t[timestep], self.sigma_t[timestep]
+ x0_pred = (sample - sigma_t * model_output) / alpha_t
+ elif self.config.prediction_type == "sample":
+ x0_pred = model_output
+ elif self.config.prediction_type == "v_prediction":
+ alpha_t, sigma_t = self.alpha_t[timestep], self.sigma_t[timestep]
+ x0_pred = alpha_t * sample - sigma_t * model_output
+ else:
+ raise ValueError(
+ f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or"
+ " `v_prediction` for the DPMSolverSinglestepScheduler."
+ )
+
+ if self.config.thresholding:
+ # Dynamic thresholding in https://arxiv.org/abs/2205.11487
+ dtype = x0_pred.dtype
+ dynamic_max_val = paddle.quantile(
+ paddle.abs(x0_pred).reshape((x0_pred.shape[0], -1)).cast("float32"),
+ self.config.dynamic_thresholding_ratio,
+ axis=1,
+ )
+ dynamic_max_val = paddle.maximum(
+ dynamic_max_val,
+ self.config.sample_max_value * paddle.ones_like(dynamic_max_val),
+ )[(...,) + (None,) * (x0_pred.ndim - 1)]
+ x0_pred = paddle.clip(x0_pred, -dynamic_max_val, dynamic_max_val) / dynamic_max_val
+ x0_pred = x0_pred.cast(dtype)
+ return x0_pred
+ # DPM-Solver needs to solve an integral of the noise prediction model.
+ elif self.config.algorithm_type == "dpmsolver":
+ if self.config.prediction_type == "epsilon":
+ return model_output
+ elif self.config.prediction_type == "sample":
+ alpha_t, sigma_t = self.alpha_t[timestep], self.sigma_t[timestep]
+ epsilon = (sample - alpha_t * model_output) / sigma_t
+ return epsilon
+ elif self.config.prediction_type == "v_prediction":
+ alpha_t, sigma_t = self.alpha_t[timestep], self.sigma_t[timestep]
+ epsilon = alpha_t * model_output + sigma_t * sample
+ return epsilon
+ else:
+ raise ValueError(
+ f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or"
+ " `v_prediction` for the DPMSolverSinglestepScheduler."
+ )
+
+ def dpm_solver_first_order_update(
+ self,
+ model_output: paddle.Tensor,
+ timestep: int,
+ prev_timestep: int,
+ sample: paddle.Tensor,
+ ) -> paddle.Tensor:
+ """
+ One step for the first-order DPM-Solver (equivalent to DDIM).
+
+ See https://arxiv.org/abs/2206.00927 for the detailed derivation.
+
+ Args:
+ model_output (`paddle.Tensor`): direct output from learned diffusion model.
+ timestep (`int`): current discrete timestep in the diffusion chain.
+ prev_timestep (`int`): previous discrete timestep in the diffusion chain.
+ sample (`paddle.Tensor`):
+ current instance of sample being created by diffusion process.
+
+ Returns:
+ `paddle.Tensor`: the sample tensor at the previous timestep.
+ """
+ lambda_t, lambda_s = self.lambda_t[prev_timestep], self.lambda_t[timestep]
+ alpha_t, alpha_s = self.alpha_t[prev_timestep], self.alpha_t[timestep]
+ sigma_t, sigma_s = self.sigma_t[prev_timestep], self.sigma_t[timestep]
+ h = lambda_t - lambda_s
+ if self.config.algorithm_type == "dpmsolver++":
+ x_t = (sigma_t / sigma_s) * sample - (alpha_t * (paddle.exp(-h) - 1.0)) * model_output
+ elif self.config.algorithm_type == "dpmsolver":
+ x_t = (alpha_t / alpha_s) * sample - (sigma_t * (paddle.exp(h) - 1.0)) * model_output
+ return x_t
+
+ def singlestep_dpm_solver_second_order_update(
+ self,
+ model_output_list: List[paddle.Tensor],
+ timestep_list: List[int],
+ prev_timestep: int,
+ sample: paddle.Tensor,
+ ) -> paddle.Tensor:
+ """
+ One step for the second-order singlestep DPM-Solver.
+
+ It computes the solution at time `prev_timestep` from the time `timestep_list[-2]`.
+
+ Args:
+ model_output_list (`List[paddle.Tensor]`):
+ direct outputs from learned diffusion model at current and latter timesteps.
+ timestep (`int`): current and latter discrete timestep in the diffusion chain.
+ prev_timestep (`int`): previous discrete timestep in the diffusion chain.
+ sample (`paddle.Tensor`):
+ current instance of sample being created by diffusion process.
+
+ Returns:
+ `paddle.Tensor`: the sample tensor at the previous timestep.
+ """
+ t, s0, s1 = prev_timestep, timestep_list[-1], timestep_list[-2]
+ m0, m1 = model_output_list[-1], model_output_list[-2]
+ lambda_t, lambda_s0, lambda_s1 = self.lambda_t[t], self.lambda_t[s0], self.lambda_t[s1]
+ alpha_t, alpha_s1 = self.alpha_t[t], self.alpha_t[s1]
+ sigma_t, sigma_s1 = self.sigma_t[t], self.sigma_t[s1]
+ h, h_0 = lambda_t - lambda_s1, lambda_s0 - lambda_s1
+ r0 = h_0 / h
+ D0, D1 = m1, (1.0 / r0) * (m0 - m1)
+ if self.config.algorithm_type == "dpmsolver++":
+ # See https://arxiv.org/abs/2211.01095 for detailed derivations
+ if self.config.solver_type == "midpoint":
+ x_t = (
+ (sigma_t / sigma_s1) * sample
+ - (alpha_t * (paddle.exp(-h) - 1.0)) * D0
+ - 0.5 * (alpha_t * (paddle.exp(-h) - 1.0)) * D1
+ )
+ elif self.config.solver_type == "heun":
+ x_t = (
+ (sigma_t / sigma_s1) * sample
+ - (alpha_t * (paddle.exp(-h) - 1.0)) * D0
+ + (alpha_t * ((paddle.exp(-h) - 1.0) / h + 1.0)) * D1
+ )
+ elif self.config.algorithm_type == "dpmsolver":
+ # See https://arxiv.org/abs/2206.00927 for detailed derivations
+ if self.config.solver_type == "midpoint":
+ x_t = (
+ (alpha_t / alpha_s1) * sample
+ - (sigma_t * (paddle.exp(h) - 1.0)) * D0
+ - 0.5 * (sigma_t * (paddle.exp(h) - 1.0)) * D1
+ )
+ elif self.config.solver_type == "heun":
+ x_t = (
+ (alpha_t / alpha_s1) * sample
+ - (sigma_t * (paddle.exp(h) - 1.0)) * D0
+ - (sigma_t * ((paddle.exp(h) - 1.0) / h - 1.0)) * D1
+ )
+ return x_t
+
+ def singlestep_dpm_solver_third_order_update(
+ self,
+ model_output_list: List[paddle.Tensor],
+ timestep_list: List[int],
+ prev_timestep: int,
+ sample: paddle.Tensor,
+ ) -> paddle.Tensor:
+ """
+ One step for the third-order singlestep DPM-Solver.
+
+ It computes the solution at time `prev_timestep` from the time `timestep_list[-3]`.
+
+ Args:
+ model_output_list (`List[paddle.Tensor]`):
+ direct outputs from learned diffusion model at current and latter timesteps.
+ timestep (`int`): current and latter discrete timestep in the diffusion chain.
+ prev_timestep (`int`): previous discrete timestep in the diffusion chain.
+ sample (`paddle.Tensor`):
+ current instance of sample being created by diffusion process.
+
+ Returns:
+ `paddle.Tensor`: the sample tensor at the previous timestep.
+ """
+ t, s0, s1, s2 = prev_timestep, timestep_list[-1], timestep_list[-2], timestep_list[-3]
+ m0, m1, m2 = model_output_list[-1], model_output_list[-2], model_output_list[-3]
+ lambda_t, lambda_s0, lambda_s1, lambda_s2 = (
+ self.lambda_t[t],
+ self.lambda_t[s0],
+ self.lambda_t[s1],
+ self.lambda_t[s2],
+ )
+ alpha_t, alpha_s2 = self.alpha_t[t], self.alpha_t[s2]
+ sigma_t, sigma_s2 = self.sigma_t[t], self.sigma_t[s2]
+ h, h_0, h_1 = lambda_t - lambda_s2, lambda_s0 - lambda_s2, lambda_s1 - lambda_s2
+ r0, r1 = h_0 / h, h_1 / h
+ D0 = m2
+ D1_0, D1_1 = (1.0 / r1) * (m1 - m2), (1.0 / r0) * (m0 - m2)
+ D1 = (r0 * D1_0 - r1 * D1_1) / (r0 - r1)
+ D2 = 2.0 * (D1_1 - D1_0) / (r0 - r1)
+ if self.config.algorithm_type == "dpmsolver++":
+ # See https://arxiv.org/abs/2206.00927 for detailed derivations
+ if self.config.solver_type == "midpoint":
+ x_t = (
+ (sigma_t / sigma_s2) * sample
+ - (alpha_t * (paddle.exp(-h) - 1.0)) * D0
+ + (alpha_t * ((paddle.exp(-h) - 1.0) / h + 1.0)) * D1_1
+ )
+ elif self.config.solver_type == "heun":
+ x_t = (
+ (sigma_t / sigma_s2) * sample
+ - (alpha_t * (paddle.exp(-h) - 1.0)) * D0
+ + (alpha_t * ((paddle.exp(-h) - 1.0) / h + 1.0)) * D1
+ - (alpha_t * ((paddle.exp(-h) - 1.0 + h) / h**2 - 0.5)) * D2
+ )
+ elif self.config.algorithm_type == "dpmsolver":
+ # See https://arxiv.org/abs/2206.00927 for detailed derivations
+ if self.config.solver_type == "midpoint":
+ x_t = (
+ (alpha_t / alpha_s2) * sample
+ - (sigma_t * (paddle.exp(h) - 1.0)) * D0
+ - (sigma_t * ((paddle.exp(h) - 1.0) / h - 1.0)) * D1_1
+ )
+ elif self.config.solver_type == "heun":
+ x_t = (
+ (alpha_t / alpha_s2) * sample
+ - (sigma_t * (paddle.exp(h) - 1.0)) * D0
+ - (sigma_t * ((paddle.exp(h) - 1.0) / h - 1.0)) * D1
+ - (sigma_t * ((paddle.exp(h) - 1.0 - h) / h**2 - 0.5)) * D2
+ )
+ return x_t
+
+ def singlestep_dpm_solver_update(
+ self,
+ model_output_list: List[paddle.Tensor],
+ timestep_list: List[int],
+ prev_timestep: int,
+ sample: paddle.Tensor,
+ order: int,
+ ) -> paddle.Tensor:
+ """
+ One step for the singlestep DPM-Solver.
+
+ Args:
+ model_output_list (`List[paddle.Tensor]`):
+ direct outputs from learned diffusion model at current and latter timesteps.
+ timestep (`int`): current and latter discrete timestep in the diffusion chain.
+ prev_timestep (`int`): previous discrete timestep in the diffusion chain.
+ sample (`paddle.Tensor`):
+ current instance of sample being created by diffusion process.
+ order (`int`):
+ the solver order at this step.
+
+ Returns:
+ `paddle.Tensor`: the sample tensor at the previous timestep.
+ """
+ if order == 1:
+ return self.dpm_solver_first_order_update(model_output_list[-1], timestep_list[-1], prev_timestep, sample)
+ elif order == 2:
+ return self.singlestep_dpm_solver_second_order_update(
+ model_output_list, timestep_list, prev_timestep, sample
+ )
+ elif order == 3:
+ return self.singlestep_dpm_solver_third_order_update(
+ model_output_list, timestep_list, prev_timestep, sample
+ )
+ else:
+ raise ValueError(f"Order must be 1, 2, 3, got {order}")
+
+ def step(
+ self,
+ model_output: paddle.Tensor,
+ timestep: int,
+ sample: paddle.Tensor,
+ return_dict: bool = True,
+ ) -> Union[SchedulerOutput, Tuple]:
+ """
+ Step function propagating the sample with the singlestep DPM-Solver.
+
+ Args:
+ model_output (`paddle.Tensor`): direct output from learned diffusion model.
+ timestep (`int`): current discrete timestep in the diffusion chain.
+ sample (`paddle.Tensor`):
+ current instance of sample being created by diffusion process.
+ return_dict (`bool`): option for returning tuple rather than SchedulerOutput class
+
+ Returns:
+ [`~scheduling_utils.SchedulerOutput`] or `tuple`: [`~scheduling_utils.SchedulerOutput`] if `return_dict` is
+ True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor.
+
+ """
+ if self.num_inference_steps is None:
+ raise ValueError(
+ "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
+ )
+
+ step_index = (self.timesteps == timestep).nonzero()
+ if len(step_index) == 0:
+ step_index = len(self.timesteps) - 1
+ else:
+ step_index = step_index.item()
+ prev_timestep = 0 if step_index == len(self.timesteps) - 1 else self.timesteps[step_index + 1]
+
+ model_output = self.convert_model_output(model_output, timestep, sample)
+ for i in range(self.config.solver_order - 1):
+ self.model_outputs[i] = self.model_outputs[i + 1]
+ self.model_outputs[-1] = model_output
+
+ order = self.order_list[step_index]
+ # For single-step solvers, we use the initial value at each time with order = 1.
+ if order == 1:
+ self.sample = sample
+
+ timestep_list = [self.timesteps[step_index - i] for i in range(order - 1, 0, -1)] + [timestep]
+ prev_sample = self.singlestep_dpm_solver_update(
+ self.model_outputs, timestep_list, prev_timestep, self.sample, order
+ )
+
+ if not return_dict:
+ return (prev_sample,)
+
+ return SchedulerOutput(prev_sample=prev_sample)
+
+ def scale_model_input(self, sample: paddle.Tensor, *args, **kwargs) -> paddle.Tensor:
+ """
+ Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
+ current timestep.
+
+ Args:
+ sample (`paddle.Tensor`): input sample
+
+ Returns:
+ `paddle.Tensor`: scaled input sample
+ """
+ return sample
+
+ def add_noise(
+ self,
+ original_samples: paddle.Tensor,
+ noise: paddle.Tensor,
+ timesteps: paddle.Tensor,
+ ) -> paddle.Tensor:
+ # Make sure alphas_cumprod and timestep have same device and dtype as original_samples
+ self.alphas_cumprod = self.alphas_cumprod.cast(original_samples.dtype)
+
+ sqrt_alpha_prod = self.alphas_cumprod[timesteps] ** 0.5
+ sqrt_alpha_prod = sqrt_alpha_prod.flatten()
+ while len(sqrt_alpha_prod.shape) < len(original_samples.shape):
+ sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)
+
+ sqrt_one_minus_alpha_prod = (1 - self.alphas_cumprod[timesteps]) ** 0.5
+ sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
+ while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape):
+ sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
+
+ noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
+ return noisy_samples
+
+ def __len__(self):
+ return self.config.num_train_timesteps
diff --git a/ppdiffusers/schedulers/scheduling_euler_ancestral_discrete.py b/ppdiffusers/schedulers/scheduling_euler_ancestral_discrete.py
new file mode 100644
index 0000000000000000000000000000000000000000..99e5d13abc40762a11171c4e7e1ee6d18f8ea7ac
--- /dev/null
+++ b/ppdiffusers/schedulers/scheduling_euler_ancestral_discrete.py
@@ -0,0 +1,233 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+# Copyright 2022 Katherine Crowson and The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from dataclasses import dataclass
+from typing import List, Optional, Tuple, Union
+
+import numpy as np
+import paddle
+
+from ..configuration_utils import ConfigMixin, register_to_config
+from ..utils import _COMPATIBLE_STABLE_DIFFUSION_SCHEDULERS, BaseOutput, logging
+from .scheduling_utils import SchedulerMixin
+
+logger = logging.get_logger(__name__) # pylint: disable=invalid-name
+
+
+@dataclass
+# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->EulerAncestralDiscrete
+class EulerAncestralDiscreteSchedulerOutput(BaseOutput):
+ """
+ Output class for the scheduler's step function output.
+
+ Args:
+ prev_sample (`paddle.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
+ Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the
+ denoising loop.
+ pred_original_sample (`paddle.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
+ The predicted denoised sample (x_{0}) based on the model output from the current timestep.
+ `pred_original_sample` can be used to preview progress or for guidance.
+ """
+
+ prev_sample: paddle.Tensor
+ pred_original_sample: Optional[paddle.Tensor] = None
+
+
+class EulerAncestralDiscreteScheduler(SchedulerMixin, ConfigMixin):
+ """
+ Ancestral sampling with Euler method steps. Based on the original k-diffusion implementation by Katherine Crowson:
+ https://github.com/crowsonkb/k-diffusion/blob/481677d114f6ea445aa009cf5bd7a9cdee909e47/k_diffusion/sampling.py#L72
+
+ [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__`
+ function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`.
+ [`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and
+ [`~SchedulerMixin.from_pretrained`] functions.
+
+ Args:
+ num_train_timesteps (`int`): number of diffusion steps used to train the model.
+ beta_start (`float`): the starting `beta` value of inference.
+ beta_end (`float`): the final `beta` value.
+ beta_schedule (`str`):
+ the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
+ `linear` or `scaled_linear`.
+ trained_betas (`np.ndarray`, optional):
+ option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc.
+ prediction_type (`str`, default `epsilon`, optional):
+ prediction type of the scheduler function, one of `epsilon` (predicting the noise of the diffusion
+ process), `sample` (directly predicting the noisy sample`) or `v_prediction` (see section 2.4
+ https://imagen.research.google/video/paper.pdf)
+ """
+
+ _compatibles = _COMPATIBLE_STABLE_DIFFUSION_SCHEDULERS.copy()
+ order = 1
+
+ @register_to_config
+ def __init__(
+ self,
+ num_train_timesteps: int = 1000,
+ beta_start: float = 0.0001,
+ beta_end: float = 0.02,
+ beta_schedule: str = "linear",
+ trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
+ prediction_type: str = "epsilon",
+ ):
+ if trained_betas is not None:
+ self.betas = paddle.to_tensor(trained_betas, dtype="float32")
+ elif beta_schedule == "linear":
+ self.betas = paddle.linspace(beta_start, beta_end, num_train_timesteps, dtype="float32")
+ elif beta_schedule == "scaled_linear":
+ # this schedule is very specific to the latent diffusion model.
+ self.betas = paddle.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype="float32") ** 2
+ else:
+ raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")
+
+ self.alphas = 1.0 - self.betas
+ self.alphas_cumprod = paddle.cumprod(self.alphas, 0)
+
+ sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
+ sigmas = np.concatenate([sigmas[::-1], [0.0]]).astype(np.float32)
+ self.sigmas = paddle.to_tensor(sigmas)
+
+ # standard deviation of the initial noise distribution
+ self.init_noise_sigma = self.sigmas.max()
+
+ # setable values
+ self.num_inference_steps = None
+ timesteps = np.linspace(0, num_train_timesteps - 1, num_train_timesteps, dtype=float)[::-1].copy()
+ self.timesteps = paddle.to_tensor(timesteps, dtype="float32")
+ self.is_scale_input_called = False
+
+ def scale_model_input(self, sample: paddle.Tensor, timestep: Union[float, paddle.Tensor]) -> paddle.Tensor:
+ """
+ Scales the denoising model input by `(sigma**2 + 1) ** 0.5` to match the Euler algorithm.
+
+ Args:
+ sample (`paddle.Tensor`): input sample
+ timestep (`float` or `paddle.Tensor`): the current timestep in the diffusion chain
+
+ Returns:
+ `paddle.Tensor`: scaled input sample
+ """
+ step_index = (self.timesteps == timestep).nonzero().item()
+ sigma = self.sigmas[step_index]
+ sample = sample / ((sigma**2 + 1) ** 0.5)
+ self.is_scale_input_called = True
+ return sample
+
+ def set_timesteps(self, num_inference_steps: int):
+ """
+ Sets the timesteps used for the diffusion chain. Supporting function to be run before inference.
+
+ Args:
+ num_inference_steps (`int`):
+ the number of diffusion steps used when generating samples with a pre-trained model.
+ """
+ self.num_inference_steps = num_inference_steps
+
+ timesteps = np.linspace(0, self.config.num_train_timesteps - 1, num_inference_steps, dtype=float)[::-1].copy()
+ sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
+ sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas)
+ sigmas = np.concatenate([sigmas, [0.0]]).astype(np.float32)
+ self.sigmas = paddle.to_tensor(sigmas)
+ self.timesteps = paddle.to_tensor(timesteps, dtype="float32")
+
+ def step(
+ self,
+ model_output: paddle.Tensor,
+ timestep: Union[float, paddle.Tensor],
+ sample: paddle.Tensor,
+ generator: Optional[Union[paddle.Generator, List[paddle.Generator]]] = None,
+ return_dict: bool = True,
+ ) -> Union[EulerAncestralDiscreteSchedulerOutput, Tuple]:
+ """
+ Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
+ process from the learned model outputs (most often the predicted noise).
+
+ Args:
+ model_output (`paddle.Tensor`): direct output from learned diffusion model.
+ timestep (`float`): current timestep in the diffusion chain.
+ sample (`paddle.Tensor`):
+ current instance of sample being created by diffusion process.
+ generator (`paddle.Generator`, optional): Random number generator.
+ return_dict (`bool`): option for returning tuple rather than EulerAncestralDiscreteSchedulerOutput class
+
+ Returns:
+ [`~schedulers.scheduling_utils.EulerAncestralDiscreteSchedulerOutput`] or `tuple`:
+ [`~schedulers.scheduling_utils.EulerAncestralDiscreteSchedulerOutput`] if `return_dict` is True, otherwise
+ a `tuple`. When returning a tuple, the first element is the sample tensor.
+
+ """
+ if not self.is_scale_input_called:
+ logger.warning(
+ "The `scale_model_input` function should be called before `step` to ensure correct denoising. "
+ "See `StableDiffusionPipeline` for a usage example."
+ )
+ step_index = (self.timesteps == timestep).nonzero().item()
+ sigma = self.sigmas[step_index]
+
+ # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise
+ if self.config.prediction_type == "epsilon":
+ pred_original_sample = sample - sigma * model_output
+ elif self.config.prediction_type == "v_prediction":
+ # * c_out + input * c_skip
+ pred_original_sample = model_output * (-sigma / (sigma**2 + 1) ** 0.5) + (sample / (sigma**2 + 1))
+ else:
+ raise ValueError(
+ f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`"
+ )
+ sigma_from = self.sigmas[step_index]
+ sigma_to = self.sigmas[step_index + 1]
+ sigma_up = (sigma_to**2 * (sigma_from**2 - sigma_to**2) / sigma_from**2) ** 0.5
+ sigma_down = (sigma_to**2 - sigma_up**2) ** 0.5
+
+ # 2. Convert to an ODE derivative
+ derivative = (sample - pred_original_sample) / sigma
+
+ dt = sigma_down - sigma
+
+ prev_sample = sample + derivative * dt
+
+ noise = paddle.randn(model_output.shape, dtype=model_output.dtype, generator=generator)
+
+ prev_sample = prev_sample + noise * sigma_up
+
+ if not return_dict:
+ return (prev_sample,)
+
+ return EulerAncestralDiscreteSchedulerOutput(
+ prev_sample=prev_sample, pred_original_sample=pred_original_sample
+ )
+
+ def add_noise(
+ self,
+ original_samples: paddle.Tensor,
+ noise: paddle.Tensor,
+ timesteps: paddle.Tensor,
+ ) -> paddle.Tensor:
+ # Make sure sigmas and timesteps have the same dtype as original_samples
+ self.sigmas = self.sigmas.cast(original_samples.dtype)
+
+ schedule_timesteps = self.timesteps
+ step_indices = [(schedule_timesteps == t).nonzero().item() for t in timesteps]
+
+ sigma = self.sigmas[step_indices].flatten()
+ while len(sigma.shape) < len(original_samples.shape):
+ sigma = sigma.unsqueeze(-1)
+
+ noisy_samples = original_samples + noise * sigma
+ return noisy_samples
+
+ def __len__(self):
+ return self.config.num_train_timesteps
diff --git a/ppdiffusers/schedulers/scheduling_euler_discrete.py b/ppdiffusers/schedulers/scheduling_euler_discrete.py
new file mode 100644
index 0000000000000000000000000000000000000000..d76ca843e0c9d76b5309317f59075f1d31d7f6c7
--- /dev/null
+++ b/ppdiffusers/schedulers/scheduling_euler_discrete.py
@@ -0,0 +1,244 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+# Copyright 2022 Katherine Crowson and The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from dataclasses import dataclass
+from typing import List, Optional, Tuple, Union
+
+import numpy as np
+import paddle
+
+from ..configuration_utils import ConfigMixin, register_to_config
+from ..utils import _COMPATIBLE_STABLE_DIFFUSION_SCHEDULERS, BaseOutput, logging
+from .scheduling_utils import SchedulerMixin
+
+logger = logging.get_logger(__name__) # pylint: disable=invalid-name
+
+
+@dataclass
+# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->EulerDiscrete
+class EulerDiscreteSchedulerOutput(BaseOutput):
+ """
+ Output class for the scheduler's step function output.
+
+ Args:
+ prev_sample (`paddle.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
+ Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the
+ denoising loop.
+ pred_original_sample (`paddle.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
+ The predicted denoised sample (x_{0}) based on the model output from the current timestep.
+ `pred_original_sample` can be used to preview progress or for guidance.
+ """
+
+ prev_sample: paddle.Tensor
+ pred_original_sample: Optional[paddle.Tensor] = None
+
+
+class EulerDiscreteScheduler(SchedulerMixin, ConfigMixin):
+ """
+ Euler scheduler (Algorithm 2) from Karras et al. (2022) https://arxiv.org/abs/2206.00364. . Based on the original
+ k-diffusion implementation by Katherine Crowson:
+ https://github.com/crowsonkb/k-diffusion/blob/481677d114f6ea445aa009cf5bd7a9cdee909e47/k_diffusion/sampling.py#L51
+
+ [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__`
+ function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`.
+ [`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and
+ [`~SchedulerMixin.from_pretrained`] functions.
+
+ Args:
+ num_train_timesteps (`int`): number of diffusion steps used to train the model.
+ beta_start (`float`): the starting `beta` value of inference.
+ beta_end (`float`): the final `beta` value.
+ beta_schedule (`str`):
+ the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
+ `linear` or `scaled_linear`.
+ trained_betas (`np.ndarray`, optional):
+ option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc.
+ prediction_type (`str`, default `epsilon`, optional):
+ prediction type of the scheduler function, one of `epsilon` (predicting the noise of the diffusion
+ process), `sample` (directly predicting the noisy sample`) or `v_prediction` (see section 2.4
+ https://imagen.research.google/video/paper.pdf)
+ """
+
+ _compatibles = _COMPATIBLE_STABLE_DIFFUSION_SCHEDULERS.copy()
+ order = 1
+
+ @register_to_config
+ def __init__(
+ self,
+ num_train_timesteps: int = 1000,
+ beta_start: float = 0.0001,
+ beta_end: float = 0.02,
+ beta_schedule: str = "linear",
+ trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
+ prediction_type: str = "epsilon",
+ ):
+ if trained_betas is not None:
+ self.betas = paddle.to_tensor(trained_betas, dtype="float32")
+ elif beta_schedule == "linear":
+ self.betas = paddle.linspace(beta_start, beta_end, num_train_timesteps, dtype="float32")
+ elif beta_schedule == "scaled_linear":
+ # this schedule is very specific to the latent diffusion model.
+ self.betas = paddle.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype="float32") ** 2
+ else:
+ raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")
+
+ self.alphas = 1.0 - self.betas
+ self.alphas_cumprod = paddle.cumprod(self.alphas, 0)
+
+ sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
+ sigmas = np.concatenate([sigmas[::-1], [0.0]]).astype(np.float32)
+ self.sigmas = paddle.to_tensor(sigmas)
+
+ # standard deviation of the initial noise distribution
+ self.init_noise_sigma = self.sigmas.max()
+
+ # setable values
+ self.num_inference_steps = None
+ timesteps = np.linspace(0, num_train_timesteps - 1, num_train_timesteps, dtype=float)[::-1].copy()
+ self.timesteps = paddle.to_tensor(timesteps, dtype="float32")
+ self.is_scale_input_called = False
+
+ def scale_model_input(self, sample: paddle.Tensor, timestep: Union[float, paddle.Tensor]) -> paddle.Tensor:
+ """
+ Scales the denoising model input by `(sigma**2 + 1) ** 0.5` to match the Euler algorithm.
+
+ Args:
+ sample (`paddle.Tensor`): input sample
+ timestep (`float` or `paddle.Tensor`): the current timestep in the diffusion chain
+
+ Returns:
+ `paddle.Tensor`: scaled input sample
+ """
+ step_index = (self.timesteps == timestep).nonzero().item()
+ sigma = self.sigmas[step_index]
+ sample = sample / ((sigma**2 + 1) ** 0.5)
+ self.is_scale_input_called = True
+ return sample
+
+ def set_timesteps(self, num_inference_steps: int):
+ """
+ Sets the timesteps used for the diffusion chain. Supporting function to be run before inference.
+
+ Args:
+ num_inference_steps (`int`):
+ the number of diffusion steps used when generating samples with a pre-trained model.
+ """
+ self.num_inference_steps = num_inference_steps
+
+ timesteps = np.linspace(0, self.config.num_train_timesteps - 1, num_inference_steps, dtype=float)[::-1].copy()
+ sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
+ sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas)
+ sigmas = np.concatenate([sigmas, [0.0]]).astype(np.float32)
+ self.sigmas = paddle.to_tensor(sigmas)
+ self.timesteps = paddle.to_tensor(timesteps, dtype="float32")
+
+ def step(
+ self,
+ model_output: paddle.Tensor,
+ timestep: Union[float, paddle.Tensor],
+ sample: paddle.Tensor,
+ s_churn: float = 0.0,
+ s_tmin: float = 0.0,
+ s_tmax: float = float("inf"),
+ s_noise: float = 1.0,
+ generator: Optional[Union[paddle.Generator, List[paddle.Generator]]] = None,
+ return_dict: bool = True,
+ ) -> Union[EulerDiscreteSchedulerOutput, Tuple]:
+ """
+ Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
+ process from the learned model outputs (most often the predicted noise).
+
+ Args:
+ model_output (`paddle.Tensor`): direct output from learned diffusion model.
+ timestep (`float`): current timestep in the diffusion chain.
+ sample (`paddle.Tensor`):
+ current instance of sample being created by diffusion process.
+ s_churn (`float`)
+ s_tmin (`float`)
+ s_tmax (`float`)
+ s_noise (`float`)
+ generator (`paddle.Generator`, optional): Random number generator.
+ return_dict (`bool`): option for returning tuple rather than EulerDiscreteSchedulerOutput class
+
+ Returns:
+ [`~schedulers.scheduling_utils.EulerDiscreteSchedulerOutput`] or `tuple`:
+ [`~schedulers.scheduling_utils.EulerDiscreteSchedulerOutput`] if `return_dict` is True, otherwise a
+ `tuple`. When returning a tuple, the first element is the sample tensor.
+
+ """
+
+ if not self.is_scale_input_called:
+ logger.warning(
+ "The `scale_model_input` function should be called before `step` to ensure correct denoising. "
+ "See `StableDiffusionPipeline` for a usage example."
+ )
+
+ step_index = (self.timesteps == timestep).nonzero().item()
+ sigma = self.sigmas[step_index]
+
+ gamma = min(s_churn / (len(self.sigmas) - 1), 2**0.5 - 1) if s_tmin <= sigma <= s_tmax else 0.0
+
+ noise = paddle.randn(model_output.shape, dtype=model_output.dtype, generator=generator)
+
+ eps = noise * s_noise
+ sigma_hat = sigma * (gamma + 1)
+
+ if gamma > 0:
+ sample = sample + eps * (sigma_hat**2 - sigma**2) ** 0.5
+
+ # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise
+ if self.config.prediction_type == "epsilon":
+ pred_original_sample = sample - sigma_hat * model_output
+ elif self.config.prediction_type == "v_prediction":
+ # * c_out + input * c_skip
+ pred_original_sample = model_output * (-sigma / (sigma**2 + 1) ** 0.5) + (sample / (sigma**2 + 1))
+ else:
+ raise ValueError(
+ f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`"
+ )
+
+ # 2. Convert to an ODE derivative
+ derivative = (sample - pred_original_sample) / sigma_hat
+
+ dt = self.sigmas[step_index + 1] - sigma_hat
+
+ prev_sample = sample + derivative * dt
+
+ if not return_dict:
+ return (prev_sample,)
+
+ return EulerDiscreteSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_original_sample)
+
+ def add_noise(
+ self,
+ original_samples: paddle.Tensor,
+ noise: paddle.Tensor,
+ timesteps: paddle.Tensor,
+ ) -> paddle.Tensor:
+ # Make sure sigmas and timesteps have the same dtype as original_samples
+ self.sigmas = self.sigmas.cast(original_samples.dtype)
+
+ schedule_timesteps = self.timesteps
+ step_indices = [(schedule_timesteps == t).nonzero().item() for t in timesteps]
+
+ sigma = self.sigmas[step_indices].flatten()
+ while len(sigma.shape) < len(original_samples.shape):
+ sigma = sigma.unsqueeze(-1)
+
+ noisy_samples = original_samples + noise * sigma
+ return noisy_samples
+
+ def __len__(self):
+ return self.config.num_train_timesteps
diff --git a/ppdiffusers/schedulers/scheduling_heun_discrete.py b/ppdiffusers/schedulers/scheduling_heun_discrete.py
new file mode 100644
index 0000000000000000000000000000000000000000..70ae9590d253bd87c9a0830938b456bc190e4f43
--- /dev/null
+++ b/ppdiffusers/schedulers/scheduling_heun_discrete.py
@@ -0,0 +1,254 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+# Copyright 2022 Katherine Crowson, The HuggingFace Team and hlky. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from typing import List, Optional, Tuple, Union
+
+import numpy as np
+import paddle
+
+from ..configuration_utils import ConfigMixin, register_to_config
+from ..utils import _COMPATIBLE_STABLE_DIFFUSION_SCHEDULERS
+from .scheduling_utils import SchedulerMixin, SchedulerOutput
+
+
+class HeunDiscreteScheduler(SchedulerMixin, ConfigMixin):
+ """
+ Implements Algorithm 2 (Heun steps) from Karras et al. (2022). for discrete beta schedules. Based on the original
+ k-diffusion implementation by Katherine Crowson:
+ https://github.com/crowsonkb/k-diffusion/blob/481677d114f6ea445aa009cf5bd7a9cdee909e47/k_diffusion/sampling.py#L90
+
+ [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__`
+ function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`.
+ [`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and
+ [`~SchedulerMixin.from_pretrained`] functions.
+
+ Args:
+ num_train_timesteps (`int`): number of diffusion steps used to train the model.
+ beta_start (`float`): the starting `beta` value of inference.
+ beta_end (`float`): the final `beta` value.
+ beta_schedule (`str`):
+ the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
+ `linear` or `scaled_linear`.
+ trained_betas (`np.ndarray`, optional):
+ option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc.
+ prediction_type (`str`, default `epsilon`, optional):
+ prediction type of the scheduler function, one of `epsilon` (predicting the noise of the diffusion
+ process), `sample` (directly predicting the noisy sample`) or `v_prediction` (see section 2.4
+ https://imagen.research.google/video/paper.pdf)
+ """
+
+ _compatibles = _COMPATIBLE_STABLE_DIFFUSION_SCHEDULERS.copy()
+ order = 2
+
+ @register_to_config
+ def __init__(
+ self,
+ num_train_timesteps: int = 1000,
+ beta_start: float = 0.00085, # sensible defaults
+ beta_end: float = 0.012,
+ beta_schedule: str = "linear",
+ trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
+ prediction_type: str = "epsilon",
+ ):
+ if trained_betas is not None:
+ self.betas = paddle.to_tensor(trained_betas, dtype="float32")
+ elif beta_schedule == "linear":
+ self.betas = paddle.linspace(beta_start, beta_end, num_train_timesteps, dtype="float32")
+ elif beta_schedule == "scaled_linear":
+ # this schedule is very specific to the latent diffusion model.
+ self.betas = paddle.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype="float32") ** 2
+ else:
+ raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")
+
+ self.alphas = 1.0 - self.betas
+ self.alphas_cumprod = paddle.cumprod(self.alphas, 0)
+
+ # set all values
+ self.set_timesteps(num_train_timesteps, num_train_timesteps)
+
+ def index_for_timestep(self, timestep):
+ indices = (self.timesteps == timestep).nonzero()
+ if self.state_in_first_order:
+ pos = -1
+ else:
+ pos = 0
+ return indices[pos].item()
+
+ def scale_model_input(
+ self,
+ sample: paddle.Tensor,
+ timestep: Union[float, paddle.Tensor],
+ ) -> paddle.Tensor:
+ """
+ Args:
+
+ Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
+ current timestep.
+ sample (`paddle.Tensor`): input sample timestep (`int`, optional): current timestep
+
+ Returns:
+ `paddle.Tensor`: scaled input sample
+ """
+ step_index = self.index_for_timestep(timestep)
+
+ sigma = self.sigmas[step_index]
+ sample = sample / ((sigma**2 + 1) ** 0.5)
+ return sample
+
+ def set_timesteps(
+ self,
+ num_inference_steps: int,
+ num_train_timesteps: Optional[int] = None,
+ ):
+ """
+ Sets the timesteps used for the diffusion chain. Supporting function to be run before inference.
+
+ Args:
+ num_inference_steps (`int`):
+ the number of diffusion steps used when generating samples with a pre-trained model.
+ num_train_timesteps (`int`, Optional): number of diffusion steps used to train the model.
+ """
+ self.num_inference_steps = num_inference_steps
+
+ num_train_timesteps = num_train_timesteps or self.config.num_train_timesteps
+
+ timesteps = np.linspace(0, num_train_timesteps - 1, num_inference_steps, dtype=np.float32)[::-1].copy()
+
+ sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
+ sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas)
+ sigmas = np.concatenate([sigmas, [0.0]]).astype(np.float32)
+ sigmas = paddle.to_tensor(sigmas)
+ self.sigmas = paddle.concat([sigmas[:1], sigmas[1:-1].repeat_interleave(2), sigmas[-1:]])
+
+ # standard deviation of the initial noise distribution
+ self.init_noise_sigma = self.sigmas.max()
+
+ timesteps = paddle.to_tensor(timesteps)
+ timesteps = paddle.concat([timesteps[:1], timesteps[1:].repeat_interleave(2)])
+
+ self.timesteps = timesteps
+
+ # empty dt and derivative
+ self.prev_derivative = None
+ self.dt = None
+
+ @property
+ def state_in_first_order(self):
+ return self.dt is None
+
+ def step(
+ self,
+ model_output: Union[paddle.Tensor, np.ndarray],
+ timestep: Union[float, paddle.Tensor],
+ sample: Union[paddle.Tensor, np.ndarray],
+ return_dict: bool = True,
+ ) -> Union[SchedulerOutput, Tuple]:
+ """
+ Args:
+
+ Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
+ process from the learned model outputs (most often the predicted noise).
+ model_output (`paddle.Tensor` or `np.ndarray`): direct output from learned diffusion model. timestep
+ (`int`): current discrete timestep in the diffusion chain. sample (`paddle.Tensor` or `np.ndarray`):
+ current instance of sample being created by diffusion process.
+ return_dict (`bool`): option for returning tuple rather than SchedulerOutput class
+
+ Returns:
+ [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`:
+ [`~schedulers.scheduling_utils.SchedulerOutput`] if `return_dict` is True, otherwise a `tuple`. When
+ returning a tuple, the first element is the sample tensor.
+ """
+ step_index = self.index_for_timestep(timestep)
+
+ if self.state_in_first_order:
+ sigma = self.sigmas[step_index]
+ sigma_next = self.sigmas[step_index + 1]
+ else:
+ # 2nd order / Heun's method
+ sigma = self.sigmas[step_index - 1]
+ sigma_next = self.sigmas[step_index]
+
+ # currently only gamma=0 is supported. This usually works best anyways.
+ # We can support gamma in the future but then need to scale the timestep before
+ # passing it to the model which requires a change in API
+ gamma = 0
+ sigma_hat = sigma * (gamma + 1) # Note: sigma_hat == sigma for now
+
+ # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise
+ if self.config.prediction_type == "epsilon":
+ sigma_input = sigma_hat if self.state_in_first_order else sigma_next
+ pred_original_sample = sample - sigma_input * model_output
+ elif self.config.prediction_type == "v_prediction":
+ sigma_input = sigma_hat if self.state_in_first_order else sigma_next
+ pred_original_sample = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + (
+ sample / (sigma_input**2 + 1)
+ )
+ else:
+ raise ValueError(
+ f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`"
+ )
+
+ if self.state_in_first_order:
+ # 2. Convert to an ODE derivative for 1st order
+ derivative = (sample - pred_original_sample) / sigma_hat
+ # 3. delta timestep
+ dt = sigma_next - sigma_hat
+
+ # store for 2nd order step
+ self.prev_derivative = derivative
+ self.dt = dt
+ self.sample = sample
+ else:
+ # 2. 2nd order / Heun's method
+ derivative = (sample - pred_original_sample) / sigma_hat
+ derivative = (self.prev_derivative + derivative) / 2
+
+ # 3. take prev timestep & sample
+ dt = self.dt
+ sample = self.sample
+
+ # free dt and derivative
+ # Note, this puts the scheduler in "first order mode"
+ self.prev_derivative = None
+ self.dt = None
+ self.sample = None
+
+ prev_sample = sample + derivative * dt
+
+ if not return_dict:
+ return (prev_sample,)
+
+ return SchedulerOutput(prev_sample=prev_sample)
+
+ def add_noise(
+ self,
+ original_samples: paddle.Tensor,
+ noise: paddle.Tensor,
+ timesteps: paddle.Tensor,
+ ) -> paddle.Tensor:
+ # Make sure sigmas and timesteps have the same dtype as original_samples
+ self.sigmas = self.sigmas.cast(original_samples.dtype)
+
+ step_indices = [self.index_for_timestep(t) for t in timesteps]
+
+ sigma = self.sigmas[step_indices].flatten()
+ while len(sigma.shape) < len(original_samples.shape):
+ sigma = sigma.unsqueeze(-1)
+
+ noisy_samples = original_samples + noise * sigma
+ return noisy_samples
+
+ def __len__(self):
+ return self.config.num_train_timesteps
diff --git a/ppdiffusers/schedulers/scheduling_ipndm.py b/ppdiffusers/schedulers/scheduling_ipndm.py
new file mode 100644
index 0000000000000000000000000000000000000000..fc7233de6f063f10ff1312d74da89d7700791f08
--- /dev/null
+++ b/ppdiffusers/schedulers/scheduling_ipndm.py
@@ -0,0 +1,163 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+# Copyright 2022 Zhejiang University Team and The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import math
+from typing import List, Optional, Tuple, Union
+
+import numpy as np
+import paddle
+
+from ..configuration_utils import ConfigMixin, register_to_config
+from .scheduling_utils import SchedulerMixin, SchedulerOutput
+
+
+class IPNDMScheduler(SchedulerMixin, ConfigMixin):
+ """
+ Improved Pseudo numerical methods for diffusion models (iPNDM) ported from @crowsonkb's amazing k-diffusion
+ [library](https://github.com/crowsonkb/v-diffusion-pytorch/blob/987f8985e38208345c1959b0ea767a625831cc9b/diffusion/sampling.py#L296)
+
+ [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__`
+ function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`.
+ [`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and
+ [`~SchedulerMixin.from_pretrained`] functions.
+
+ For more details, see the original paper: https://arxiv.org/abs/2202.09778
+
+ Args:
+ num_train_timesteps (`int`): number of diffusion steps used to train the model.
+ trained_betas (`np.ndarray`, optional):
+ option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc.
+ """
+
+ order = 1
+
+ @register_to_config
+ def __init__(
+ self, num_train_timesteps: int = 1000, trained_betas: Optional[Union[np.ndarray, List[float]]] = None
+ ):
+ # set `betas`, `alphas`, `timesteps`
+ self.set_timesteps(num_train_timesteps)
+
+ # standard deviation of the initial noise distribution
+ self.init_noise_sigma = 1.0
+
+ # For now we only support F-PNDM, i.e. the runge-kutta method
+ # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf
+ # mainly at formula (9), (12), (13) and the Algorithm 2.
+ self.pndm_order = 4
+
+ # running values
+ self.ets = []
+
+ def set_timesteps(self, num_inference_steps: int):
+ """
+ Sets the discrete timesteps used for the diffusion chain. Supporting function to be run before inference.
+
+ Args:
+ num_inference_steps (`int`):
+ the number of diffusion steps used when generating samples with a pre-trained model.
+ """
+ self.num_inference_steps = num_inference_steps
+ steps = paddle.linspace(1, 0, num_inference_steps + 1)[:-1]
+ steps = paddle.concat([steps, paddle.to_tensor([0.0])])
+
+ if self.config.trained_betas is not None:
+ self.betas = paddle.to_tensor(self.config.trained_betas, dtype="float32")
+ else:
+ self.betas = paddle.sin(steps * math.pi / 2) ** 2
+
+ self.alphas = (1.0 - self.betas**2) ** 0.5
+
+ self.timesteps = (paddle.atan2(self.betas, self.alphas) / math.pi * 2)[:-1]
+
+ self.ets = []
+
+ def step(
+ self,
+ model_output: paddle.Tensor,
+ timestep: int,
+ sample: paddle.Tensor,
+ return_dict: bool = True,
+ ) -> Union[SchedulerOutput, Tuple]:
+ """
+ Step function propagating the sample with the linear multi-step method. This has one forward pass with multiple
+ times to approximate the solution.
+
+ Args:
+ model_output (`paddle.Tensor`): direct output from learned diffusion model.
+ timestep (`int`): current discrete timestep in the diffusion chain.
+ sample (`paddle.Tensor`):
+ current instance of sample being created by diffusion process.
+ return_dict (`bool`): option for returning tuple rather than SchedulerOutput class
+
+ Returns:
+ [`~scheduling_utils.SchedulerOutput`] or `tuple`: [`~scheduling_utils.SchedulerOutput`] if `return_dict` is
+ True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor.
+
+ """
+ if self.num_inference_steps is None:
+ raise ValueError(
+ "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
+ )
+
+ timestep_index = (self.timesteps == timestep).nonzero().item()
+ prev_timestep_index = timestep_index + 1
+
+ ets = sample * self.betas[timestep_index] + model_output * self.alphas[timestep_index]
+ self.ets.append(ets)
+
+ if len(self.ets) == 1:
+ ets = self.ets[-1]
+ elif len(self.ets) == 2:
+ ets = (3 * self.ets[-1] - self.ets[-2]) / 2
+ elif len(self.ets) == 3:
+ ets = (23 * self.ets[-1] - 16 * self.ets[-2] + 5 * self.ets[-3]) / 12
+ else:
+ ets = (1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4])
+
+ prev_sample = self._get_prev_sample(sample, timestep_index, prev_timestep_index, ets)
+
+ if not return_dict:
+ return (prev_sample,)
+
+ return SchedulerOutput(prev_sample=prev_sample)
+
+ def scale_model_input(self, sample: paddle.Tensor, *args, **kwargs) -> paddle.Tensor:
+ """
+ Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
+ current timestep.
+
+ Args:
+ sample (`paddle.Tensor`): input sample
+
+ Returns:
+ `paddle.Tensor`: scaled input sample
+ """
+ return sample
+
+ def _get_prev_sample(self, sample, timestep_index, prev_timestep_index, ets):
+ alpha = self.alphas[timestep_index]
+ sigma = self.betas[timestep_index]
+
+ next_alpha = self.alphas[prev_timestep_index]
+ next_sigma = self.betas[prev_timestep_index]
+
+ pred = (sample - sigma * ets) / max(alpha, 1e-8)
+ prev_sample = next_alpha * pred + ets * next_sigma
+
+ return prev_sample
+
+ def __len__(self):
+ return self.config.num_train_timesteps
diff --git a/ppdiffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py b/ppdiffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py
new file mode 100644
index 0000000000000000000000000000000000000000..078a6266e00c2525125630e193eb97cbfe0244c0
--- /dev/null
+++ b/ppdiffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py
@@ -0,0 +1,299 @@
+# Copyright 2022 Katherine Crowson, The HuggingFace Team and hlky. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from typing import List, Optional, Tuple, Union
+
+import numpy as np
+import paddle
+
+from ..configuration_utils import ConfigMixin, register_to_config
+from ..utils import _COMPATIBLE_STABLE_DIFFUSION_SCHEDULERS
+from .scheduling_utils import SchedulerMixin, SchedulerOutput
+
+
+class KDPM2AncestralDiscreteScheduler(SchedulerMixin, ConfigMixin):
+ """
+ Scheduler created by @crowsonkb in [k_diffusion](https://github.com/crowsonkb/k-diffusion), see:
+ https://github.com/crowsonkb/k-diffusion/blob/5b3af030dd83e0297272d861c19477735d0317ec/k_diffusion/sampling.py#L188
+
+ Scheduler inspired by DPM-Solver-2 and Algorthim 2 from Karras et al. (2022).
+
+ [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__`
+ function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`.
+ [`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and
+ [`~SchedulerMixin.from_pretrained`] functions.
+
+ Args:
+ num_train_timesteps (`int`): number of diffusion steps used to train the model.
+ beta_start (`float`): the starting `beta` value of inference.
+ beta_end (`float`): the final `beta` value.
+ beta_schedule (`str`):
+ the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
+ `linear` or `scaled_linear`.
+ trained_betas (`np.ndarray`, optional):
+ option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc.
+ prediction_type (`str`, default `epsilon`, optional):
+ prediction type of the scheduler function, one of `epsilon` (predicting the noise of the diffusion
+ process), `sample` (directly predicting the noisy sample`) or `v_prediction` (see section 2.4
+ https://imagen.research.google/video/paper.pdf)
+ """
+
+ _compatibles = _COMPATIBLE_STABLE_DIFFUSION_SCHEDULERS.copy()
+ order = 2
+
+ @register_to_config
+ def __init__(
+ self,
+ num_train_timesteps: int = 1000,
+ beta_start: float = 0.00085, # sensible defaults
+ beta_end: float = 0.012,
+ beta_schedule: str = "linear",
+ trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
+ prediction_type: str = "epsilon",
+ ):
+ if trained_betas is not None:
+ self.betas = paddle.to_tensor(trained_betas, dtype="float32")
+ elif beta_schedule == "linear":
+ self.betas = paddle.linspace(beta_start, beta_end, num_train_timesteps, dtype="float32")
+ elif beta_schedule == "scaled_linear":
+ # this schedule is very specific to the latent diffusion model.
+ self.betas = paddle.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype="float32") ** 2
+ else:
+ raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")
+
+ self.alphas = 1.0 - self.betas
+ self.alphas_cumprod = paddle.cumprod(self.alphas, 0)
+
+ # set all values
+ self.set_timesteps(num_train_timesteps, num_train_timesteps)
+
+ def index_for_timestep(self, timestep):
+ indices = (self.timesteps == timestep).nonzero()
+ if self.state_in_first_order:
+ pos = -1
+ else:
+ pos = 0
+ return indices[pos].item()
+
+ def scale_model_input(
+ self,
+ sample: paddle.Tensor,
+ timestep: Union[float, paddle.Tensor],
+ ) -> paddle.Tensor:
+ """
+ Args:
+ Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
+ current timestep.
+ sample (`paddle.Tensor`): input sample timestep (`int`, optional): current timestep
+ Returns:
+ `paddle.Tensor`: scaled input sample
+ """
+ step_index = self.index_for_timestep(timestep)
+
+ if self.state_in_first_order:
+ sigma = self.sigmas[step_index]
+ else:
+ sigma = self.sigmas_interpol[step_index - 1]
+
+ sample = sample / ((sigma**2 + 1) ** 0.5)
+ return sample
+
+ def set_timesteps(
+ self,
+ num_inference_steps: int,
+ num_train_timesteps: Optional[int] = None,
+ ):
+ """
+ Sets the timesteps used for the diffusion chain. Supporting function to be run before inference.
+
+ Args:
+ num_inference_steps (`int`):
+ the number of diffusion steps used when generating samples with a pre-trained model.
+ """
+ self.num_inference_steps = num_inference_steps
+
+ num_train_timesteps = num_train_timesteps or self.config.num_train_timesteps
+
+ timesteps = np.linspace(0, num_train_timesteps - 1, num_inference_steps, dtype=np.float32)[::-1].copy()
+
+ sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
+ self.log_sigmas = paddle.to_tensor(np.log(sigmas), dtype="float32")
+
+ sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas)
+ sigmas = np.concatenate([sigmas, [0.0]]).astype(np.float32)
+ sigmas = paddle.to_tensor(sigmas)
+
+ # compute up and down sigmas
+ sigmas_next = sigmas.roll(-1)
+ sigmas_next[-1] = 0.0
+ sigmas_up = (sigmas_next**2 * (sigmas**2 - sigmas_next**2) / sigmas**2) ** 0.5
+ sigmas_down = (sigmas_next**2 - sigmas_up**2) ** 0.5
+ sigmas_down[-1] = 0.0
+
+ # compute interpolated sigmas
+ sigmas_interpol = sigmas.log().lerp(sigmas_down.log(), 0.5).exp()
+ sigmas_interpol[-2:] = 0.0
+
+ # set sigmas
+ self.sigmas = paddle.concat([sigmas[:1], sigmas[1:].repeat_interleave(2), sigmas[-1:]])
+ self.sigmas_interpol = paddle.concat(
+ [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2), sigmas_interpol[-1:]]
+ )
+ self.sigmas_up = paddle.concat([sigmas_up[:1], sigmas_up[1:].repeat_interleave(2), sigmas_up[-1:]])
+ self.sigmas_down = paddle.concat([sigmas_down[:1], sigmas_down[1:].repeat_interleave(2), sigmas_down[-1:]])
+
+ # standard deviation of the initial noise distribution
+ self.init_noise_sigma = self.sigmas.max()
+
+ timesteps = paddle.to_tensor(timesteps)
+ timesteps_interpol = self.sigma_to_t(sigmas_interpol)
+ interleaved_timesteps = paddle.stack((timesteps_interpol[:-2, None], timesteps[1:, None]), axis=-1).flatten()
+ timesteps = paddle.concat([timesteps[:1], interleaved_timesteps])
+
+ self.timesteps = timesteps
+
+ self.sample = None
+
+ def sigma_to_t(self, sigma):
+ # get log sigma
+ log_sigma = sigma.log()
+
+ # get distribution
+ dists = log_sigma - self.log_sigmas[:, None]
+
+ # get sigmas range
+ low_idx = (dists >= 0).cast("int64").cumsum(axis=0).argmax(axis=0).clip(max=self.log_sigmas.shape[0] - 2)
+ high_idx = low_idx + 1
+
+ low = self.log_sigmas[low_idx]
+ high = self.log_sigmas[high_idx]
+
+ # interpolate sigmas
+ w = (low - log_sigma) / (low - high)
+ w = w.clip(0, 1)
+
+ # transform interpolation to time range
+ t = (1 - w) * low_idx + w * high_idx
+ t = t.reshape(sigma.shape)
+ return t
+
+ @property
+ def state_in_first_order(self):
+ return self.sample is None
+
+ def step(
+ self,
+ model_output: Union[paddle.Tensor, np.ndarray],
+ timestep: Union[float, paddle.Tensor],
+ sample: Union[paddle.Tensor, np.ndarray],
+ generator: Optional[Union[paddle.Generator, List[paddle.Generator]]] = None,
+ return_dict: bool = True,
+ ) -> Union[SchedulerOutput, Tuple]:
+ """
+ Args:
+ Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
+ process from the learned model outputs (most often the predicted noise).
+ model_output (`paddle.Tensor` or `np.ndarray`): direct output from learned diffusion model. timestep
+ (`int`): current discrete timestep in the diffusion chain. sample (`paddle.Tensor` or `np.ndarray`):
+ current instance of sample being created by diffusion process.
+ return_dict (`bool`): option for returning tuple rather than SchedulerOutput class
+ Returns:
+ [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`:
+ [`~schedulers.scheduling_utils.SchedulerOutput`] if `return_dict` is True, otherwise a `tuple`. When
+ returning a tuple, the first element is the sample tensor.
+ """
+ step_index = self.index_for_timestep(timestep)
+
+ if self.state_in_first_order:
+ sigma = self.sigmas[step_index]
+ sigma_interpol = self.sigmas_interpol[step_index]
+ sigma_up = self.sigmas_up[step_index]
+ sigma_down = self.sigmas_down[step_index - 1]
+ else:
+ # 2nd order / KPDM2's method
+ sigma = self.sigmas[step_index - 1]
+ sigma_interpol = self.sigmas_interpol[step_index - 1]
+ sigma_up = self.sigmas_up[step_index - 1]
+ sigma_down = self.sigmas_down[step_index - 1]
+
+ # currently only gamma=0 is supported. This usually works best anyways.
+ # We can support gamma in the future but then need to scale the timestep before
+ # passing it to the model which requires a change in API
+ gamma = 0
+ sigma_hat = sigma * (gamma + 1) # Note: sigma_hat == sigma for now
+
+ noise = paddle.randn(model_output.shape, dtype=model_output.dtype, generator=generator)
+
+ # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise
+ if self.config.prediction_type == "epsilon":
+ sigma_input = sigma_hat if self.state_in_first_order else sigma_interpol
+ pred_original_sample = sample - sigma_input * model_output
+ elif self.config.prediction_type == "v_prediction":
+ sigma_input = sigma_hat if self.state_in_first_order else sigma_interpol
+ pred_original_sample = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + (
+ sample / (sigma_input**2 + 1)
+ )
+ else:
+ raise ValueError(
+ f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`"
+ )
+
+ if self.state_in_first_order:
+ # 2. Convert to an ODE derivative for 1st order
+ derivative = (sample - pred_original_sample) / sigma_hat
+ # 3. delta timestep
+ dt = sigma_interpol - sigma_hat
+
+ # store for 2nd order step
+ self.sample = sample
+ self.dt = dt
+ prev_sample = sample + derivative * dt
+ else:
+ # DPM-Solver-2
+ # 2. Convert to an ODE derivative for 2nd order
+ derivative = (sample - pred_original_sample) / sigma_interpol
+ # 3. delta timestep
+ dt = sigma_down - sigma_hat
+
+ sample = self.sample
+ self.sample = None
+
+ prev_sample = sample + derivative * dt
+ prev_sample = prev_sample + noise * sigma_up
+
+ if not return_dict:
+ return (prev_sample,)
+
+ return SchedulerOutput(prev_sample=prev_sample)
+
+ def add_noise(
+ self,
+ original_samples: paddle.Tensor,
+ noise: paddle.Tensor,
+ timesteps: paddle.Tensor,
+ ) -> paddle.Tensor:
+ # Make sure sigmas and timesteps have the same dtype as original_samples
+ self.sigmas = self.sigmas.cast(original_samples.dtype)
+
+ step_indices = [self.index_for_timestep(t) for t in timesteps]
+
+ sigma = self.sigmas[step_indices].flatten()
+ while len(sigma.shape) < len(original_samples.shape):
+ sigma = sigma.unsqueeze(-1)
+
+ noisy_samples = original_samples + noise * sigma
+ return noisy_samples
+
+ def __len__(self):
+ return self.config.num_train_timesteps
diff --git a/ppdiffusers/schedulers/scheduling_k_dpm_2_discrete.py b/ppdiffusers/schedulers/scheduling_k_dpm_2_discrete.py
new file mode 100644
index 0000000000000000000000000000000000000000..c5d3f836f30791024474b4212d8f9c575be7e3f2
--- /dev/null
+++ b/ppdiffusers/schedulers/scheduling_k_dpm_2_discrete.py
@@ -0,0 +1,286 @@
+# Copyright 2022 Katherine Crowson, The HuggingFace Team and hlky. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from typing import List, Optional, Tuple, Union
+
+import numpy as np
+import paddle
+
+from ..configuration_utils import ConfigMixin, register_to_config
+from ..utils import _COMPATIBLE_STABLE_DIFFUSION_SCHEDULERS
+from .scheduling_utils import SchedulerMixin, SchedulerOutput
+
+
+class KDPM2DiscreteScheduler(SchedulerMixin, ConfigMixin):
+ """
+ Scheduler created by @crowsonkb in [k_diffusion](https://github.com/crowsonkb/k-diffusion), see:
+ https://github.com/crowsonkb/k-diffusion/blob/5b3af030dd83e0297272d861c19477735d0317ec/k_diffusion/sampling.py#L188
+
+ Scheduler inspired by DPM-Solver-2 and Algorthim 2 from Karras et al. (2022).
+
+ [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__`
+ function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`.
+ [`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and
+ [`~SchedulerMixin.from_pretrained`] functions.
+
+ Args:
+ num_train_timesteps (`int`): number of diffusion steps used to train the model.
+ beta_start (`float`): the starting `beta` value of inference.
+ beta_end (`float`): the final `beta` value.
+ beta_schedule (`str`):
+ the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
+ `linear` or `scaled_linear`.
+ trained_betas (`np.ndarray`, optional):
+ option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc.
+ prediction_type (`str`, default `epsilon`, optional):
+ prediction type of the scheduler function, one of `epsilon` (predicting the noise of the diffusion
+ process), `sample` (directly predicting the noisy sample`) or `v_prediction` (see section 2.4
+ https://imagen.research.google/video/paper.pdf)
+ """
+
+ _compatibles = _COMPATIBLE_STABLE_DIFFUSION_SCHEDULERS.copy()
+ order = 2
+
+ @register_to_config
+ def __init__(
+ self,
+ num_train_timesteps: int = 1000,
+ beta_start: float = 0.00085, # sensible defaults
+ beta_end: float = 0.012,
+ beta_schedule: str = "linear",
+ trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
+ prediction_type: str = "epsilon",
+ ):
+ if trained_betas is not None:
+ self.betas = paddle.to_tensor(trained_betas, dtype="float32")
+ elif beta_schedule == "linear":
+ self.betas = paddle.linspace(beta_start, beta_end, num_train_timesteps, dtype="float32")
+ elif beta_schedule == "scaled_linear":
+ # this schedule is very specific to the latent diffusion model.
+ self.betas = paddle.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype="float32") ** 2
+ else:
+ raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")
+
+ self.alphas = 1.0 - self.betas
+ self.alphas_cumprod = paddle.cumprod(self.alphas, 0)
+
+ # set all values
+ self.set_timesteps(num_train_timesteps, num_train_timesteps)
+
+ def index_for_timestep(self, timestep):
+ indices = (self.timesteps == timestep).nonzero()
+ if self.state_in_first_order:
+ pos = -1
+ else:
+ pos = 0
+ return indices[pos].item()
+
+ def scale_model_input(
+ self,
+ sample: paddle.Tensor,
+ timestep: Union[float, paddle.Tensor],
+ ) -> paddle.Tensor:
+ """
+ Args:
+ Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
+ current timestep.
+ sample (`paddle.Tensor`): input sample timestep (`int`, optional): current timestep
+ Returns:
+ `paddle.Tensor`: scaled input sample
+ """
+ step_index = self.index_for_timestep(timestep)
+
+ if self.state_in_first_order:
+ sigma = self.sigmas[step_index]
+ else:
+ sigma = self.sigmas_interpol[step_index]
+
+ sample = sample / ((sigma**2 + 1) ** 0.5)
+ return sample
+
+ def set_timesteps(
+ self,
+ num_inference_steps: int,
+ num_train_timesteps: Optional[int] = None,
+ ):
+ """
+ Sets the timesteps used for the diffusion chain. Supporting function to be run before inference.
+
+ Args:
+ num_inference_steps (`int`):
+ the number of diffusion steps used when generating samples with a pre-trained model.
+ """
+ self.num_inference_steps = num_inference_steps
+
+ num_train_timesteps = num_train_timesteps or self.config.num_train_timesteps
+
+ timesteps = np.linspace(0, num_train_timesteps - 1, num_inference_steps, dtype=np.float32)[::-1].copy()
+
+ sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
+ self.log_sigmas = paddle.to_tensor(np.log(sigmas), dtype="float32")
+
+ sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas)
+ sigmas = np.concatenate([sigmas, [0.0]]).astype(np.float32)
+ sigmas = paddle.to_tensor(sigmas)
+
+ # interpolate sigmas
+ sigmas_interpol = sigmas.log().lerp(sigmas.roll(1).log(), 0.5).exp()
+ # must set to 0.0
+ sigmas_interpol[-1] = 0.0
+
+ self.sigmas = paddle.concat([sigmas[:1], sigmas[1:].repeat_interleave(2), sigmas[-1:]])
+ self.sigmas_interpol = paddle.concat(
+ [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2), sigmas_interpol[-1:]]
+ )
+
+ # standard deviation of the initial noise distribution
+ self.init_noise_sigma = self.sigmas.max()
+
+ timesteps = paddle.to_tensor(timesteps)
+
+ # interpolate timesteps
+ timesteps_interpol = self.sigma_to_t(sigmas_interpol)
+ interleaved_timesteps = paddle.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]), axis=-1).flatten()
+ timesteps = paddle.concat([timesteps[:1], interleaved_timesteps])
+
+ self.timesteps = timesteps
+
+ self.sample = None
+
+ def sigma_to_t(self, sigma):
+ # get log sigma
+ log_sigma = sigma.log()
+
+ # get distribution
+ dists = log_sigma - self.log_sigmas[:, None]
+
+ # get sigmas range
+ low_idx = (dists >= 0).cast("int64").cumsum(axis=0).argmax(axis=0).clip(max=self.log_sigmas.shape[0] - 2)
+
+ high_idx = low_idx + 1
+
+ low = self.log_sigmas[low_idx]
+ high = self.log_sigmas[high_idx]
+
+ # interpolate sigmas
+ w = (low - log_sigma) / (low - high)
+ w = w.clip(0, 1)
+
+ # transform interpolation to time range
+ t = (1 - w) * low_idx + w * high_idx
+ t = t.reshape(sigma.shape)
+ return t
+
+ @property
+ def state_in_first_order(self):
+ return self.sample is None
+
+ def step(
+ self,
+ model_output: Union[paddle.Tensor, np.ndarray],
+ timestep: Union[float, paddle.Tensor],
+ sample: Union[paddle.Tensor, np.ndarray],
+ return_dict: bool = True,
+ ) -> Union[SchedulerOutput, Tuple]:
+ """
+ Args:
+ Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
+ process from the learned model outputs (most often the predicted noise).
+ model_output (`paddle.Tensor` or `np.ndarray`): direct output from learned diffusion model. timestep
+ (`int`): current discrete timestep in the diffusion chain. sample (`paddle.Tensor` or `np.ndarray`):
+ current instance of sample being created by diffusion process.
+ return_dict (`bool`): option for returning tuple rather than SchedulerOutput class
+ Returns:
+ [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`:
+ [`~schedulers.scheduling_utils.SchedulerOutput`] if `return_dict` is True, otherwise a `tuple`. When
+ returning a tuple, the first element is the sample tensor.
+ """
+ step_index = self.index_for_timestep(timestep)
+
+ if self.state_in_first_order:
+ sigma = self.sigmas[step_index]
+ sigma_interpol = self.sigmas_interpol[step_index + 1]
+ sigma_next = self.sigmas[step_index + 1]
+ else:
+ # 2nd order / KDPM2's method
+ sigma = self.sigmas[step_index - 1]
+ sigma_interpol = self.sigmas_interpol[step_index]
+ sigma_next = self.sigmas[step_index]
+
+ # currently only gamma=0 is supported. This usually works best anyways.
+ # We can support gamma in the future but then need to scale the timestep before
+ # passing it to the model which requires a change in API
+ gamma = 0
+ sigma_hat = sigma * (gamma + 1) # Note: sigma_hat == sigma for now
+
+ # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise
+ if self.config.prediction_type == "epsilon":
+ sigma_input = sigma_hat if self.state_in_first_order else sigma_interpol
+ pred_original_sample = sample - sigma_input * model_output
+ elif self.config.prediction_type == "v_prediction":
+ sigma_input = sigma_hat if self.state_in_first_order else sigma_interpol
+ pred_original_sample = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + (
+ sample / (sigma_input**2 + 1)
+ )
+ else:
+ raise ValueError(
+ f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`"
+ )
+
+ if self.state_in_first_order:
+ # 2. Convert to an ODE derivative for 1st order
+ derivative = (sample - pred_original_sample) / sigma_hat
+ # 3. delta timestep
+ dt = sigma_interpol - sigma_hat
+
+ # store for 2nd order step
+ self.sample = sample
+ else:
+ # DPM-Solver-2
+ # 2. Convert to an ODE derivative for 2nd order
+ derivative = (sample - pred_original_sample) / sigma_interpol
+
+ # 3. delta timestep
+ dt = sigma_next - sigma_hat
+
+ sample = self.sample
+ self.sample = None
+
+ prev_sample = sample + derivative * dt
+
+ if not return_dict:
+ return (prev_sample,)
+
+ return SchedulerOutput(prev_sample=prev_sample)
+
+ def add_noise(
+ self,
+ original_samples: paddle.Tensor,
+ noise: paddle.Tensor,
+ timesteps: paddle.Tensor,
+ ) -> paddle.Tensor:
+ # Make sure sigmas and timesteps have the same dtype as original_samples
+ self.sigmas = self.sigmas.cast(original_samples.dtype)
+
+ step_indices = [self.index_for_timestep(t) for t in timesteps]
+
+ sigma = self.sigmas[step_indices].flatten()
+ while len(sigma.shape) < len(original_samples.shape):
+ sigma = sigma.unsqueeze(-1)
+
+ noisy_samples = original_samples + noise * sigma
+ return noisy_samples
+
+ def __len__(self):
+ return self.config.num_train_timesteps
diff --git a/ppdiffusers/schedulers/scheduling_karras_ve.py b/ppdiffusers/schedulers/scheduling_karras_ve.py
new file mode 100644
index 0000000000000000000000000000000000000000..20c45556c3bc60884068fbafbaef986bfc4808b0
--- /dev/null
+++ b/ppdiffusers/schedulers/scheduling_karras_ve.py
@@ -0,0 +1,232 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+# Copyright 2022 NVIDIA and The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from dataclasses import dataclass
+from typing import Optional, Tuple, Union
+
+import numpy as np
+import paddle
+
+from ..configuration_utils import ConfigMixin, register_to_config
+from ..utils import BaseOutput
+from .scheduling_utils import SchedulerMixin
+
+
+@dataclass
+class KarrasVeOutput(BaseOutput):
+ """
+ Output class for the scheduler's step function output.
+
+ Args:
+ prev_sample (`paddle.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
+ Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the
+ denoising loop.
+ derivative (`paddle.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
+ Derivative of predicted original image sample (x_0).
+ pred_original_sample (`paddle.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
+ The predicted denoised sample (x_{0}) based on the model output from the current timestep.
+ `pred_original_sample` can be used to preview progress or for guidance.
+ """
+
+ prev_sample: paddle.Tensor
+ derivative: paddle.Tensor
+ pred_original_sample: Optional[paddle.Tensor] = None
+
+
+class KarrasVeScheduler(SchedulerMixin, ConfigMixin):
+ """
+ Stochastic sampling from Karras et al. [1] tailored to the Variance-Expanding (VE) models [2]. Use Algorithm 2 and
+ the VE column of Table 1 from [1] for reference.
+
+ [1] Karras, Tero, et al. "Elucidating the Design Space of Diffusion-Based Generative Models."
+ https://arxiv.org/abs/2206.00364 [2] Song, Yang, et al. "Score-based generative modeling through stochastic
+ differential equations." https://arxiv.org/abs/2011.13456
+
+ [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__`
+ function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`.
+ [`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and
+ [`~SchedulerMixin.from_pretrained`] functions.
+
+ For more details on the parameters, see the original paper's Appendix E.: "Elucidating the Design Space of
+ Diffusion-Based Generative Models." https://arxiv.org/abs/2206.00364. The grid search values used to find the
+ optimal {s_noise, s_churn, s_min, s_max} for a specific model are described in Table 5 of the paper.
+
+ Args:
+ sigma_min (`float`): minimum noise magnitude
+ sigma_max (`float`): maximum noise magnitude
+ s_noise (`float`): the amount of additional noise to counteract loss of detail during sampling.
+ A reasonable range is [1.000, 1.011].
+ s_churn (`float`): the parameter controlling the overall amount of stochasticity.
+ A reasonable range is [0, 100].
+ s_min (`float`): the start value of the sigma range where we add noise (enable stochasticity).
+ A reasonable range is [0, 10].
+ s_max (`float`): the end value of the sigma range where we add noise.
+ A reasonable range is [0.2, 80].
+
+ """
+
+ order = 2
+
+ @register_to_config
+ def __init__(
+ self,
+ sigma_min: float = 0.02,
+ sigma_max: float = 100,
+ s_noise: float = 1.007,
+ s_churn: float = 80,
+ s_min: float = 0.05,
+ s_max: float = 50,
+ ):
+ # standard deviation of the initial noise distribution
+ self.init_noise_sigma = sigma_max
+
+ # setable values
+ self.num_inference_steps: int = None
+ self.timesteps: paddle.Tensor = None
+ self.schedule: paddle.Tensor = None # sigma(t_i)
+
+ def scale_model_input(self, sample: paddle.Tensor, timestep: Optional[int] = None) -> paddle.Tensor:
+ """
+ Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
+ current timestep.
+
+ Args:
+ sample (`paddle.Tensor`): input sample
+ timestep (`int`, optional): current timestep
+
+ Returns:
+ `paddle.Tensor`: scaled input sample
+ """
+ return sample
+
+ def set_timesteps(self, num_inference_steps: int):
+ """
+ Sets the continuous timesteps used for the diffusion chain. Supporting function to be run before inference.
+
+ Args:
+ num_inference_steps (`int`):
+ the number of diffusion steps used when generating samples with a pre-trained model.
+
+ """
+ self.num_inference_steps = num_inference_steps
+ timesteps = np.arange(0, self.num_inference_steps)[::-1].copy()
+ self.timesteps = paddle.to_tensor(timesteps)
+ schedule = [
+ (
+ self.config.sigma_max**2
+ * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1))
+ )
+ for i in self.timesteps
+ ]
+ self.schedule = paddle.to_tensor(schedule, dtype="float32")
+
+ def add_noise_to_input(
+ self, sample: paddle.Tensor, sigma: float, generator: Optional[paddle.Generator] = None
+ ) -> Tuple[paddle.Tensor, float]:
+ """
+ Explicit Langevin-like "churn" step of adding noise to the sample according to a factor gamma_i ≥ 0 to reach a
+ higher noise level sigma_hat = sigma_i + gamma_i*sigma_i.
+
+ TODO Args:
+ """
+ if self.config.s_min <= sigma <= self.config.s_max:
+ gamma = min(self.config.s_churn / self.num_inference_steps, 2**0.5 - 1)
+ else:
+ gamma = 0
+
+ # sample eps ~ N(0, S_noise^2 * I)
+ eps = self.config.s_noise * paddle.randn(sample.shape, generator=generator)
+ sigma_hat = sigma + gamma * sigma
+ sample_hat = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps)
+
+ return sample_hat, sigma_hat
+
+ def step(
+ self,
+ model_output: paddle.Tensor,
+ sigma_hat: float,
+ sigma_prev: float,
+ sample_hat: paddle.Tensor,
+ return_dict: bool = True,
+ ) -> Union[KarrasVeOutput, Tuple]:
+ """
+ Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
+ process from the learned model outputs (most often the predicted noise).
+
+ Args:
+ model_output (`paddle.Tensor`): direct output from learned diffusion model.
+ sigma_hat (`float`): TODO
+ sigma_prev (`float`): TODO
+ sample_hat (`paddle.Tensor`): TODO
+ return_dict (`bool`): option for returning tuple rather than KarrasVeOutput class
+
+ KarrasVeOutput: updated sample in the diffusion chain and derivative (TODO double check).
+ Returns:
+ [`~schedulers.scheduling_karras_ve.KarrasVeOutput`] or `tuple`:
+ [`~schedulers.scheduling_karras_ve.KarrasVeOutput`] if `return_dict` is True, otherwise a `tuple`. When
+ returning a tuple, the first element is the sample tensor.
+
+ """
+
+ pred_original_sample = sample_hat + sigma_hat * model_output
+ derivative = (sample_hat - pred_original_sample) / sigma_hat
+ sample_prev = sample_hat + (sigma_prev - sigma_hat) * derivative
+
+ if not return_dict:
+ return (sample_prev, derivative)
+
+ return KarrasVeOutput(
+ prev_sample=sample_prev, derivative=derivative, pred_original_sample=pred_original_sample
+ )
+
+ def step_correct(
+ self,
+ model_output: paddle.Tensor,
+ sigma_hat: float,
+ sigma_prev: float,
+ sample_hat: paddle.Tensor,
+ sample_prev: paddle.Tensor,
+ derivative: paddle.Tensor,
+ return_dict: bool = True,
+ ) -> Union[KarrasVeOutput, Tuple]:
+ """
+ Correct the predicted sample based on the output model_output of the network. TODO complete description
+
+ Args:
+ model_output (`paddle.Tensor`): direct output from learned diffusion model.
+ sigma_hat (`float`): TODO
+ sigma_prev (`float`): TODO
+ sample_hat (`paddle.Tensor`): TODO
+ sample_prev (`paddle.Tensor`): TODO
+ derivative (`paddle.Tensor`): TODO
+ return_dict (`bool`): option for returning tuple rather than KarrasVeOutput class
+
+ Returns:
+ prev_sample (TODO): updated sample in the diffusion chain. derivative (TODO): TODO
+
+ """
+ pred_original_sample = sample_prev + sigma_prev * model_output
+ derivative_corr = (sample_prev - pred_original_sample) / sigma_prev
+ sample_prev = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr)
+
+ if not return_dict:
+ return (sample_prev, derivative)
+
+ return KarrasVeOutput(
+ prev_sample=sample_prev, derivative=derivative, pred_original_sample=pred_original_sample
+ )
+
+ def add_noise(self, original_samples, noise, timesteps):
+ raise NotImplementedError()
diff --git a/ppdiffusers/schedulers/scheduling_lms_discrete.py b/ppdiffusers/schedulers/scheduling_lms_discrete.py
new file mode 100644
index 0000000000000000000000000000000000000000..f8830b9157259a638d873a085cc8e035054d1b21
--- /dev/null
+++ b/ppdiffusers/schedulers/scheduling_lms_discrete.py
@@ -0,0 +1,257 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+# Copyright 2022 Katherine Crowson and The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+import warnings
+from dataclasses import dataclass
+from typing import List, Optional, Tuple, Union
+
+import numpy as np
+import paddle
+from scipy import integrate
+
+from ..configuration_utils import ConfigMixin, register_to_config
+from ..utils import _COMPATIBLE_STABLE_DIFFUSION_SCHEDULERS, BaseOutput
+from .scheduling_utils import SchedulerMixin
+
+
+@dataclass
+# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->LMSDiscrete
+class LMSDiscreteSchedulerOutput(BaseOutput):
+ """
+ Output class for the scheduler's step function output.
+
+ Args:
+ prev_sample (`paddle.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
+ Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the
+ denoising loop.
+ pred_original_sample (`paddle.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
+ The predicted denoised sample (x_{0}) based on the model output from the current timestep.
+ `pred_original_sample` can be used to preview progress or for guidance.
+ """
+
+ prev_sample: paddle.Tensor
+ pred_original_sample: Optional[paddle.Tensor] = None
+
+
+class LMSDiscreteScheduler(SchedulerMixin, ConfigMixin):
+ """
+ Linear Multistep Scheduler for discrete beta schedules. Based on the original k-diffusion implementation by
+ Katherine Crowson:
+ https://github.com/crowsonkb/k-diffusion/blob/481677d114f6ea445aa009cf5bd7a9cdee909e47/k_diffusion/sampling.py#L181
+
+ [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__`
+ function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`.
+ [`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and
+ [`~SchedulerMixin.from_pretrained`] functions.
+
+ Args:
+ num_train_timesteps (`int`): number of diffusion steps used to train the model.
+ beta_start (`float`): the starting `beta` value of inference.
+ beta_end (`float`): the final `beta` value.
+ beta_schedule (`str`):
+ the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
+ `linear` or `scaled_linear`.
+ trained_betas (`np.ndarray`, optional):
+ option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc.
+ prediction_type (`str`, default `epsilon`, optional):
+ prediction type of the scheduler function, one of `epsilon` (predicting the noise of the diffusion
+ process), `sample` (directly predicting the noisy sample`) or `v_prediction` (see section 2.4
+ https://imagen.research.google/video/paper.pdf)
+ """
+
+ _compatibles = _COMPATIBLE_STABLE_DIFFUSION_SCHEDULERS.copy()
+ order = 1
+
+ @register_to_config
+ def __init__(
+ self,
+ num_train_timesteps: int = 1000,
+ beta_start: float = 0.0001,
+ beta_end: float = 0.02,
+ beta_schedule: str = "linear",
+ trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
+ prediction_type: str = "epsilon",
+ ):
+ if trained_betas is not None:
+ self.betas = paddle.to_tensor(trained_betas, dtype="float32")
+ elif beta_schedule == "linear":
+ self.betas = paddle.linspace(beta_start, beta_end, num_train_timesteps, dtype="float32")
+ elif beta_schedule == "scaled_linear":
+ # this schedule is very specific to the latent diffusion model.
+ self.betas = paddle.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype="float32") ** 2
+ else:
+ raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")
+
+ self.alphas = 1.0 - self.betas
+ self.alphas_cumprod = paddle.cumprod(self.alphas, 0)
+
+ sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
+ sigmas = np.concatenate([sigmas[::-1], [0.0]]).astype(np.float32)
+ self.sigmas = paddle.to_tensor(sigmas)
+
+ # standard deviation of the initial noise distribution
+ self.init_noise_sigma = self.sigmas.max()
+
+ # setable values
+ self.num_inference_steps = None
+ timesteps = np.linspace(0, num_train_timesteps - 1, num_train_timesteps, dtype=float)[::-1].copy()
+ self.timesteps = paddle.to_tensor(timesteps, dtype="float32")
+ self.derivatives = []
+ self.is_scale_input_called = False
+
+ def scale_model_input(self, sample: paddle.Tensor, timestep: Union[float, paddle.Tensor]) -> paddle.Tensor:
+ """
+ Scales the denoising model input by `(sigma**2 + 1) ** 0.5` to match the K-LMS algorithm.
+
+ Args:
+ sample (`paddle.Tensor`): input sample
+ timestep (`float` or `paddle.Tensor`): the current timestep in the diffusion chain
+
+ Returns:
+ `paddle.Tensor`: scaled input sample
+ """
+ step_index = (self.timesteps == timestep).nonzero().item()
+ sigma = self.sigmas[step_index]
+ sample = sample / ((sigma**2 + 1) ** 0.5)
+ self.is_scale_input_called = True
+ return sample
+
+ def get_lms_coefficient(self, order, t, current_order):
+ """
+ Compute a linear multistep coefficient.
+
+ Args:
+ order (TODO):
+ t (TODO):
+ current_order (TODO):
+ """
+
+ def lms_derivative(tau):
+ prod = 1.0
+ for k in range(order):
+ if current_order == k:
+ continue
+ prod *= (tau - self.sigmas[t - k]) / (self.sigmas[t - current_order] - self.sigmas[t - k])
+ return prod
+
+ integrated_coeff = integrate.quad(lms_derivative, self.sigmas[t], self.sigmas[t + 1], epsrel=1e-4)[0]
+
+ return integrated_coeff
+
+ def set_timesteps(self, num_inference_steps: int):
+ """
+ Sets the timesteps used for the diffusion chain. Supporting function to be run before inference.
+
+ Args:
+ num_inference_steps (`int`):
+ the number of diffusion steps used when generating samples with a pre-trained model.
+ """
+ self.num_inference_steps = num_inference_steps
+
+ timesteps = np.linspace(0, self.config.num_train_timesteps - 1, num_inference_steps, dtype=float)[::-1].copy()
+ sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
+ sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas)
+ sigmas = np.concatenate([sigmas, [0.0]]).astype(np.float32)
+ self.sigmas = paddle.to_tensor(sigmas)
+ self.timesteps = paddle.to_tensor(timesteps, dtype="float32")
+
+ self.derivatives = []
+
+ def step(
+ self,
+ model_output: paddle.Tensor,
+ timestep: Union[float, paddle.Tensor],
+ sample: paddle.Tensor,
+ order: int = 4,
+ return_dict: bool = True,
+ ) -> Union[LMSDiscreteSchedulerOutput, Tuple]:
+ """
+ Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
+ process from the learned model outputs (most often the predicted noise).
+
+ Args:
+ model_output (`paddle.Tensor`): direct output from learned diffusion model.
+ timestep (`float`): current timestep in the diffusion chain.
+ sample (`paddle.Tensor`):
+ current instance of sample being created by diffusion process.
+ order: coefficient for multi-step inference.
+ return_dict (`bool`): option for returning tuple rather than LMSDiscreteSchedulerOutput class
+
+ Returns:
+ [`~schedulers.scheduling_utils.LMSDiscreteSchedulerOutput`] or `tuple`:
+ [`~schedulers.scheduling_utils.LMSDiscreteSchedulerOutput`] if `return_dict` is True, otherwise a `tuple`.
+ When returning a tuple, the first element is the sample tensor.
+
+ """
+ if not self.is_scale_input_called:
+ warnings.warn(
+ "The `scale_model_input` function should be called before `step` to ensure correct denoising. "
+ "See `StableDiffusionPipeline` for a usage example."
+ )
+
+ step_index = (self.timesteps == timestep).nonzero().item()
+ sigma = self.sigmas[step_index]
+
+ # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise
+ if self.config.prediction_type == "epsilon":
+ pred_original_sample = sample - sigma * model_output
+ elif self.config.prediction_type == "v_prediction":
+ # * c_out + input * c_skip
+ pred_original_sample = model_output * (-sigma / (sigma**2 + 1) ** 0.5) + (sample / (sigma**2 + 1))
+ else:
+ raise ValueError(
+ f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`"
+ )
+
+ # 2. Convert to an ODE derivative
+ derivative = (sample - pred_original_sample) / sigma
+ self.derivatives.append(derivative)
+ if len(self.derivatives) > order:
+ self.derivatives.pop(0)
+
+ # 3. Compute linear multistep coefficients
+ order = min(step_index + 1, order)
+ lms_coeffs = [self.get_lms_coefficient(order, step_index, curr_order) for curr_order in range(order)]
+
+ # 4. Compute previous sample based on the derivatives path
+ prev_sample = sample + sum(
+ coeff * derivative for coeff, derivative in zip(lms_coeffs, reversed(self.derivatives))
+ )
+
+ if not return_dict:
+ return (prev_sample,)
+
+ return LMSDiscreteSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_original_sample)
+
+ def add_noise(
+ self,
+ original_samples: paddle.Tensor,
+ noise: paddle.Tensor,
+ timesteps: paddle.Tensor,
+ ) -> paddle.Tensor:
+ # Make sure sigmas and timesteps have the same dtype as original_samples
+ sigmas = self.sigmas.cast(original_samples.dtype)
+ schedule_timesteps = self.timesteps
+
+ step_indices = [(schedule_timesteps == t).nonzero().item() for t in timesteps]
+
+ sigma = sigmas[step_indices].flatten()
+ while len(sigma.shape) < len(original_samples.shape):
+ sigma = sigma.unsqueeze(-1)
+
+ noisy_samples = original_samples + noise * sigma
+ return noisy_samples
+
+ def __len__(self):
+ return self.config.num_train_timesteps
diff --git a/ppdiffusers/schedulers/scheduling_pndm.py b/ppdiffusers/schedulers/scheduling_pndm.py
new file mode 100644
index 0000000000000000000000000000000000000000..10c01ee0d7a4c5c191a3fc339ab21b6369374c15
--- /dev/null
+++ b/ppdiffusers/schedulers/scheduling_pndm.py
@@ -0,0 +1,423 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+# Copyright 2022 Zhejiang University Team and The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim
+
+import math
+from typing import List, Optional, Tuple, Union
+
+import numpy as np
+import paddle
+
+from ..configuration_utils import ConfigMixin, register_to_config
+from ..utils import _COMPATIBLE_STABLE_DIFFUSION_SCHEDULERS
+from .scheduling_utils import SchedulerMixin, SchedulerOutput
+
+
+def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999):
+ """
+ Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
+ (1-beta) over time from t = [0,1].
+
+ Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
+ to that part of the diffusion process.
+
+
+ Args:
+ num_diffusion_timesteps (`int`): the number of betas to produce.
+ max_beta (`float`): the maximum beta to use; use values lower than 1 to
+ prevent singularities.
+
+ Returns:
+ betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
+ """
+
+ def alpha_bar(time_step):
+ return math.cos((time_step + 0.008) / 1.008 * math.pi / 2) ** 2
+
+ betas = []
+ for i in range(num_diffusion_timesteps):
+ t1 = i / num_diffusion_timesteps
+ t2 = (i + 1) / num_diffusion_timesteps
+ betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
+ return paddle.to_tensor(betas, dtype="float32")
+
+
+class PNDMScheduler(SchedulerMixin, ConfigMixin):
+ """
+ Pseudo numerical methods for diffusion models (PNDM) proposes using more advanced ODE integration techniques,
+ namely Runge-Kutta method and a linear multi-step method.
+
+ [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__`
+ function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`.
+ [`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and
+ [`~SchedulerMixin.from_pretrained`] functions.
+
+ For more details, see the original paper: https://arxiv.org/abs/2202.09778
+
+ Args:
+ num_train_timesteps (`int`): number of diffusion steps used to train the model.
+ beta_start (`float`): the starting `beta` value of inference.
+ beta_end (`float`): the final `beta` value.
+ beta_schedule (`str`):
+ the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
+ `linear`, `scaled_linear`, or `squaredcos_cap_v2`.
+ trained_betas (`np.ndarray`, optional):
+ option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc.
+ skip_prk_steps (`bool`):
+ allows the scheduler to skip the Runge-Kutta steps that are defined in the original paper as being required
+ before plms steps; defaults to `False`.
+ set_alpha_to_one (`bool`, default `False`):
+ each diffusion step uses the value of alphas product at that step and at the previous one. For the final
+ step there is no previous alpha. When this option is `True` the previous alpha product is fixed to `1`,
+ otherwise it uses the value of alpha at step 0.
+ prediction_type (`str`, default `epsilon`, optional):
+ prediction type of the scheduler function, one of `epsilon` (predicting the noise of the diffusion
+ process), `sample` (directly predicting the noisy sample`) or `v_prediction` (see section 2.4
+ https://imagen.research.google/video/paper.pdf)
+ steps_offset (`int`, default `0`):
+ an offset added to the inference steps. You can use a combination of `offset=1` and
+ `set_alpha_to_one=False`, to make the last step use step 0 for the previous alpha product, as done in
+ stable diffusion.
+
+ """
+
+ _compatibles = _COMPATIBLE_STABLE_DIFFUSION_SCHEDULERS.copy()
+ order = 1
+
+ @register_to_config
+ def __init__(
+ self,
+ num_train_timesteps: int = 1000,
+ beta_start: float = 0.0001,
+ beta_end: float = 0.02,
+ beta_schedule: str = "linear",
+ trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
+ skip_prk_steps: bool = False,
+ set_alpha_to_one: bool = False,
+ prediction_type: str = "epsilon",
+ steps_offset: int = 0,
+ ):
+ if trained_betas is not None:
+ self.betas = paddle.to_tensor(trained_betas, dtype="float32")
+ elif beta_schedule == "linear":
+ self.betas = paddle.linspace(beta_start, beta_end, num_train_timesteps, dtype="float32")
+ elif beta_schedule == "scaled_linear":
+ # this schedule is very specific to the latent diffusion model.
+ self.betas = paddle.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype="float32") ** 2
+ elif beta_schedule == "squaredcos_cap_v2":
+ # Glide cosine schedule
+ self.betas = betas_for_alpha_bar(num_train_timesteps)
+ else:
+ raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")
+
+ self.alphas = 1.0 - self.betas
+ self.alphas_cumprod = paddle.cumprod(self.alphas, 0)
+
+ self.final_alpha_cumprod = paddle.to_tensor(1.0) if set_alpha_to_one else self.alphas_cumprod[0]
+
+ # standard deviation of the initial noise distribution
+ self.init_noise_sigma = 1.0
+
+ # For now we only support F-PNDM, i.e. the runge-kutta method
+ # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf
+ # mainly at formula (9), (12), (13) and the Algorithm 2.
+ self.pndm_order = 4
+
+ # running values
+ self.cur_model_output = 0
+ self.counter = 0
+ self.cur_sample = None
+ self.ets = []
+
+ # setable values
+ self.num_inference_steps = None
+ self._timesteps = np.arange(0, num_train_timesteps)[::-1].copy()
+ self.prk_timesteps = None
+ self.plms_timesteps = None
+ self.timesteps = None
+
+ def set_timesteps(self, num_inference_steps: int):
+ """
+ Sets the discrete timesteps used for the diffusion chain. Supporting function to be run before inference.
+
+ Args:
+ num_inference_steps (`int`):
+ the number of diffusion steps used when generating samples with a pre-trained model.
+ """
+
+ self.num_inference_steps = num_inference_steps
+ step_ratio = self.config.num_train_timesteps // self.num_inference_steps
+ # creates integer timesteps by multiplying by ratio
+ # casting to int to avoid issues when num_inference_step is power of 3
+ self._timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()
+ self._timesteps += self.config.steps_offset
+
+ if self.config.skip_prk_steps:
+ # for some models like stable diffusion the prk steps can/should be skipped to
+ # produce better results. When using PNDM with `self.config.skip_prk_steps` the implementation
+ # is based on crowsonkb's PLMS sampler implementation: https://github.com/CompVis/latent-diffusion/pull/51
+ self.prk_timesteps = np.array([])
+ self.plms_timesteps = np.concatenate([self._timesteps[:-1], self._timesteps[-2:-1], self._timesteps[-1:]])[
+ ::-1
+ ].copy()
+ else:
+ prk_timesteps = np.array(self._timesteps[-self.pndm_order :]).repeat(2) + np.tile(
+ np.array([0, self.config.num_train_timesteps // num_inference_steps // 2]), self.pndm_order
+ )
+ self.prk_timesteps = (prk_timesteps[:-1].repeat(2)[1:-1])[::-1].copy()
+ self.plms_timesteps = self._timesteps[:-3][
+ ::-1
+ ].copy() # we copy to avoid having negative strides which are not supported by paddle
+
+ timesteps = np.concatenate([self.prk_timesteps, self.plms_timesteps]).astype(np.int64)
+ self.timesteps = paddle.to_tensor(timesteps)
+
+ self.ets = []
+ self.counter = 0
+
+ def step(
+ self,
+ model_output: paddle.Tensor,
+ timestep: int,
+ sample: paddle.Tensor,
+ return_dict: bool = True,
+ ) -> Union[SchedulerOutput, Tuple]:
+ """
+ Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
+ process from the learned model outputs (most often the predicted noise).
+
+ This function calls `step_prk()` or `step_plms()` depending on the internal variable `counter`.
+
+ Args:
+ model_output (`paddle.Tensor`): direct output from learned diffusion model.
+ timestep (`int`): current discrete timestep in the diffusion chain.
+ sample (`paddle.Tensor`):
+ current instance of sample being created by diffusion process.
+ return_dict (`bool`): option for returning tuple rather than SchedulerOutput class
+
+ Returns:
+ [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`:
+ [`~schedulers.scheduling_utils.SchedulerOutput`] if `return_dict` is True, otherwise a `tuple`. When
+ returning a tuple, the first element is the sample tensor.
+
+ """
+ if self.counter < len(self.prk_timesteps) and not self.config.skip_prk_steps:
+ return self.step_prk(model_output=model_output, timestep=timestep, sample=sample, return_dict=return_dict)
+ else:
+ return self.step_plms(model_output=model_output, timestep=timestep, sample=sample, return_dict=return_dict)
+
+ def step_prk(
+ self,
+ model_output: paddle.Tensor,
+ timestep: int,
+ sample: paddle.Tensor,
+ return_dict: bool = True,
+ ) -> Union[SchedulerOutput, Tuple]:
+ """
+ Step function propagating the sample with the Runge-Kutta method. RK takes 4 forward passes to approximate the
+ solution to the differential equation.
+
+ Args:
+ model_output (`paddle.Tensor`): direct output from learned diffusion model.
+ timestep (`int`): current discrete timestep in the diffusion chain.
+ sample (`paddle.Tensor`):
+ current instance of sample being created by diffusion process.
+ return_dict (`bool`): option for returning tuple rather than SchedulerOutput class
+
+ Returns:
+ [`~scheduling_utils.SchedulerOutput`] or `tuple`: [`~scheduling_utils.SchedulerOutput`] if `return_dict` is
+ True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor.
+
+ """
+ if self.num_inference_steps is None:
+ raise ValueError(
+ "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
+ )
+
+ diff_to_prev = 0 if self.counter % 2 else self.config.num_train_timesteps // self.num_inference_steps // 2
+ prev_timestep = timestep - diff_to_prev
+ timestep = self.prk_timesteps[self.counter // 4 * 4]
+
+ if self.counter % 4 == 0:
+ self.cur_model_output += 1 / 6 * model_output
+ self.ets.append(model_output)
+ self.cur_sample = sample
+ elif (self.counter - 1) % 4 == 0:
+ self.cur_model_output += 1 / 3 * model_output
+ elif (self.counter - 2) % 4 == 0:
+ self.cur_model_output += 1 / 3 * model_output
+ elif (self.counter - 3) % 4 == 0:
+ model_output = self.cur_model_output + 1 / 6 * model_output
+ self.cur_model_output = 0
+
+ # cur_sample should not be `None`
+ cur_sample = self.cur_sample if self.cur_sample is not None else sample
+
+ prev_sample = self._get_prev_sample(cur_sample, timestep, prev_timestep, model_output)
+ self.counter += 1
+
+ if not return_dict:
+ return (prev_sample,)
+
+ return SchedulerOutput(prev_sample=prev_sample)
+
+ def step_plms(
+ self,
+ model_output: paddle.Tensor,
+ timestep: int,
+ sample: paddle.Tensor,
+ return_dict: bool = True,
+ ) -> Union[SchedulerOutput, Tuple]:
+ """
+ Step function propagating the sample with the linear multi-step method. This has one forward pass with multiple
+ times to approximate the solution.
+
+ Args:
+ model_output (`paddle.Tensor`): direct output from learned diffusion model.
+ timestep (`int`): current discrete timestep in the diffusion chain.
+ sample (`paddle.Tensor`):
+ current instance of sample being created by diffusion process.
+ return_dict (`bool`): option for returning tuple rather than SchedulerOutput class
+
+ Returns:
+ [`~scheduling_utils.SchedulerOutput`] or `tuple`: [`~scheduling_utils.SchedulerOutput`] if `return_dict` is
+ True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor.
+
+ """
+ if self.num_inference_steps is None:
+ raise ValueError(
+ "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
+ )
+
+ if not self.config.skip_prk_steps and len(self.ets) < 3:
+ raise ValueError(
+ f"{self.__class__} can only be run AFTER scheduler has been run "
+ "in 'prk' mode for at least 12 iterations "
+ "See: https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/pipeline_pndm.py "
+ "for more information."
+ )
+
+ prev_timestep = timestep - self.config.num_train_timesteps // self.num_inference_steps
+
+ if self.counter != 1:
+ self.ets = self.ets[-3:]
+ self.ets.append(model_output)
+ else:
+ prev_timestep = timestep
+ timestep = timestep + self.config.num_train_timesteps // self.num_inference_steps
+
+ if len(self.ets) == 1 and self.counter == 0:
+ model_output = model_output
+ self.cur_sample = sample
+ elif len(self.ets) == 1 and self.counter == 1:
+ model_output = (model_output + self.ets[-1]) / 2
+ sample = self.cur_sample
+ self.cur_sample = None
+ elif len(self.ets) == 2:
+ model_output = (3 * self.ets[-1] - self.ets[-2]) / 2
+ elif len(self.ets) == 3:
+ model_output = (23 * self.ets[-1] - 16 * self.ets[-2] + 5 * self.ets[-3]) / 12
+ else:
+ model_output = (1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4])
+
+ prev_sample = self._get_prev_sample(sample, timestep, prev_timestep, model_output)
+ self.counter += 1
+
+ if not return_dict:
+ return (prev_sample,)
+
+ return SchedulerOutput(prev_sample=prev_sample)
+
+ def scale_model_input(self, sample: paddle.Tensor, *args, **kwargs) -> paddle.Tensor:
+ """
+ Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
+ current timestep.
+
+ Args:
+ sample (`paddle.Tensor`): input sample
+
+ Returns:
+ `paddle.Tensor`: scaled input sample
+ """
+ return sample
+
+ def _get_prev_sample(self, sample, timestep, prev_timestep, model_output):
+ # See formula (9) of PNDM paper https://arxiv.org/pdf/2202.09778.pdf
+ # this function computes x_(t−δ) using the formula of (9)
+ # Note that x_t needs to be added to both sides of the equation
+
+ # Notation ( ->
+ # alpha_prod_t -> α_t
+ # alpha_prod_t_prev -> α_(t−δ)
+ # beta_prod_t -> (1 - α_t)
+ # beta_prod_t_prev -> (1 - α_(t−δ))
+ # sample -> x_t
+ # model_output -> e_θ(x_t, t)
+ # prev_sample -> x_(t−δ)
+ alpha_prod_t = self.alphas_cumprod[timestep]
+ alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod
+ beta_prod_t = 1 - alpha_prod_t
+ beta_prod_t_prev = 1 - alpha_prod_t_prev
+
+ if self.config.prediction_type == "v_prediction":
+ model_output = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample
+ elif self.config.prediction_type != "epsilon":
+ raise ValueError(
+ f"prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `v_prediction`"
+ )
+
+ # corresponds to (α_(t−δ) - α_t) divided by
+ # denominator of x_t in formula (9) and plus 1
+ # Note: (α_(t−δ) - α_t) / (sqrt(α_t) * (sqrt(α_(t−δ)) + sqr(α_t))) =
+ # sqrt(α_(t−δ)) / sqrt(α_t))
+ sample_coeff = (alpha_prod_t_prev / alpha_prod_t) ** (0.5)
+
+ # corresponds to denominator of e_θ(x_t, t) in formula (9)
+ model_output_denom_coeff = alpha_prod_t * beta_prod_t_prev ** (0.5) + (
+ alpha_prod_t * beta_prod_t * alpha_prod_t_prev
+ ) ** (0.5)
+
+ # full formula (9)
+ prev_sample = (
+ sample_coeff * sample - (alpha_prod_t_prev - alpha_prod_t) * model_output / model_output_denom_coeff
+ )
+
+ return prev_sample
+
+ def add_noise(
+ self,
+ original_samples: paddle.Tensor,
+ noise: paddle.Tensor,
+ timesteps: paddle.Tensor,
+ ) -> paddle.Tensor:
+ # Make sure alphas_cumprod and timestep have same dtype as original_samples
+ self.alphas_cumprod = self.alphas_cumprod.cast(original_samples.dtype)
+
+ sqrt_alpha_prod = self.alphas_cumprod[timesteps] ** 0.5
+ sqrt_alpha_prod = sqrt_alpha_prod.flatten()
+ while len(sqrt_alpha_prod.shape) < len(original_samples.shape):
+ sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)
+
+ sqrt_one_minus_alpha_prod = (1 - self.alphas_cumprod[timesteps]) ** 0.5
+ sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
+ while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape):
+ sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
+
+ noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
+ return noisy_samples
+
+ def __len__(self):
+ return self.config.num_train_timesteps
diff --git a/ppdiffusers/schedulers/scheduling_repaint.py b/ppdiffusers/schedulers/scheduling_repaint.py
new file mode 100644
index 0000000000000000000000000000000000000000..3ab44975e92c876052cbada8e7e2cf19ac526ac3
--- /dev/null
+++ b/ppdiffusers/schedulers/scheduling_repaint.py
@@ -0,0 +1,321 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+# Copyright 2022 ETH Zurich Computer Vision Lab and The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import math
+from dataclasses import dataclass
+from typing import List, Optional, Tuple, Union
+
+import numpy as np
+import paddle
+import paddle.nn.functional as F
+
+from ..configuration_utils import ConfigMixin, register_to_config
+from ..utils import BaseOutput
+from .scheduling_utils import SchedulerMixin
+
+
+@dataclass
+class RePaintSchedulerOutput(BaseOutput):
+ """
+ Output class for the scheduler's step function output.
+
+ Args:
+ prev_sample (`paddle.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
+ Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the
+ denoising loop.
+ pred_original_sample (`paddle.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
+ The predicted denoised sample (x_{0}) based on the model output from
+ the current timestep. `pred_original_sample` can be used to preview progress or for guidance.
+ """
+
+ prev_sample: paddle.Tensor
+ pred_original_sample: paddle.Tensor
+
+
+def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999):
+ """
+ Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
+ (1-beta) over time from t = [0,1].
+
+ Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
+ to that part of the diffusion process.
+
+
+ Args:
+ num_diffusion_timesteps (`int`): the number of betas to produce.
+ max_beta (`float`): the maximum beta to use; use values lower than 1 to
+ prevent singularities.
+
+ Returns:
+ betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
+ """
+
+ def alpha_bar(time_step):
+ return math.cos((time_step + 0.008) / 1.008 * math.pi / 2) ** 2
+
+ betas = []
+ for i in range(num_diffusion_timesteps):
+ t1 = i / num_diffusion_timesteps
+ t2 = (i + 1) / num_diffusion_timesteps
+ betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
+ return paddle.to_tensor(betas, dtype="float32")
+
+
+class RePaintScheduler(SchedulerMixin, ConfigMixin):
+ """
+ RePaint is a schedule for DDPM inpainting inside a given mask.
+
+ [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__`
+ function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`.
+ [`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and
+ [`~SchedulerMixin.from_pretrained`] functions.
+
+ For more details, see the original paper: https://arxiv.org/pdf/2201.09865.pdf
+
+ Args:
+ num_train_timesteps (`int`): number of diffusion steps used to train the model.
+ beta_start (`float`): the starting `beta` value of inference.
+ beta_end (`float`): the final `beta` value.
+ beta_schedule (`str`):
+ the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
+ `linear`, `scaled_linear`, or `squaredcos_cap_v2`.
+ eta (`float`):
+ The weight of noise for added noise in a diffusion step. Its value is between 0.0 and 1.0 -0.0 is DDIM and
+ 1.0 is DDPM scheduler respectively.
+ trained_betas (`np.ndarray`, optional):
+ option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc.
+ variance_type (`str`):
+ options to clip the variance used when adding noise to the denoised sample. Choose from `fixed_small`,
+ `fixed_small_log`, `fixed_large`, `fixed_large_log`, `learned` or `learned_range`.
+ clip_sample (`bool`, default `True`):
+ option to clip predicted sample between -1 and 1 for numerical stability.
+
+ """
+
+ order = 1
+
+ @register_to_config
+ def __init__(
+ self,
+ num_train_timesteps: int = 1000,
+ beta_start: float = 0.0001,
+ beta_end: float = 0.02,
+ beta_schedule: str = "linear",
+ eta: float = 0.0,
+ trained_betas: Optional[np.ndarray] = None,
+ clip_sample: bool = True,
+ ):
+ if trained_betas is not None:
+ self.betas = paddle.to_tensor(trained_betas)
+ elif beta_schedule == "linear":
+ self.betas = paddle.linspace(beta_start, beta_end, num_train_timesteps, dtype="float32")
+ elif beta_schedule == "scaled_linear":
+ # this schedule is very specific to the latent diffusion model.
+ self.betas = paddle.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype="float32") ** 2
+ elif beta_schedule == "squaredcos_cap_v2":
+ # Glide cosine schedule
+ self.betas = betas_for_alpha_bar(num_train_timesteps)
+ elif beta_schedule == "sigmoid":
+ # GeoDiff sigmoid schedule
+ betas = paddle.linspace(-6, 6, num_train_timesteps)
+ self.betas = F.sigmoid(betas) * (beta_end - beta_start) + beta_start
+ else:
+ raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")
+
+ self.alphas = 1.0 - self.betas
+ self.alphas_cumprod = paddle.cumprod(self.alphas, 0)
+ self.one = paddle.to_tensor(1.0)
+
+ self.final_alpha_cumprod = paddle.to_tensor(1.0)
+
+ # standard deviation of the initial noise distribution
+ self.init_noise_sigma = 1.0
+
+ # setable values
+ self.num_inference_steps = None
+ self.timesteps = paddle.to_tensor(np.arange(0, num_train_timesteps)[::-1].copy())
+
+ self.eta = eta
+
+ def scale_model_input(self, sample: paddle.Tensor, timestep: Optional[int] = None) -> paddle.Tensor:
+ """
+ Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
+ current timestep.
+
+ Args:
+ sample (`paddle.Tensor`): input sample
+ timestep (`int`, optional): current timestep
+
+ Returns:
+ `paddle.Tensor`: scaled input sample
+ """
+ return sample
+
+ def set_timesteps(
+ self,
+ num_inference_steps: int,
+ jump_length: int = 10,
+ jump_n_sample: int = 10,
+ ):
+ num_inference_steps = min(self.config.num_train_timesteps, num_inference_steps)
+ self.num_inference_steps = num_inference_steps
+
+ timesteps = []
+
+ jumps = {}
+ for j in range(0, num_inference_steps - jump_length, jump_length):
+ jumps[j] = jump_n_sample - 1
+
+ t = num_inference_steps
+ while t >= 1:
+ t = t - 1
+ timesteps.append(t)
+
+ if jumps.get(t, 0) > 0:
+ jumps[t] = jumps[t] - 1
+ for _ in range(jump_length):
+ t = t + 1
+ timesteps.append(t)
+
+ timesteps = np.array(timesteps) * (self.config.num_train_timesteps // self.num_inference_steps)
+ self.timesteps = paddle.to_tensor(timesteps)
+
+ def _get_variance(self, t):
+ prev_timestep = t - self.config.num_train_timesteps // self.num_inference_steps
+
+ alpha_prod_t = self.alphas_cumprod[t]
+ alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod
+ beta_prod_t = 1 - alpha_prod_t
+ beta_prod_t_prev = 1 - alpha_prod_t_prev
+
+ # For t > 0, compute predicted variance βt (see formula (6) and (7) from
+ # https://arxiv.org/pdf/2006.11239.pdf) and sample from it to get
+ # previous sample x_{t-1} ~ N(pred_prev_sample, variance) == add
+ # variance to pred_sample
+ # Is equivalent to formula (16) in https://arxiv.org/pdf/2010.02502.pdf
+ # without eta.
+ # variance = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * self.betas[t]
+ variance = (beta_prod_t_prev / beta_prod_t) * (1 - alpha_prod_t / alpha_prod_t_prev)
+
+ return variance
+
+ def step(
+ self,
+ model_output: paddle.Tensor,
+ timestep: int,
+ sample: paddle.Tensor,
+ original_image: paddle.Tensor,
+ mask: paddle.Tensor,
+ generator: Optional[Union[paddle.Generator, List[paddle.Generator]]] = None,
+ return_dict: bool = True,
+ ) -> Union[RePaintSchedulerOutput, Tuple]:
+ """
+ Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
+ process from the learned model outputs (most often the predicted noise).
+
+ Args:
+ model_output (`paddle.Tensor`): direct output from learned
+ diffusion model.
+ timestep (`int`): current discrete timestep in the diffusion chain.
+ sample (`paddle.Tensor`):
+ current instance of sample being created by diffusion process.
+ original_image (`paddle.Tensor`):
+ the original image to inpaint on.
+ mask (`paddle.Tensor`):
+ the mask where 0.0 values define which part of the original image to inpaint (change).
+ generator (`paddle.Generator`, *optional*): random number generator.
+ return_dict (`bool`): option for returning tuple rather than
+ DDPMSchedulerOutput class
+
+ Returns:
+ [`~schedulers.scheduling_utils.RePaintSchedulerOutput`] or `tuple`:
+ [`~schedulers.scheduling_utils.RePaintSchedulerOutput`] if `return_dict` is True, otherwise a `tuple`. When
+ returning a tuple, the first element is the sample tensor.
+
+ """
+ t = timestep
+ prev_timestep = timestep - self.config.num_train_timesteps // self.num_inference_steps
+
+ # 1. compute alphas, betas
+ alpha_prod_t = self.alphas_cumprod[t]
+ alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod
+ beta_prod_t = 1 - alpha_prod_t
+
+ # 2. compute predicted original sample from predicted noise also called
+ # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
+ pred_original_sample = (sample - beta_prod_t**0.5 * model_output) / alpha_prod_t**0.5
+
+ # 3. Clip "predicted x_0"
+ if self.config.clip_sample:
+ pred_original_sample = paddle.clip(pred_original_sample, -1, 1)
+
+ # We choose to follow RePaint Algorithm 1 to get x_{t-1}, however we
+ # substitute formula (7) in the algorithm coming from DDPM paper
+ # (formula (4) Algorithm 2 - Sampling) with formula (12) from DDIM paper.
+ # DDIM schedule gives the same results as DDPM with eta = 1.0
+ # Noise is being reused in 7. and 8., but no impact on quality has
+ # been observed.
+
+ # 5. Add noise
+ noise = paddle.randn(model_output.shape, dtype=model_output.dtype, generator=generator)
+ std_dev_t = self.eta * self._get_variance(timestep) ** 0.5
+
+ variance = 0
+ if t > 0 and self.eta > 0:
+ variance = std_dev_t * noise
+
+ # 6. compute "direction pointing to x_t" of formula (12)
+ # from https://arxiv.org/pdf/2010.02502.pdf
+ pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output
+
+ # 7. compute x_{t-1} of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
+ prev_unknown_part = alpha_prod_t_prev**0.5 * pred_original_sample + pred_sample_direction + variance
+
+ # 8. Algorithm 1 Line 5 https://arxiv.org/pdf/2201.09865.pdf
+ prev_known_part = (alpha_prod_t_prev**0.5) * original_image + ((1 - alpha_prod_t_prev) ** 0.5) * noise
+
+ # 9. Algorithm 1 Line 8 https://arxiv.org/pdf/2201.09865.pdf
+ pred_prev_sample = mask * prev_known_part + (1.0 - mask) * prev_unknown_part
+
+ if not return_dict:
+ return (
+ pred_prev_sample,
+ pred_original_sample,
+ )
+
+ return RePaintSchedulerOutput(prev_sample=pred_prev_sample, pred_original_sample=pred_original_sample)
+
+ def undo_step(self, sample, timestep, generator=None):
+ n = self.config.num_train_timesteps // self.num_inference_steps
+
+ for i in range(n):
+ beta = self.betas[timestep + i]
+ noise = paddle.randn(sample.shape, dtype=sample.dtype, generator=generator)
+
+ # 10. Algorithm 1 Line 10 https://arxiv.org/pdf/2201.09865.pdf
+ sample = (1 - beta) ** 0.5 * sample + beta**0.5 * noise
+
+ return sample
+
+ def add_noise(
+ self,
+ original_samples: paddle.Tensor,
+ noise: paddle.Tensor,
+ timesteps: paddle.Tensor,
+ ) -> paddle.Tensor:
+ raise NotImplementedError("Use `DDPMScheduler.add_noise()` to train for sampling with RePaint.")
+
+ def __len__(self):
+ return self.config.num_train_timesteps
diff --git a/ppdiffusers/schedulers/scheduling_sde_ve.py b/ppdiffusers/schedulers/scheduling_sde_ve.py
new file mode 100644
index 0000000000000000000000000000000000000000..fd285fc9e5b5ec143b1dd0081ab25fe046646a72
--- /dev/null
+++ b/ppdiffusers/schedulers/scheduling_sde_ve.py
@@ -0,0 +1,262 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+# Copyright 2022 Google Brain and The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch
+
+import math
+from dataclasses import dataclass
+from typing import List, Optional, Tuple, Union
+
+import paddle
+
+from ..configuration_utils import ConfigMixin, register_to_config
+from ..utils import BaseOutput
+from .scheduling_utils import SchedulerMixin, SchedulerOutput
+
+
+@dataclass
+class SdeVeOutput(BaseOutput):
+ """
+ Output class for the ScoreSdeVeScheduler's step function output.
+
+ Args:
+ prev_sample (`paddle.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
+ Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the
+ denoising loop.
+ prev_sample_mean (`paddle.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
+ Mean averaged `prev_sample`. Same as `prev_sample`, only mean-averaged over previous timesteps.
+ """
+
+ prev_sample: paddle.Tensor
+ prev_sample_mean: paddle.Tensor
+
+
+class ScoreSdeVeScheduler(SchedulerMixin, ConfigMixin):
+ """
+ The variance exploding stochastic differential equation (SDE) scheduler.
+
+ For more information, see the original paper: https://arxiv.org/abs/2011.13456
+
+ [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__`
+ function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`.
+ [`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and
+ [`~SchedulerMixin.from_pretrained`] functions.
+
+ Args:
+ num_train_timesteps (`int`): number of diffusion steps used to train the model.
+ snr (`float`):
+ coefficient weighting the step from the model_output sample (from the network) to the random noise.
+ sigma_min (`float`):
+ initial noise scale for sigma sequence in sampling procedure. The minimum sigma should mirror the
+ distribution of the data.
+ sigma_max (`float`): maximum value used for the range of continuous timesteps passed into the model.
+ sampling_eps (`float`): the end value of sampling, where timesteps decrease progressively from 1 to
+ epsilon.
+ correct_steps (`int`): number of correction steps performed on a produced sample.
+ """
+
+ order = 1
+
+ @register_to_config
+ def __init__(
+ self,
+ num_train_timesteps: int = 2000,
+ snr: float = 0.15,
+ sigma_min: float = 0.01,
+ sigma_max: float = 1348.0,
+ sampling_eps: float = 1e-5,
+ correct_steps: int = 1,
+ ):
+ # standard deviation of the initial noise distribution
+ self.init_noise_sigma = sigma_max
+
+ # setable values
+ self.timesteps = None
+
+ self.set_sigmas(num_train_timesteps, sigma_min, sigma_max, sampling_eps)
+
+ def scale_model_input(self, sample: paddle.Tensor, timestep: Optional[int] = None) -> paddle.Tensor:
+ """
+ Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
+ current timestep.
+
+ Args:
+ sample (`paddle.Tensor`): input sample
+ timestep (`int`, optional): current timestep
+
+ Returns:
+ `paddle.Tensor`: scaled input sample
+ """
+ return sample
+
+ def set_timesteps(self, num_inference_steps: int, sampling_eps: float = None):
+ """
+ Sets the continuous timesteps used for the diffusion chain. Supporting function to be run before inference.
+
+ Args:
+ num_inference_steps (`int`):
+ the number of diffusion steps used when generating samples with a pre-trained model.
+ sampling_eps (`float`, optional): final timestep value (overrides value given at Scheduler instantiation).
+
+ """
+ sampling_eps = sampling_eps if sampling_eps is not None else self.config.sampling_eps
+
+ self.timesteps = paddle.linspace(1, sampling_eps, num_inference_steps)
+
+ def set_sigmas(
+ self, num_inference_steps: int, sigma_min: float = None, sigma_max: float = None, sampling_eps: float = None
+ ):
+ """
+ Sets the noise scales used for the diffusion chain. Supporting function to be run before inference.
+
+ The sigmas control the weight of the `drift` and `diffusion` components of sample update.
+
+ Args:
+ num_inference_steps (`int`):
+ the number of diffusion steps used when generating samples with a pre-trained model.
+ sigma_min (`float`, optional):
+ initial noise scale value (overrides value given at Scheduler instantiation).
+ sigma_max (`float`, optional): final noise scale value (overrides value given at Scheduler instantiation).
+ sampling_eps (`float`, optional): final timestep value (overrides value given at Scheduler instantiation).
+
+ """
+ sigma_min = sigma_min if sigma_min is not None else self.config.sigma_min
+ sigma_max = sigma_max if sigma_max is not None else self.config.sigma_max
+ sampling_eps = sampling_eps if sampling_eps is not None else self.config.sampling_eps
+ if self.timesteps is None:
+ self.set_timesteps(num_inference_steps, sampling_eps)
+
+ self.sigmas = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps)
+ self.discrete_sigmas = paddle.exp(
+ paddle.linspace(math.log(sigma_min), math.log(sigma_max), num_inference_steps)
+ )
+ self.sigmas = paddle.to_tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps])
+
+ def get_adjacent_sigma(self, timesteps, t):
+ return paddle.where(
+ timesteps == 0,
+ paddle.zeros_like(t),
+ self.discrete_sigmas[timesteps - 1],
+ )
+
+ def step_pred(
+ self,
+ model_output: paddle.Tensor,
+ timestep: int,
+ sample: paddle.Tensor,
+ generator: Optional[Union[paddle.Generator, List[paddle.Generator]]] = None,
+ return_dict: bool = True,
+ ) -> Union[SdeVeOutput, Tuple]:
+ """
+ Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
+ process from the learned model outputs (most often the predicted noise).
+
+ Args:
+ model_output (`paddle.Tensor`): direct output from learned diffusion model.
+ timestep (`int`): current discrete timestep in the diffusion chain.
+ sample (`paddle.Tensor`):
+ current instance of sample being created by diffusion process.
+ generator: random number generator.
+ return_dict (`bool`): option for returning tuple rather than SchedulerOutput class
+
+ Returns:
+ [`~schedulers.scheduling_sde_ve.SdeVeOutput`] or `tuple`: [`~schedulers.scheduling_sde_ve.SdeVeOutput`] if
+ `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor.
+
+ """
+ if self.timesteps is None:
+ raise ValueError(
+ "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler"
+ )
+
+ timestep = timestep * paddle.ones((sample.shape[0],)) # paddle.repeat_interleave(timestep, sample.shape[0])
+ timesteps = (timestep * (len(self.timesteps) - 1)).cast("int64")
+
+ sigma = self.discrete_sigmas[timesteps]
+ adjacent_sigma = self.get_adjacent_sigma(timesteps, timestep)
+ drift = paddle.zeros_like(sample)
+ diffusion = (sigma**2 - adjacent_sigma**2) ** 0.5
+
+ # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x)
+ # also equation 47 shows the analog from SDE models to ancestral sampling methods
+ diffusion = diffusion.flatten()
+ while len(diffusion.shape) < len(sample.shape):
+ diffusion = diffusion.unsqueeze(-1)
+ drift = drift - diffusion**2 * model_output
+
+ # equation 6: sample noise for the diffusion term of
+ noise = paddle.randn(sample.shape, generator=generator)
+ prev_sample_mean = sample - drift # subtract because `dt` is a small negative timestep
+ # TODO is the variable diffusion the correct scaling term for the noise?
+ prev_sample = prev_sample_mean + diffusion * noise # add impact of diffusion field g
+
+ if not return_dict:
+ return (prev_sample, prev_sample_mean)
+
+ return SdeVeOutput(prev_sample=prev_sample, prev_sample_mean=prev_sample_mean)
+
+ def step_correct(
+ self,
+ model_output: paddle.Tensor,
+ sample: paddle.Tensor,
+ generator: Optional[Union[paddle.Generator, List[paddle.Generator]]] = None,
+ return_dict: bool = True,
+ ) -> Union[SchedulerOutput, Tuple]:
+ """
+ Correct the predicted sample based on the output model_output of the network. This is often run repeatedly
+ after making the prediction for the previous timestep.
+
+ Args:
+ model_output (`paddle.Tensor`): direct output from learned diffusion model.
+ sample (`paddle.Tensor`):
+ current instance of sample being created by diffusion process.
+ generator: random number generator.
+ return_dict (`bool`): option for returning tuple rather than SchedulerOutput class
+
+ Returns:
+ [`~schedulers.scheduling_sde_ve.SdeVeOutput`] or `tuple`: [`~schedulers.scheduling_sde_ve.SdeVeOutput`] if
+ `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor.
+
+ """
+ if self.timesteps is None:
+ raise ValueError(
+ "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler"
+ )
+
+ # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z"
+ # sample noise for correction
+ noise = paddle.randn(sample.shape, generator=generator)
+
+ # compute step size from the model_output, the noise, and the snr
+ grad_norm = paddle.norm(model_output.reshape([model_output.shape[0], -1]), axis=-1).mean()
+ noise_norm = paddle.norm(noise.reshape([noise.shape[0], -1]), axis=-1).mean()
+ step_size = (self.config.snr * noise_norm / grad_norm) ** 2 * 2
+ step_size = step_size * paddle.ones((sample.shape[0],))
+ # self.repeat_scalar(step_size, sample.shape[0])
+
+ # compute corrected sample: model_output term and noise term
+ step_size = step_size.flatten()
+ while len(step_size.shape) < len(sample.shape):
+ step_size = step_size.unsqueeze(-1)
+ prev_sample_mean = sample + step_size * model_output
+ prev_sample = prev_sample_mean + ((step_size * 2) ** 0.5) * noise
+
+ if not return_dict:
+ return (prev_sample,)
+
+ return SchedulerOutput(prev_sample=prev_sample)
+
+ def __len__(self):
+ return self.config.num_train_timesteps
diff --git a/ppdiffusers/schedulers/scheduling_sde_vp.py b/ppdiffusers/schedulers/scheduling_sde_vp.py
new file mode 100644
index 0000000000000000000000000000000000000000..04158a4288b6f40849d43e3c57864335cf2030f7
--- /dev/null
+++ b/ppdiffusers/schedulers/scheduling_sde_vp.py
@@ -0,0 +1,89 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+# Copyright 2022 Google Brain and The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch
+
+import math
+
+import paddle
+
+from ..configuration_utils import ConfigMixin, register_to_config
+from .scheduling_utils import SchedulerMixin
+
+
+class ScoreSdeVpScheduler(SchedulerMixin, ConfigMixin):
+ """
+ The variance preserving stochastic differential equation (SDE) scheduler.
+
+ [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__`
+ function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`.
+ [`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and
+ [`~SchedulerMixin.from_pretrained`] functions.
+
+ For more information, see the original paper: https://arxiv.org/abs/2011.13456
+
+ UNDER CONSTRUCTION
+
+ """
+
+ order = 1
+
+ @register_to_config
+ def __init__(self, num_train_timesteps=2000, beta_min=0.1, beta_max=20, sampling_eps=1e-3):
+ self.sigmas = None
+ self.discrete_sigmas = None
+ self.timesteps = None
+
+ def set_timesteps(self, num_inference_steps):
+ self.timesteps = paddle.linspace(1, self.config.sampling_eps, num_inference_steps)
+
+ def step_pred(self, score, x, t, generator=None):
+ if self.timesteps is None:
+ raise ValueError(
+ "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler"
+ )
+
+ # TODO(Patrick) better comments + non-Paddle
+ # postprocess model score
+ log_mean_coeff = (
+ -0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min
+ )
+ std = paddle.sqrt(1.0 - paddle.exp(2.0 * log_mean_coeff))
+ std = std.flatten()
+ while len(std.shape) < len(score.shape):
+ std = std.unsqueeze(-1)
+ score = -score / std
+
+ # compute
+ dt = -1.0 / len(self.timesteps)
+
+ beta_t = self.config.beta_min + t * (self.config.beta_max - self.config.beta_min)
+ beta_t = beta_t.flatten()
+ while len(beta_t.shape) < len(x.shape):
+ beta_t = beta_t.unsqueeze(-1)
+ drift = -0.5 * beta_t * x
+
+ diffusion = paddle.sqrt(beta_t)
+ drift = drift - diffusion**2 * score
+ x_mean = x + drift * dt
+
+ # add noise
+ noise = paddle.randn(x.shape, generator=generator)
+ x = x_mean + diffusion * math.sqrt(-dt) * noise
+
+ return x, x_mean
+
+ def __len__(self):
+ return self.config.num_train_timesteps
diff --git a/ppdiffusers/schedulers/scheduling_unclip.py b/ppdiffusers/schedulers/scheduling_unclip.py
new file mode 100644
index 0000000000000000000000000000000000000000..e87536bce3e43212288b4f7aa710b49dec97bf8d
--- /dev/null
+++ b/ppdiffusers/schedulers/scheduling_unclip.py
@@ -0,0 +1,303 @@
+# Copyright 2022 Kakao Brain and The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import math
+from dataclasses import dataclass
+from typing import Optional, Tuple, Union
+
+import numpy as np
+import paddle
+
+from ..configuration_utils import ConfigMixin, register_to_config
+from ..utils import BaseOutput
+from .scheduling_utils import SchedulerMixin
+
+
+@dataclass
+# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP
+class UnCLIPSchedulerOutput(BaseOutput):
+ """
+ Output class for the scheduler's step function output.
+
+ Args:
+ prev_sample (`paddle.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
+ Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the
+ denoising loop.
+ pred_original_sample (`paddle.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
+ The predicted denoised sample (x_{0}) based on the model output from the current timestep.
+ `pred_original_sample` can be used to preview progress or for guidance.
+ """
+
+ prev_sample: paddle.Tensor
+ pred_original_sample: Optional[paddle.Tensor] = None
+
+
+def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999):
+ """
+ Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
+ (1-beta) over time from t = [0,1].
+
+ Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
+ to that part of the diffusion process.
+
+
+ Args:
+ num_diffusion_timesteps (`int`): the number of betas to produce.
+ max_beta (`float`): the maximum beta to use; use values lower than 1 to
+ prevent singularities.
+
+ Returns:
+ betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
+ """
+
+ def alpha_bar(time_step):
+ return math.cos((time_step + 0.008) / 1.008 * math.pi / 2) ** 2
+
+ betas = []
+ for i in range(num_diffusion_timesteps):
+ t1 = i / num_diffusion_timesteps
+ t2 = (i + 1) / num_diffusion_timesteps
+ betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
+ return paddle.to_tensor(betas, dtype=paddle.float32)
+
+
+class UnCLIPScheduler(SchedulerMixin, ConfigMixin):
+ """
+ This is a modified DDPM Scheduler specifically for the karlo unCLIP model.
+
+ This scheduler has some minor variations in how it calculates the learned range variance and dynamically
+ re-calculates betas based off the timesteps it is skipping.
+
+ The scheduler also uses a slightly different step ratio when computing timesteps to use for inference.
+
+ See [`~DDPMScheduler`] for more information on DDPM scheduling
+
+ Args:
+ num_train_timesteps (`int`): number of diffusion steps used to train the model.
+ variance_type (`str`):
+ options to clip the variance used when adding noise to the denoised sample. Choose from `fixed_small_log`
+ or `learned_range`.
+ clip_sample (`bool`, default `True`):
+ option to clip predicted sample between `-clip_sample_range` and `clip_sample_range` for numerical
+ stability.
+ clip_sample_range (`float`, default `1.0`):
+ The range to clip the sample between. See `clip_sample`.
+ prediction_type (`str`, default `epsilon`, optional):
+ prediction type of the scheduler function, one of `epsilon` (predicting the noise of the diffusion process)
+ or `sample` (directly predicting the noisy sample`)
+ """
+
+ @register_to_config
+ def __init__(
+ self,
+ num_train_timesteps: int = 1000,
+ variance_type: str = "fixed_small_log",
+ clip_sample: bool = True,
+ clip_sample_range: Optional[float] = 1.0,
+ prediction_type: str = "epsilon",
+ ):
+ # beta scheduler is "squaredcos_cap_v2"
+ self.betas = betas_for_alpha_bar(num_train_timesteps)
+
+ self.alphas = 1.0 - self.betas
+ self.alphas_cumprod = paddle.cumprod(self.alphas, 0)
+ self.one = paddle.to_tensor(1.0)
+
+ # standard deviation of the initial noise distribution
+ self.init_noise_sigma = 1.0
+
+ # setable values
+ self.num_inference_steps = None
+ self.timesteps = paddle.to_tensor(np.arange(0, num_train_timesteps)[::-1].copy())
+
+ self.variance_type = variance_type
+
+ def scale_model_input(self, sample: paddle.Tensor, timestep: Optional[int] = None) -> paddle.Tensor:
+ """
+ Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
+ current timestep.
+
+ Args:
+ sample (`paddle.Tensor`): input sample
+ timestep (`int`, optional): current timestep
+
+ Returns:
+ `paddle.Tensor`: scaled input sample
+ """
+ return sample
+
+ def set_timesteps(self, num_inference_steps: int):
+ """
+ Sets the discrete timesteps used for the diffusion chain. Supporting function to be run before inference.
+
+ Note that this scheduler uses a slightly different step ratio than the other diffusers schedulers. The
+ different step ratio is to mimic the original karlo implementation and does not affect the quality or accuracy
+ of the results.
+
+ Args:
+ num_inference_steps (`int`):
+ the number of diffusion steps used when generating samples with a pre-trained model.
+ """
+ self.num_inference_steps = num_inference_steps
+ step_ratio = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1)
+ timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(np.int64)
+ self.timesteps = paddle.to_tensor(timesteps)
+
+ def _get_variance(self, t, prev_timestep=None, predicted_variance=None, variance_type=None):
+ if prev_timestep is None:
+ prev_timestep = t - 1
+
+ alpha_prod_t = self.alphas_cumprod[t]
+ alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one
+ beta_prod_t = 1 - alpha_prod_t
+ beta_prod_t_prev = 1 - alpha_prod_t_prev
+
+ if prev_timestep == t - 1:
+ beta = self.betas[t]
+ else:
+ beta = 1 - alpha_prod_t / alpha_prod_t_prev
+
+ # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf)
+ # and sample from it to get previous sample
+ # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample
+ variance = beta_prod_t_prev / beta_prod_t * beta
+
+ if variance_type is None:
+ variance_type = self.config.variance_type
+
+ # hacks - were probably added for training stability
+ if variance_type == "fixed_small_log":
+ variance = paddle.log(paddle.clip(variance, min=1e-20))
+ variance = paddle.exp(0.5 * variance)
+ elif variance_type == "learned_range":
+ # NOTE difference with DDPM scheduler
+ min_log = variance.log()
+ max_log = beta.log()
+
+ frac = (predicted_variance + 1) / 2
+ variance = frac * max_log + (1 - frac) * min_log
+
+ return variance
+
+ def step(
+ self,
+ model_output: paddle.Tensor,
+ timestep: int,
+ sample: paddle.Tensor,
+ prev_timestep: Optional[int] = None,
+ generator=None,
+ return_dict: bool = True,
+ ) -> Union[UnCLIPSchedulerOutput, Tuple]:
+ """
+ Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
+ process from the learned model outputs (most often the predicted noise).
+
+ Args:
+ model_output (`paddle.Tensor`): direct output from learned diffusion model.
+ timestep (`int`): current discrete timestep in the diffusion chain.
+ sample (`paddle.Tensor`):
+ current instance of sample being created by diffusion process.
+ prev_timestep (`int`, *optional*): The previous timestep to predict the previous sample at.
+ Used to dynamically compute beta. If not given, `t-1` is used and the pre-computed beta is used.
+ generator: random number generator.
+ return_dict (`bool`): option for returning tuple rather than UnCLIPSchedulerOutput class
+
+ Returns:
+ [`~schedulers.scheduling_utils.UnCLIPSchedulerOutput`] or `tuple`:
+ [`~schedulers.scheduling_utils.UnCLIPSchedulerOutput`] if `return_dict` is True, otherwise a `tuple`. When
+ returning a tuple, the first element is the sample tensor.
+
+ """
+
+ t = timestep
+
+ if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range":
+ model_output, predicted_variance = model_output.split(
+ [sample.shape[1], model_output.shape[1] - sample.shape[1]], axis=1
+ )
+ else:
+ predicted_variance = None
+
+ # 1. compute alphas, betas
+ if prev_timestep is None:
+ prev_timestep = t - 1
+
+ alpha_prod_t = self.alphas_cumprod[t]
+ alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one
+ beta_prod_t = 1 - alpha_prod_t
+ beta_prod_t_prev = 1 - alpha_prod_t_prev
+
+ if prev_timestep == t - 1:
+ beta = self.betas[t]
+ alpha = self.alphas[t]
+ else:
+ beta = 1 - alpha_prod_t / alpha_prod_t_prev
+ alpha = 1 - beta
+
+ # 2. compute predicted original sample from predicted noise also called
+ # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
+ if self.config.prediction_type == "epsilon":
+ pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
+ elif self.config.prediction_type == "sample":
+ pred_original_sample = model_output
+ else:
+ raise ValueError(
+ f"prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`"
+ " for the UnCLIPScheduler."
+ )
+
+ # 3. Clip "predicted x_0"
+ if self.config.clip_sample:
+ pred_original_sample = paddle.clip(
+ pred_original_sample, -self.config.clip_sample_range, self.config.clip_sample_range
+ )
+
+ # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
+ # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
+ pred_original_sample_coeff = (alpha_prod_t_prev ** (0.5) * beta) / beta_prod_t
+ current_sample_coeff = alpha ** (0.5) * beta_prod_t_prev / beta_prod_t
+
+ # 5. Compute predicted previous sample µ_t
+ # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
+ pred_prev_sample = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample
+
+ # 6. Add noise
+ variance = 0
+ if t > 0:
+ variance_noise = paddle.randn(model_output.shape, generator=generator, dtype=model_output.dtype)
+
+ variance = self._get_variance(
+ t,
+ predicted_variance=predicted_variance,
+ prev_timestep=prev_timestep,
+ )
+
+ if self.variance_type == "fixed_small_log":
+ variance = variance
+ elif self.variance_type == "learned_range":
+ variance = (0.5 * variance).exp()
+ else:
+ raise ValueError(
+ f"variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`"
+ " for the UnCLIPScheduler."
+ )
+
+ variance = variance * variance_noise
+
+ pred_prev_sample = pred_prev_sample + variance
+
+ if not return_dict:
+ return (pred_prev_sample,)
+
+ return UnCLIPSchedulerOutput(prev_sample=pred_prev_sample, pred_original_sample=pred_original_sample)
diff --git a/ppdiffusers/schedulers/scheduling_utils.py b/ppdiffusers/schedulers/scheduling_utils.py
new file mode 100644
index 0000000000000000000000000000000000000000..798b179f27119e09529e878572d3f77e017e099f
--- /dev/null
+++ b/ppdiffusers/schedulers/scheduling_utils.py
@@ -0,0 +1,122 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+# Copyright 2022 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+import importlib
+import os
+from dataclasses import dataclass
+from typing import Any, Dict, Optional, Union
+
+import paddle
+
+from ..utils import BaseOutput
+
+SCHEDULER_CONFIG_NAME = "scheduler_config.json"
+
+
+@dataclass
+class SchedulerOutput(BaseOutput):
+ """
+ Base class for the scheduler's step function output.
+
+ Args:
+ prev_sample (`paddle.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
+ Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the
+ denoising loop.
+ """
+
+ prev_sample: paddle.Tensor
+
+
+class SchedulerMixin:
+ """
+ Mixin containing common functions for the schedulers.
+
+ Class attributes:
+ - **_compatibles** (`List[str]`) -- A list of classes that are compatible with the parent class, so that
+ `from_config` can be used from a class different than the one used to save the config (should be overridden
+ by parent class).
+ """
+
+ config_name = SCHEDULER_CONFIG_NAME
+ _compatibles = []
+ has_compatibles = True
+
+ @classmethod
+ def from_pretrained(
+ cls,
+ pretrained_model_name_or_path: Dict[str, Any] = None,
+ subfolder: Optional[str] = None,
+ return_unused_kwargs=False,
+ **kwargs,
+ ):
+ r"""
+ Instantiate a Scheduler class from a pre-defined JSON configuration file inside a directory or Hub repo.
+
+ Parameters:
+ pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*):
+ Can be either:
+
+ - A string, the *model id* of a model repo on huggingface.co. Valid model ids should have an
+ organization name, like `google/ddpm-celebahq-256`.
+ - A path to a *directory* containing the schedluer configurations saved using
+ [`~SchedulerMixin.save_pretrained`], e.g., `./my_model_directory/`.
+ subfolder (`str`, *optional*):
+ In case the relevant files are located inside a subfolder of the model repo (either remote in
+ huggingface.co or downloaded locally), you can specify the folder name here.
+ return_unused_kwargs (`bool`, *optional*, defaults to `False`):
+ Whether kwargs that are not consumed by the Python class should be returned or not.
+ cache_dir (`Union[str, os.PathLike]`, *optional*):
+ Path to a directory in which a downloaded pretrained model configuration should be cached if the
+ standard cache should not be used.
+ output_loading_info(`bool`, *optional*, defaults to `False`):
+ Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages.
+
+ """
+ config, kwargs = cls.load_config(
+ pretrained_model_name_or_path=pretrained_model_name_or_path,
+ subfolder=subfolder,
+ return_unused_kwargs=True,
+ **kwargs,
+ )
+ return cls.from_config(config, return_unused_kwargs=return_unused_kwargs, **kwargs)
+
+ def save_pretrained(self, save_directory: Union[str, os.PathLike], **kwargs):
+ """
+ Save a scheduler configuration object to the directory `save_directory`, so that it can be re-loaded using the
+ [`~SchedulerMixin.from_pretrained`] class method.
+
+ Args:
+ save_directory (`str` or `os.PathLike`):
+ Directory where the configuration JSON file will be saved (will be created if it does not exist).
+ """
+ self.save_config(save_directory=save_directory, **kwargs)
+
+ @property
+ def compatibles(self):
+ """
+ Returns all schedulers that are compatible with this scheduler
+
+ Returns:
+ `List[SchedulerMixin]`: List of compatible schedulers
+ """
+ return self._get_compatibles()
+
+ @classmethod
+ def _get_compatibles(cls):
+ compatible_classes_str = list(set([cls.__name__] + cls._compatibles))
+ diffusers_library = importlib.import_module(__name__.split(".")[0])
+ compatible_classes = [
+ getattr(diffusers_library, c) for c in compatible_classes_str if hasattr(diffusers_library, c)
+ ]
+ return compatible_classes
diff --git a/ppdiffusers/schedulers/scheduling_vq_diffusion.py b/ppdiffusers/schedulers/scheduling_vq_diffusion.py
new file mode 100644
index 0000000000000000000000000000000000000000..7b2ff773fb84a4799beccac400d0a99a6369e170
--- /dev/null
+++ b/ppdiffusers/schedulers/scheduling_vq_diffusion.py
@@ -0,0 +1,496 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+# Copyright 2022 Microsoft and The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from dataclasses import dataclass
+from typing import List, Optional, Tuple, Union
+
+import numpy as np
+import paddle
+import paddle.nn.functional as F
+
+from ..configuration_utils import ConfigMixin, register_to_config
+from ..utils import BaseOutput
+from .scheduling_utils import SchedulerMixin
+
+
+def logaddexp(a, b):
+ return paddle.log(a.exp() + b.exp())
+
+
+# (TODO junnyu) paddle logsumexp may has bug
+def logsumexp(x, axis=None, keepdim=False):
+ return paddle.log(x.exp().sum(axis=axis, keepdim=keepdim))
+
+
+@dataclass
+class VQDiffusionSchedulerOutput(BaseOutput):
+ """
+ Output class for the scheduler's step function output.
+
+ Args:
+ prev_sample (`paddle.Tensor` of shape `(batch size, num latent pixels)`):
+ Computed sample x_{t-1} of previous timestep. `prev_sample` should be used as next model input in the
+ denoising loop.
+ """
+
+ prev_sample: paddle.Tensor
+
+
+def index_to_log_onehot(x: paddle.Tensor, num_classes: int) -> paddle.Tensor:
+ """
+ Convert batch of vector of class indices into batch of log onehot vectors
+
+ Args:
+ x (`paddle.Tensor` of shape `(batch size, vector length)`):
+ Batch of class indices
+
+ num_classes (`int`):
+ number of classes to be used for the onehot vectors
+
+ Returns:
+ `paddle.Tensor` of shape `(batch size, num classes, vector length)`:
+ Log onehot vectors
+ """
+ x_onehot = F.one_hot(x, num_classes)
+ x_onehot = x_onehot.transpose([0, 2, 1])
+ log_x = paddle.log(x_onehot.cast("float32").clip(min=1e-30))
+ return log_x
+
+
+def gumbel_noised(logits: paddle.Tensor, generator: Optional[paddle.Generator]) -> paddle.Tensor:
+ """
+ Apply gumbel noise to `logits`
+ """
+ uniform = paddle.rand(logits.shape, generator=generator)
+ gumbel_noise = -paddle.log(-paddle.log(uniform + 1e-30) + 1e-30)
+ noised = gumbel_noise + logits
+ return noised
+
+
+def alpha_schedules(num_diffusion_timesteps: int, alpha_cum_start=0.99999, alpha_cum_end=0.000009):
+ """
+ Cumulative and non-cumulative alpha schedules.
+
+ See section 4.1.
+ """
+ att = (
+ np.arange(0, num_diffusion_timesteps) / (num_diffusion_timesteps - 1) * (alpha_cum_end - alpha_cum_start)
+ + alpha_cum_start
+ )
+ att = np.concatenate(([1], att))
+ at = att[1:] / att[:-1]
+ att = np.concatenate((att[1:], [1]))
+ return at, att
+
+
+def gamma_schedules(num_diffusion_timesteps: int, gamma_cum_start=0.000009, gamma_cum_end=0.99999):
+ """
+ Cumulative and non-cumulative gamma schedules.
+
+ See section 4.1.
+ """
+ ctt = (
+ np.arange(0, num_diffusion_timesteps) / (num_diffusion_timesteps - 1) * (gamma_cum_end - gamma_cum_start)
+ + gamma_cum_start
+ )
+ ctt = np.concatenate(([0], ctt))
+ one_minus_ctt = 1 - ctt
+ one_minus_ct = one_minus_ctt[1:] / one_minus_ctt[:-1]
+ ct = 1 - one_minus_ct
+ ctt = np.concatenate((ctt[1:], [0]))
+ return ct, ctt
+
+
+class VQDiffusionScheduler(SchedulerMixin, ConfigMixin):
+ """
+ The VQ-diffusion transformer outputs predicted probabilities of the initial unnoised image.
+
+ The VQ-diffusion scheduler converts the transformer's output into a sample for the unnoised image at the previous
+ diffusion timestep.
+
+ [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__`
+ function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`.
+ [`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and
+ [`~SchedulerMixin.from_pretrained`] functions.
+
+ For more details, see the original paper: https://arxiv.org/abs/2111.14822
+
+ Args:
+ num_vec_classes (`int`):
+ The number of classes of the vector embeddings of the latent pixels. Includes the class for the masked
+ latent pixel.
+
+ num_train_timesteps (`int`):
+ Number of diffusion steps used to train the model.
+
+ alpha_cum_start (`float`):
+ The starting cumulative alpha value.
+
+ alpha_cum_end (`float`):
+ The ending cumulative alpha value.
+
+ gamma_cum_start (`float`):
+ The starting cumulative gamma value.
+
+ gamma_cum_end (`float`):
+ The ending cumulative gamma value.
+ """
+
+ order = 1
+
+ @register_to_config
+ def __init__(
+ self,
+ num_vec_classes: int,
+ num_train_timesteps: int = 100,
+ alpha_cum_start: float = 0.99999,
+ alpha_cum_end: float = 0.000009,
+ gamma_cum_start: float = 0.000009,
+ gamma_cum_end: float = 0.99999,
+ ):
+ self.num_embed = num_vec_classes
+
+ # By convention, the index for the mask class is the last class index
+ self.mask_class = self.num_embed - 1
+
+ at, att = alpha_schedules(num_train_timesteps, alpha_cum_start=alpha_cum_start, alpha_cum_end=alpha_cum_end)
+ ct, ctt = gamma_schedules(num_train_timesteps, gamma_cum_start=gamma_cum_start, gamma_cum_end=gamma_cum_end)
+
+ num_non_mask_classes = self.num_embed - 1
+ bt = (1 - at - ct) / num_non_mask_classes
+ btt = (1 - att - ctt) / num_non_mask_classes
+
+ at = paddle.to_tensor(at.astype("float64"))
+ bt = paddle.to_tensor(bt.astype("float64"))
+ ct = paddle.to_tensor(ct.astype("float64"))
+ log_at = paddle.log(at)
+ log_bt = paddle.log(bt)
+ log_ct = paddle.log(ct)
+
+ att = paddle.to_tensor(att.astype("float64"))
+ btt = paddle.to_tensor(btt.astype("float64"))
+ ctt = paddle.to_tensor(ctt.astype("float64"))
+ log_cumprod_at = paddle.log(att)
+ log_cumprod_bt = paddle.log(btt)
+ log_cumprod_ct = paddle.log(ctt)
+
+ self.log_at = log_at.cast("float32")
+ self.log_bt = log_bt.cast("float32")
+ self.log_ct = log_ct.cast("float32")
+ self.log_cumprod_at = log_cumprod_at.cast("float32")
+ self.log_cumprod_bt = log_cumprod_bt.cast("float32")
+ self.log_cumprod_ct = log_cumprod_ct.cast("float32")
+
+ # setable values
+ self.num_inference_steps = None
+ self.timesteps = paddle.to_tensor(np.arange(0, num_train_timesteps)[::-1].copy())
+
+ def set_timesteps(self, num_inference_steps: int):
+ """
+ Sets the discrete timesteps used for the diffusion chain. Supporting function to be run before inference.
+
+ Args:
+ num_inference_steps (`int`):
+ the number of diffusion steps used when generating samples with a pre-trained model.
+ """
+ self.num_inference_steps = num_inference_steps
+ timesteps = np.arange(0, self.num_inference_steps)[::-1].copy()
+ self.timesteps = paddle.to_tensor(timesteps)
+
+ def step(
+ self,
+ model_output: paddle.Tensor,
+ timestep: paddle.Tensor,
+ sample: paddle.Tensor,
+ generator: Optional[Union[paddle.Generator, List[paddle.Generator]]] = None,
+ return_dict: bool = True,
+ ) -> Union[VQDiffusionSchedulerOutput, Tuple]:
+ """
+ Predict the sample at the previous timestep via the reverse transition distribution i.e. Equation (11). See the
+ docstring for `self.q_posterior` for more in depth docs on how Equation (11) is computed.
+
+ Args:
+ log_p_x_0: (`paddle.Tensor` of shape `(batch size, num classes - 1, num latent pixels)`):
+ The log probabilities for the predicted classes of the initial latent pixels. Does not include a
+ prediction for the masked class as the initial unnoised image cannot be masked.
+
+ t (`paddle.Tensor`):
+ The timestep that determines which transition matrices are used.
+
+ x_t: (`paddle.Tensor` of shape `(batch size, num latent pixels)`):
+ The classes of each latent pixel at time `t`
+
+ generator: (`paddle.Generator` or None):
+ RNG for the noise applied to p(x_{t-1} | x_t) before it is sampled from.
+
+ return_dict (`bool`):
+ option for returning tuple rather than VQDiffusionSchedulerOutput class
+
+ Returns:
+ [`~schedulers.scheduling_utils.VQDiffusionSchedulerOutput`] or `tuple`:
+ [`~schedulers.scheduling_utils.VQDiffusionSchedulerOutput`] if `return_dict` is True, otherwise a `tuple`.
+ When returning a tuple, the first element is the sample tensor.
+ """
+ if timestep == 0:
+ log_p_x_t_min_1 = model_output
+ else:
+ log_p_x_t_min_1 = self.q_posterior(model_output, sample, timestep)
+
+ log_p_x_t_min_1 = gumbel_noised(log_p_x_t_min_1, generator)
+
+ x_t_min_1 = log_p_x_t_min_1.argmax(axis=1)
+
+ if not return_dict:
+ return (x_t_min_1,)
+
+ return VQDiffusionSchedulerOutput(prev_sample=x_t_min_1)
+
+ def q_posterior(self, log_p_x_0, x_t, t):
+ """
+ Calculates the log probabilities for the predicted classes of the image at timestep `t-1`. I.e. Equation (11).
+
+ Instead of directly computing equation (11), we use Equation (5) to restate Equation (11) in terms of only
+ forward probabilities.
+
+ Equation (11) stated in terms of forward probabilities via Equation (5):
+
+ Where:
+ - the sum is over x_0 = {C_0 ... C_{k-1}} (classes for x_0)
+
+ p(x_{t-1} | x_t) = sum( q(x_t | x_{t-1}) * q(x_{t-1} | x_0) * p(x_0) / q(x_t | x_0) )
+
+ Args:
+ log_p_x_0: (`paddle.Tensor` of shape `(batch size, num classes - 1, num latent pixels)`):
+ The log probabilities for the predicted classes of the initial latent pixels. Does not include a
+ prediction for the masked class as the initial unnoised image cannot be masked.
+
+ x_t: (`paddle.Tensor` of shape `(batch size, num latent pixels)`):
+ The classes of each latent pixel at time `t`
+
+ t (paddle.Tensor):
+ The timestep that determines which transition matrix is used.
+
+ Returns:
+ `paddle.Tensor` of shape `(batch size, num classes, num latent pixels)`:
+ The log probabilities for the predicted classes of the image at timestep `t-1`. I.e. Equation (11).
+ """
+ log_onehot_x_t = index_to_log_onehot(x_t, self.num_embed)
+
+ log_q_x_t_given_x_0 = self.log_Q_t_transitioning_to_known_class(
+ t=t, x_t=x_t, log_onehot_x_t=log_onehot_x_t, cumulative=True
+ )
+
+ log_q_t_given_x_t_min_1 = self.log_Q_t_transitioning_to_known_class(
+ t=t, x_t=x_t, log_onehot_x_t=log_onehot_x_t, cumulative=False
+ )
+
+ # p_0(x_0=C_0 | x_t) / q(x_t | x_0=C_0) ... p_n(x_0=C_0 | x_t) / q(x_t | x_0=C_0)
+ # . . .
+ # . . .
+ # . . .
+ # p_0(x_0=C_{k-1} | x_t) / q(x_t | x_0=C_{k-1}) ... p_n(x_0=C_{k-1} | x_t) / q(x_t | x_0=C_{k-1})
+ q = log_p_x_0 - log_q_x_t_given_x_0
+
+ # sum_0 = p_0(x_0=C_0 | x_t) / q(x_t | x_0=C_0) + ... + p_0(x_0=C_{k-1} | x_t) / q(x_t | x_0=C_{k-1}), ... ,
+ # sum_n = p_n(x_0=C_0 | x_t) / q(x_t | x_0=C_0) + ... + p_n(x_0=C_{k-1} | x_t) / q(x_t | x_0=C_{k-1})
+ q_log_sum_exp = logsumexp(q, axis=1, keepdim=True)
+
+ # p_0(x_0=C_0 | x_t) / q(x_t | x_0=C_0) / sum_0 ... p_n(x_0=C_0 | x_t) / q(x_t | x_0=C_0) / sum_n
+ # . . .
+ # . . .
+ # . . .
+ # p_0(x_0=C_{k-1} | x_t) / q(x_t | x_0=C_{k-1}) / sum_0 ... p_n(x_0=C_{k-1} | x_t) / q(x_t | x_0=C_{k-1}) / sum_n
+ q = q - q_log_sum_exp
+
+ # (p_0(x_0=C_0 | x_t) / q(x_t | x_0=C_0) / sum_0) * a_cumulative_{t-1} + b_cumulative_{t-1} ... (p_n(x_0=C_0 | x_t) / q(x_t | x_0=C_0) / sum_n) * a_cumulative_{t-1} + b_cumulative_{t-1}
+ # . . .
+ # . . .
+ # . . .
+ # (p_0(x_0=C_{k-1} | x_t) / q(x_t | x_0=C_{k-1}) / sum_0) * a_cumulative_{t-1} + b_cumulative_{t-1} ... (p_n(x_0=C_{k-1} | x_t) / q(x_t | x_0=C_{k-1}) / sum_n) * a_cumulative_{t-1} + b_cumulative_{t-1}
+ # c_cumulative_{t-1} ... c_cumulative_{t-1}
+ q = self.apply_cumulative_transitions(q, t - 1)
+
+ # ((p_0(x_0=C_0 | x_t) / q(x_t | x_0=C_0) / sum_0) * a_cumulative_{t-1} + b_cumulative_{t-1}) * q(x_t | x_{t-1}=C_0) * sum_0 ... ((p_n(x_0=C_0 | x_t) / q(x_t | x_0=C_0) / sum_n) * a_cumulative_{t-1} + b_cumulative_{t-1}) * q(x_t | x_{t-1}=C_0) * sum_n
+ # . . .
+ # . . .
+ # . . .
+ # ((p_0(x_0=C_{k-1} | x_t) / q(x_t | x_0=C_{k-1}) / sum_0) * a_cumulative_{t-1} + b_cumulative_{t-1}) * q(x_t | x_{t-1}=C_{k-1}) * sum_0 ... ((p_n(x_0=C_{k-1} | x_t) / q(x_t | x_0=C_{k-1}) / sum_n) * a_cumulative_{t-1} + b_cumulative_{t-1}) * q(x_t | x_{t-1}=C_{k-1}) * sum_n
+ # c_cumulative_{t-1} * q(x_t | x_{t-1}=C_k) * sum_0 ... c_cumulative_{t-1} * q(x_t | x_{t-1}=C_k) * sum_0
+ log_p_x_t_min_1 = q + log_q_t_given_x_t_min_1 + q_log_sum_exp
+
+ # For each column, there are two possible cases.
+ #
+ # Where:
+ # - sum(p_n(x_0))) is summing over all classes for x_0
+ # - C_i is the class transitioning from (not to be confused with c_t and c_cumulative_t being used for gamma's)
+ # - C_j is the class transitioning to
+ #
+ # 1. x_t is masked i.e. x_t = c_k
+ #
+ # Simplifying the expression, the column vector is:
+ # .
+ # .
+ # .
+ # (c_t / c_cumulative_t) * (a_cumulative_{t-1} * p_n(x_0 = C_i | x_t) + b_cumulative_{t-1} * sum(p_n(x_0)))
+ # .
+ # .
+ # .
+ # (c_cumulative_{t-1} / c_cumulative_t) * sum(p_n(x_0))
+ #
+ # From equation (11) stated in terms of forward probabilities, the last row is trivially verified.
+ #
+ # For the other rows, we can state the equation as ...
+ #
+ # (c_t / c_cumulative_t) * [b_cumulative_{t-1} * p(x_0=c_0) + ... + (a_cumulative_{t-1} + b_cumulative_{t-1}) * p(x_0=C_i) + ... + b_cumulative_{k-1} * p(x_0=c_{k-1})]
+ #
+ # This verifies the other rows.
+ #
+ # 2. x_t is not masked
+ #
+ # Simplifying the expression, there are two cases for the rows of the column vector, where C_j = C_i and where C_j != C_i:
+ # .
+ # .
+ # .
+ # C_j != C_i: b_t * ((b_cumulative_{t-1} / b_cumulative_t) * p_n(x_0 = c_0) + ... + ((a_cumulative_{t-1} + b_cumulative_{t-1}) / b_cumulative_t) * p_n(x_0 = C_i) + ... + (b_cumulative_{t-1} / (a_cumulative_t + b_cumulative_t)) * p_n(c_0=C_j) + ... + (b_cumulative_{t-1} / b_cumulative_t) * p_n(x_0 = c_{k-1}))
+ # .
+ # .
+ # .
+ # C_j = C_i: (a_t + b_t) * ((b_cumulative_{t-1} / b_cumulative_t) * p_n(x_0 = c_0) + ... + ((a_cumulative_{t-1} + b_cumulative_{t-1}) / (a_cumulative_t + b_cumulative_t)) * p_n(x_0 = C_i = C_j) + ... + (b_cumulative_{t-1} / b_cumulative_t) * p_n(x_0 = c_{k-1}))
+ # .
+ # .
+ # .
+ # 0
+ #
+ # The last row is trivially verified. The other rows can be verified by directly expanding equation (11) stated in terms of forward probabilities.
+ return log_p_x_t_min_1
+
+ def log_Q_t_transitioning_to_known_class(
+ self, *, t: paddle.Tensor, x_t: paddle.Tensor, log_onehot_x_t: paddle.Tensor, cumulative: bool
+ ):
+ """
+ Returns the log probabilities of the rows from the (cumulative or non-cumulative) transition matrix for each
+ latent pixel in `x_t`.
+
+ See equation (7) for the complete non-cumulative transition matrix. The complete cumulative transition matrix
+ is the same structure except the parameters (alpha, beta, gamma) are the cumulative analogs.
+
+ Args:
+ t (paddle.Tensor):
+ The timestep that determines which transition matrix is used.
+
+ x_t (`paddle.Tensor` of shape `(batch size, num latent pixels)`):
+ The classes of each latent pixel at time `t`.
+
+ log_onehot_x_t (`paddle.Tensor` of shape `(batch size, num classes, num latent pixels)`):
+ The log one-hot vectors of `x_t`
+
+ cumulative (`bool`):
+ If cumulative is `False`, we use the single step transition matrix `t-1`->`t`. If cumulative is `True`,
+ we use the cumulative transition matrix `0`->`t`.
+
+ Returns:
+ `paddle.Tensor` of shape `(batch size, num classes - 1, num latent pixels)`:
+ Each _column_ of the returned matrix is a _row_ of log probabilities of the complete probability
+ transition matrix.
+
+ When non cumulative, returns `self.num_classes - 1` rows because the initial latent pixel cannot be
+ masked.
+
+ Where:
+ - `q_n` is the probability distribution for the forward process of the `n`th latent pixel.
+ - C_0 is a class of a latent pixel embedding
+ - C_k is the class of the masked latent pixel
+
+ non-cumulative result (omitting logarithms):
+ ```
+ q_0(x_t | x_{t-1} = C_0) ... q_n(x_t | x_{t-1} = C_0)
+ . . .
+ . . .
+ . . .
+ q_0(x_t | x_{t-1} = C_k) ... q_n(x_t | x_{t-1} = C_k)
+ ```
+
+ cumulative result (omitting logarithms):
+ ```
+ q_0_cumulative(x_t | x_0 = C_0) ... q_n_cumulative(x_t | x_0 = C_0)
+ . . .
+ . . .
+ . . .
+ q_0_cumulative(x_t | x_0 = C_{k-1}) ... q_n_cumulative(x_t | x_0 = C_{k-1})
+ ```
+ """
+ if cumulative:
+ a = self.log_cumprod_at[t]
+ b = self.log_cumprod_bt[t]
+ c = self.log_cumprod_ct[t]
+ else:
+ a = self.log_at[t]
+ b = self.log_bt[t]
+ c = self.log_ct[t]
+
+ if not cumulative:
+ # The values in the onehot vector can also be used as the logprobs for transitioning
+ # from masked latent pixels. If we are not calculating the cumulative transitions,
+ # we need to save these vectors to be re-appended to the final matrix so the values
+ # aren't overwritten.
+ #
+ # `P(x_t!=mask|x_{t-1=mask}) = 0` and 0 will be the value of the last row of the onehot vector
+ # if x_t is not masked
+ #
+ # `P(x_t=mask|x_{t-1=mask}) = 1` and 1 will be the value of the last row of the onehot vector
+ # if x_t is masked
+ log_onehot_x_t_transitioning_from_masked = log_onehot_x_t[:, -1, :].unsqueeze(1)
+
+ # `index_to_log_onehot` will add onehot vectors for masked pixels,
+ # so the default one hot matrix has one too many rows. See the doc string
+ # for an explanation of the dimensionality of the returned matrix.
+ log_onehot_x_t = log_onehot_x_t[:, :-1, :]
+
+ # this is a cheeky trick to produce the transition probabilities using log one-hot vectors.
+ #
+ # Don't worry about what values this sets in the columns that mark transitions
+ # to masked latent pixels. They are overwrote later with the `mask_class_mask`.
+ #
+ # Looking at the below logspace formula in non-logspace, each value will evaluate to either
+ # `1 * a + b = a + b` where `log_Q_t` has the one hot value in the column
+ # or
+ # `0 * a + b = b` where `log_Q_t` has the 0 values in the column.
+ #
+ # See equation 7 for more details.
+ log_Q_t = logaddexp(log_onehot_x_t + a, b)
+
+ # The whole column of each masked pixel is `c`
+ mask_class_mask = x_t == self.mask_class
+ mask_class_mask = mask_class_mask.unsqueeze(1).expand([-1, self.num_embed - 1, -1])
+ log_Q_t[mask_class_mask] = c
+
+ if not cumulative:
+ log_Q_t = paddle.concat((log_Q_t, log_onehot_x_t_transitioning_from_masked), axis=1)
+
+ return log_Q_t
+
+ def apply_cumulative_transitions(self, q, t):
+ bsz = q.shape[0]
+ a = self.log_cumprod_at[t]
+ b = self.log_cumprod_bt[t]
+ c = self.log_cumprod_ct[t]
+
+ num_latent_pixels = q.shape[2]
+ c = c.expand([bsz, 1, num_latent_pixels])
+
+ q = logaddexp(q + a, b)
+ q = paddle.concat((q, c), axis=1)
+
+ return q
diff --git a/ppdiffusers/training_utils.py b/ppdiffusers/training_utils.py
new file mode 100644
index 0000000000000000000000000000000000000000..850b3d2f386becd26e3b4077d1f49d42c4192ada
--- /dev/null
+++ b/ppdiffusers/training_utils.py
@@ -0,0 +1,152 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+# Copyright 2022 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import contextlib
+import copy
+import os
+import random
+
+import numpy as np
+import paddle
+
+from .utils import logging
+
+logger = logging.get_logger(__name__)
+
+
+def enable_full_determinism(seed: int):
+ """
+ Helper function for reproducible behavior during distributed training.
+ """
+ # set seed first
+ set_seed(seed)
+
+ # Enable Paddle deterministic mode. This potentially requires either the environment
+ # variable 'CUDA_LAUNCH_BLOCKING' or 'CUBLAS_WORKSPACE_CONFIG' to be set,
+ # depending on the CUDA version, so we set them both here
+ os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
+ os.environ["CUBLAS_WORKSPACE_CONFIG"] = ":16:8"
+ os.environ["FLAGS_cudnn_deterministic"] = "True"
+ os.environ["FLAGS_benchmark"] = "True"
+
+
+def set_seed(seed: int = None):
+ """
+ Args:
+ Helper function for reproducible behavior to set the seed in `random`, `numpy`, `paddle`.
+ seed (`int`): The seed to set.
+ """
+ if seed is not None:
+ random.seed(seed)
+ np.random.seed(seed)
+ paddle.seed(seed)
+
+
+class EMAModel:
+ """
+ Exponential Moving Average of models weights
+ """
+
+ def __init__(self, model, update_after_step=0, inv_gamma=1.0, power=2 / 3, min_value=0.0, max_value=0.9999):
+ """
+ @crowsonkb's notes on EMA Warmup:
+ If gamma=1 and power=1, implements a simple average. gamma=1, power=2/3 are good values for models you plan
+ to train for a million or more steps (reaches decay factor 0.999 at 31.6K steps, 0.9999 at 1M steps),
+ gamma=1, power=3/4 for models you plan to train for less (reaches decay factor 0.999 at 10K steps, 0.9999
+ at 215.4k steps).
+ Args:
+ inv_gamma (float): Inverse multiplicative factor of EMA warmup. Default: 1.
+ power (float): Exponential factor of EMA warmup. Default: 2/3.
+ min_value (float): The minimum EMA decay rate. Default: 0.
+ """
+
+ self.averaged_model = copy.deepcopy(model)
+ self.averaged_model.eval()
+ for params in self.averaged_model.parameters():
+ params.stop_gradient = True
+
+ self.update_after_step = update_after_step
+ self.inv_gamma = inv_gamma
+ self.power = power
+ self.min_value = min_value
+ self.max_value = max_value
+
+ self.decay = 0.0
+ self.optimization_step = 0
+
+ def get_decay(self, optimization_step):
+ """
+ Compute the decay factor for the exponential moving average.
+ """
+ step = max(0, optimization_step - self.update_after_step - 1)
+ value = 1 - (1 + step / self.inv_gamma) ** -self.power
+
+ if step <= 0:
+ return 0.0
+
+ return max(self.min_value, min(value, self.max_value))
+
+ @paddle.no_grad()
+ def step(self, new_model):
+ ema_state_dict = {}
+ ema_params = self.averaged_model.state_dict()
+
+ self.decay = self.get_decay(self.optimization_step)
+
+ for key, param in new_model.named_parameters():
+ if isinstance(param, dict):
+ continue
+ try:
+ ema_param = ema_params[key]
+ except KeyError:
+ ema_param = param.cast("float32").clone() if param.ndim == 1 else copy.deepcopy(param)
+ ema_params[key] = ema_param
+
+ if param.stop_gradient:
+ ema_params[key].copy_(param.cast(ema_param.dtype), True)
+ ema_param = ema_params[key]
+ else:
+ ema_param.scale_(self.decay)
+ ema_param.add_(param.cast(ema_param.dtype) * (1 - self.decay))
+
+ ema_state_dict[key] = ema_param
+
+ for key, param in new_model.named_buffers():
+ ema_state_dict[key] = param
+
+ self.averaged_model.load_dict(ema_state_dict)
+ self.optimization_step += 1
+
+
+@contextlib.contextmanager
+def main_process_first(desc="work"):
+ if paddle.distributed.get_world_size() > 1:
+ rank = paddle.distributed.get_rank()
+ is_main_process = rank == 0
+ main_process_desc = "main local process"
+
+ try:
+ if not is_main_process:
+ # tell all replicas to wait
+ logger.debug(f"{rank}: waiting for the {main_process_desc} to perform {desc}")
+ paddle.distributed.barrier()
+ yield
+ finally:
+ if is_main_process:
+ # the wait is over
+ logger.debug(f"{rank}: {main_process_desc} completed {desc}, releasing all replicas")
+ paddle.distributed.barrier()
+ else:
+ yield
diff --git a/ppdiffusers/utils/__init__.py b/ppdiffusers/utils/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..bdd8bd6dc86bf2c444efb13c7771847ab871e6b6
--- /dev/null
+++ b/ppdiffusers/utils/__init__.py
@@ -0,0 +1,100 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+# Copyright 2022 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+# flake8: noqa
+
+import os
+
+from packaging import version
+
+from ..version import VERSION as __version__
+from .deprecation_utils import deprecate
+from .import_utils import (
+ ENV_VARS_TRUE_AND_AUTO_VALUES,
+ ENV_VARS_TRUE_VALUES,
+ USE_PADDLE,
+ DummyObject,
+ OptionalDependencyNotAvailable,
+ is_fastdeploy_available,
+ is_inflect_available,
+ is_k_diffusion_available,
+ is_librosa_available,
+ is_modelcards_available,
+ is_onnx_available,
+ is_paddle_available,
+ is_paddle_version,
+ is_paddlenlp_available,
+ is_scipy_available,
+ is_unidecode_available,
+ is_wandb_available,
+ requires_backends,
+)
+from .logging import get_logger
+from .outputs import BaseOutput
+from .pil_utils import PIL_INTERPOLATION
+
+if is_paddle_available():
+ from .testing_utils import (
+ floats_tensor,
+ image_grid,
+ load_hf_numpy,
+ load_image,
+ load_numpy,
+ load_ppnlp_numpy,
+ nightly,
+ paddle_all_close,
+ parse_flag_from_env,
+ slow,
+ )
+
+logger = get_logger(__name__)
+
+from paddlenlp.utils.env import _get_ppnlp_home, _get_sub_home
+
+ppnlp_cache_home = _get_ppnlp_home()
+default_cache_path = _get_sub_home("models")
+
+CONFIG_NAME = "config.json"
+WEIGHTS_NAME = "model_state.pdparams"
+FASTDEPLOY_WEIGHTS_NAME = "inference.pdiparams"
+FASTDEPLOY_MODEL_NAME = "inference.pdmodel"
+DOWNLOAD_SERVER = "https://bj.bcebos.com/paddlenlp/models/community"
+PPDIFFUSERS_CACHE = default_cache_path
+PPDIFFUSERS_DYNAMIC_MODULE_NAME = "ppdiffusers_modules"
+PPNLP_MODULES_CACHE = os.getenv("PPNLP_MODULES_CACHE", _get_sub_home("modules"))
+HF_CACHE = os.environ.get("HUGGINGFACE_HUB_CACHE", PPDIFFUSERS_CACHE)
+TEST_DOWNLOAD_SERVER = "https://paddlenlp.bj.bcebos.com/models/community/ppdiffusers/tests"
+HUGGINGFACE_CO_RESOLVE_ENDPOINT = "https://huggingface.co"
+
+_COMPATIBLE_STABLE_DIFFUSION_SCHEDULERS = [
+ "DDIMScheduler",
+ "DDPMScheduler",
+ "PNDMScheduler",
+ "LMSDiscreteScheduler",
+ "EulerDiscreteScheduler",
+ "HeunDiscreteScheduler",
+ "EulerAncestralDiscreteScheduler",
+ "DPMSolverMultistepScheduler",
+ "DPMSolverSinglestepScheduler",
+]
+
+
+def check_min_version(min_version):
+ if version.parse(__version__) < version.parse(min_version):
+ if "dev" in min_version:
+ error_message = "This example requires a source install from ppdiffusers"
+ else:
+ error_message = f"This example requires a minimum version of {min_version},"
+ error_message += f" but the version found is {__version__}.\n"
+ raise ImportError(error_message)
diff --git a/ppdiffusers/utils/__pycache__/__init__.cpython-37.pyc b/ppdiffusers/utils/__pycache__/__init__.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..1e6b0aa465ac5c90aef91d918aaad83ed5ac782f
Binary files /dev/null and b/ppdiffusers/utils/__pycache__/__init__.cpython-37.pyc differ
diff --git a/ppdiffusers/utils/__pycache__/deprecation_utils.cpython-37.pyc b/ppdiffusers/utils/__pycache__/deprecation_utils.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..ff86b19831ce84677402ba040939834994f2e8b5
Binary files /dev/null and b/ppdiffusers/utils/__pycache__/deprecation_utils.cpython-37.pyc differ
diff --git a/ppdiffusers/utils/__pycache__/dummy_paddle_and_paddlenlp_and_fastdeploy_objects.cpython-37.pyc b/ppdiffusers/utils/__pycache__/dummy_paddle_and_paddlenlp_and_fastdeploy_objects.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..209141e94278f1c9eb6eade95b08b4f95ca5d522
Binary files /dev/null and b/ppdiffusers/utils/__pycache__/dummy_paddle_and_paddlenlp_and_fastdeploy_objects.cpython-37.pyc differ
diff --git a/ppdiffusers/utils/__pycache__/import_utils.cpython-37.pyc b/ppdiffusers/utils/__pycache__/import_utils.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..fbe75d02aa872b371e4e1c5b8e9af166802f3507
Binary files /dev/null and b/ppdiffusers/utils/__pycache__/import_utils.cpython-37.pyc differ
diff --git a/ppdiffusers/utils/__pycache__/logging.cpython-37.pyc b/ppdiffusers/utils/__pycache__/logging.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..8b5ea13af4c6b12d87e473c973eca89eb0000694
Binary files /dev/null and b/ppdiffusers/utils/__pycache__/logging.cpython-37.pyc differ
diff --git a/ppdiffusers/utils/__pycache__/outputs.cpython-37.pyc b/ppdiffusers/utils/__pycache__/outputs.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..6482771d84d88faca6b7aab5ee1a2b9b1b2aad3a
Binary files /dev/null and b/ppdiffusers/utils/__pycache__/outputs.cpython-37.pyc differ
diff --git a/ppdiffusers/utils/__pycache__/pil_utils.cpython-37.pyc b/ppdiffusers/utils/__pycache__/pil_utils.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..5477aff508a567886f1145b381a41e80748a4740
Binary files /dev/null and b/ppdiffusers/utils/__pycache__/pil_utils.cpython-37.pyc differ
diff --git a/ppdiffusers/utils/__pycache__/testing_utils.cpython-37.pyc b/ppdiffusers/utils/__pycache__/testing_utils.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..015987d957a3139ced6c86466517561d78b14f89
Binary files /dev/null and b/ppdiffusers/utils/__pycache__/testing_utils.cpython-37.pyc differ
diff --git a/ppdiffusers/utils/deprecation_utils.py b/ppdiffusers/utils/deprecation_utils.py
new file mode 100644
index 0000000000000000000000000000000000000000..1ba7e7c3b2cc103da072af743fc6b0f66bf40549
--- /dev/null
+++ b/ppdiffusers/utils/deprecation_utils.py
@@ -0,0 +1,64 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+# Copyright 2022 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import inspect
+import warnings
+from typing import Any, Dict, Optional, Union
+
+from packaging import version
+
+
+def deprecate(*args, take_from: Optional[Union[Dict, Any]] = None, standard_warn=True):
+ from .. import __version__
+
+ deprecated_kwargs = take_from
+ values = ()
+ if not isinstance(args[0], tuple):
+ args = (args,)
+
+ for attribute, version_name, message in args:
+ if version.parse(version.parse(__version__).base_version) >= version.parse(version_name):
+ raise ValueError(
+ f"The deprecation tuple {(attribute, version_name, message)} should be removed since ppdiffusers'"
+ f" version {__version__} is >= {version_name}"
+ )
+
+ warning = None
+ if isinstance(deprecated_kwargs, dict) and attribute in deprecated_kwargs:
+ values += (deprecated_kwargs.pop(attribute),)
+ warning = f"The `{attribute}` argument is deprecated and will be removed in version {version_name}."
+ elif hasattr(deprecated_kwargs, attribute):
+ values += (getattr(deprecated_kwargs, attribute),)
+ warning = f"The `{attribute}` attribute is deprecated and will be removed in version {version_name}."
+ elif deprecated_kwargs is None:
+ warning = f"`{attribute}` is deprecated and will be removed in version {version_name}."
+
+ if warning is not None:
+ warning = warning + " " if standard_warn else ""
+ warnings.warn(warning + message, FutureWarning, stacklevel=2)
+
+ if isinstance(deprecated_kwargs, dict) and len(deprecated_kwargs) > 0:
+ call_frame = inspect.getouterframes(inspect.currentframe())[1]
+ filename = call_frame.filename
+ line_number = call_frame.lineno
+ function = call_frame.function
+ key, value = next(iter(deprecated_kwargs.items()))
+ raise TypeError(f"{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`")
+
+ if len(values) == 0:
+ return
+ elif len(values) == 1:
+ return values[0]
+ return values
diff --git a/ppdiffusers/utils/dummy_paddle_and_librosa_objects.py b/ppdiffusers/utils/dummy_paddle_and_librosa_objects.py
new file mode 100644
index 0000000000000000000000000000000000000000..0f07db2dc4ea9e89358bc8a6eba7e5e70dcea054
--- /dev/null
+++ b/ppdiffusers/utils/dummy_paddle_and_librosa_objects.py
@@ -0,0 +1,48 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+# This file is autogenerated by the command `make fix-copies`, do not edit.
+# flake8: noqa
+
+from ..utils import DummyObject, requires_backends
+
+
+class AudioDiffusionPipeline(metaclass=DummyObject):
+ _backends = ["paddle", "librosa"]
+
+ def __init__(self, *args, **kwargs):
+ requires_backends(self, ["paddle", "librosa"])
+
+ @classmethod
+ def from_config(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle", "librosa"])
+
+ @classmethod
+ def from_pretrained(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle", "librosa"])
+
+
+class Mel(metaclass=DummyObject):
+ _backends = ["paddle", "librosa"]
+
+ def __init__(self, *args, **kwargs):
+ requires_backends(self, ["paddle", "librosa"])
+
+ @classmethod
+ def from_config(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle", "librosa"])
+
+ @classmethod
+ def from_pretrained(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle", "librosa"])
diff --git a/ppdiffusers/utils/dummy_paddle_and_paddlenlp_and_fastdeploy_objects.py b/ppdiffusers/utils/dummy_paddle_and_paddlenlp_and_fastdeploy_objects.py
new file mode 100644
index 0000000000000000000000000000000000000000..62ad793335bc1e34afafc5418ffdfd2b93eeae09
--- /dev/null
+++ b/ppdiffusers/utils/dummy_paddle_and_paddlenlp_and_fastdeploy_objects.py
@@ -0,0 +1,94 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+# Copyright 2022 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+# This file is autogenerated by the command `make fix-copies`, do not edit.
+# flake8: noqa
+
+from . import DummyObject, requires_backends
+
+
+class FastDeployStableDiffusionImg2ImgPipeline(metaclass=DummyObject):
+ _backends = ["paddle", "paddlenlp", "fastdeploy"]
+
+ def __init__(self, *args, **kwargs):
+ requires_backends(self, ["paddle", "paddlenlp", "fastdeploy"])
+
+ @classmethod
+ def from_config(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle", "paddlenlp", "fastdeploy"])
+
+ @classmethod
+ def from_pretrained(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle", "paddlenlp", "fastdeploy"])
+
+
+class FastDeployStableDiffusionInpaintPipeline(metaclass=DummyObject):
+ _backends = ["paddle", "paddlenlp", "fastdeploy"]
+
+ def __init__(self, *args, **kwargs):
+ requires_backends(self, ["paddle", "paddlenlp", "fastdeploy"])
+
+ @classmethod
+ def from_config(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle", "paddlenlp", "fastdeploy"])
+
+ @classmethod
+ def from_pretrained(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle", "paddlenlp", "fastdeploy"])
+
+
+class FastDeployStableDiffusionInpaintPipelineLegacy(metaclass=DummyObject):
+ _backends = ["paddle", "paddlenlp", "fastdeploy"]
+
+ def __init__(self, *args, **kwargs):
+ requires_backends(self, ["paddle", "paddlenlp", "fastdeploy"])
+
+ @classmethod
+ def from_config(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle", "paddlenlp", "fastdeploy"])
+
+ @classmethod
+ def from_pretrained(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle", "paddlenlp", "fastdeploy"])
+
+
+class FastDeployStableDiffusionMegaPipeline(metaclass=DummyObject):
+ _backends = ["paddle", "paddlenlp", "fastdeploy"]
+
+ def __init__(self, *args, **kwargs):
+ requires_backends(self, ["paddle", "paddlenlp", "fastdeploy"])
+
+ @classmethod
+ def from_config(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle", "paddlenlp", "fastdeploy"])
+
+ @classmethod
+ def from_pretrained(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle", "paddlenlp", "fastdeploy"])
+
+
+class FastDeployStableDiffusionPipeline(metaclass=DummyObject):
+ _backends = ["paddle", "paddlenlp", "fastdeploy"]
+
+ def __init__(self, *args, **kwargs):
+ requires_backends(self, ["paddle", "paddlenlp", "fastdeploy"])
+
+ @classmethod
+ def from_config(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle", "paddlenlp", "fastdeploy"])
+
+ @classmethod
+ def from_pretrained(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle", "paddlenlp", "fastdeploy"])
diff --git a/ppdiffusers/utils/dummy_paddle_and_paddlenlp_and_k_diffusion_objects.py b/ppdiffusers/utils/dummy_paddle_and_paddlenlp_and_k_diffusion_objects.py
new file mode 100644
index 0000000000000000000000000000000000000000..678970f3ee66083cdfde1b024c0b8724eccada19
--- /dev/null
+++ b/ppdiffusers/utils/dummy_paddle_and_paddlenlp_and_k_diffusion_objects.py
@@ -0,0 +1,33 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+# This file is autogenerated by the command `make fix-copies`, do not edit.
+# flake8: noqa
+
+from ..utils import DummyObject, requires_backends
+
+
+class StableDiffusionKDiffusionPipeline(metaclass=DummyObject):
+ _backends = ["paddle", "paddlenlp", "k_diffusion"]
+
+ def __init__(self, *args, **kwargs):
+ requires_backends(self, ["paddle", "paddlenlp", "k_diffusion"])
+
+ @classmethod
+ def from_config(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle", "paddlenlp", "k_diffusion"])
+
+ @classmethod
+ def from_pretrained(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle", "paddlenlp", "k_diffusion"])
diff --git a/ppdiffusers/utils/dummy_paddle_and_paddlenlp_objects.py b/ppdiffusers/utils/dummy_paddle_and_paddlenlp_objects.py
new file mode 100644
index 0000000000000000000000000000000000000000..4763e0eef2eb1140e0e01d387e1e6aca6bcaddc5
--- /dev/null
+++ b/ppdiffusers/utils/dummy_paddle_and_paddlenlp_objects.py
@@ -0,0 +1,334 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+# Copyright 2022 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+# This file is autogenerated by the command `make fix-copies`, do not edit.
+# flake8: noqa
+
+from . import DummyObject, requires_backends
+
+
+class AltDiffusionImg2ImgPipeline(metaclass=DummyObject):
+ _backends = ["paddle", "paddlenlp"]
+
+ def __init__(self, *args, **kwargs):
+ requires_backends(self, ["paddle", "paddlenlp"])
+
+ @classmethod
+ def from_config(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle", "paddlenlp"])
+
+ @classmethod
+ def from_pretrained(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle", "paddlenlp"])
+
+
+class AltDiffusionPipeline(metaclass=DummyObject):
+ _backends = ["paddle", "paddlenlp"]
+
+ def __init__(self, *args, **kwargs):
+ requires_backends(self, ["paddle", "paddlenlp"])
+
+ @classmethod
+ def from_config(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle", "paddlenlp"])
+
+ @classmethod
+ def from_pretrained(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle", "paddlenlp"])
+
+
+class CycleDiffusionPipeline(metaclass=DummyObject):
+ _backends = ["paddle", "paddlenlp"]
+
+ def __init__(self, *args, **kwargs):
+ requires_backends(self, ["paddle", "paddlenlp"])
+
+ @classmethod
+ def from_config(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle", "paddlenlp"])
+
+ @classmethod
+ def from_pretrained(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle", "paddlenlp"])
+
+
+class LDMTextToImagePipeline(metaclass=DummyObject):
+ _backends = ["paddle", "paddlenlp"]
+
+ def __init__(self, *args, **kwargs):
+ requires_backends(self, ["paddle", "paddlenlp"])
+
+ @classmethod
+ def from_config(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle", "paddlenlp"])
+
+ @classmethod
+ def from_pretrained(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle", "paddlenlp"])
+
+
+class PaintByExamplePipeline(metaclass=DummyObject):
+ _backends = ["paddle", "paddlenlp"]
+
+ def __init__(self, *args, **kwargs):
+ requires_backends(self, ["paddle", "paddlenlp"])
+
+ @classmethod
+ def from_config(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle", "paddlenlp"])
+
+ @classmethod
+ def from_pretrained(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle", "paddlenlp"])
+
+
+class StableDiffusionDepth2ImgPipeline(metaclass=DummyObject):
+ _backends = ["paddle", "paddlenlp"]
+
+ def __init__(self, *args, **kwargs):
+ requires_backends(self, ["paddle", "paddlenlp"])
+
+ @classmethod
+ def from_config(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle", "paddlenlp"])
+
+ @classmethod
+ def from_pretrained(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle", "paddlenlp"])
+
+
+class StableDiffusionImageVariationPipeline(metaclass=DummyObject):
+ _backends = ["paddle", "paddlenlp"]
+
+ def __init__(self, *args, **kwargs):
+ requires_backends(self, ["paddle", "paddlenlp"])
+
+ @classmethod
+ def from_config(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle", "paddlenlp"])
+
+ @classmethod
+ def from_pretrained(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle", "paddlenlp"])
+
+
+class StableDiffusionImg2ImgPipeline(metaclass=DummyObject):
+ _backends = ["paddle", "paddlenlp"]
+
+ def __init__(self, *args, **kwargs):
+ requires_backends(self, ["paddle", "paddlenlp"])
+
+ @classmethod
+ def from_config(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle", "paddlenlp"])
+
+ @classmethod
+ def from_pretrained(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle", "paddlenlp"])
+
+
+class StableDiffusionInpaintPipeline(metaclass=DummyObject):
+ _backends = ["paddle", "paddlenlp"]
+
+ def __init__(self, *args, **kwargs):
+ requires_backends(self, ["paddle", "paddlenlp"])
+
+ @classmethod
+ def from_config(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle", "paddlenlp"])
+
+ @classmethod
+ def from_pretrained(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle", "paddlenlp"])
+
+
+class StableDiffusionInpaintPipelineLegacy(metaclass=DummyObject):
+ _backends = ["paddle", "paddlenlp"]
+
+ def __init__(self, *args, **kwargs):
+ requires_backends(self, ["paddle", "paddlenlp"])
+
+ @classmethod
+ def from_config(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle", "paddlenlp"])
+
+ @classmethod
+ def from_pretrained(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle", "paddlenlp"])
+
+
+class StableDiffusionPipeline(metaclass=DummyObject):
+ _backends = ["paddle", "paddlenlp"]
+
+ def __init__(self, *args, **kwargs):
+ requires_backends(self, ["paddle", "paddlenlp"])
+
+ @classmethod
+ def from_config(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle", "paddlenlp"])
+
+ @classmethod
+ def from_pretrained(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle", "paddlenlp"])
+
+
+class StableDiffusionMegaPipeline(metaclass=DummyObject):
+ _backends = ["paddle", "paddlenlp"]
+
+ def __init__(self, *args, **kwargs):
+ requires_backends(self, ["paddle", "paddlenlp"])
+
+ @classmethod
+ def from_config(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle", "paddlenlp"])
+
+ @classmethod
+ def from_pretrained(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle", "paddlenlp"])
+
+
+class StableDiffusionPipelineAllInOne(metaclass=DummyObject):
+ _backends = ["paddle", "paddlenlp"]
+
+ def __init__(self, *args, **kwargs):
+ requires_backends(self, ["paddle", "paddlenlp"])
+
+ @classmethod
+ def from_config(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle", "paddlenlp"])
+
+ @classmethod
+ def from_pretrained(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle", "paddlenlp"])
+
+
+class StableDiffusionPipelineSafe(metaclass=DummyObject):
+ _backends = ["paddle", "paddlenlp"]
+
+ def __init__(self, *args, **kwargs):
+ requires_backends(self, ["paddle", "paddlenlp"])
+
+ @classmethod
+ def from_config(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle", "paddlenlp"])
+
+ @classmethod
+ def from_pretrained(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle", "paddlenlp"])
+
+
+class StableDiffusionUpscalePipeline(metaclass=DummyObject):
+ _backends = ["paddle", "paddlenlp"]
+
+ def __init__(self, *args, **kwargs):
+ requires_backends(self, ["paddle", "paddlenlp"])
+
+ @classmethod
+ def from_config(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle", "paddlenlp"])
+
+ @classmethod
+ def from_pretrained(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle", "paddlenlp"])
+
+
+class UnCLIPPipeline(metaclass=DummyObject):
+ _backends = ["paddle", "paddlenlp"]
+
+ def __init__(self, *args, **kwargs):
+ requires_backends(self, ["paddle", "paddlenlp"])
+
+ @classmethod
+ def from_config(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle", "paddlenlp"])
+
+ @classmethod
+ def from_pretrained(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle", "paddlenlp"])
+
+
+class VersatileDiffusionDualGuidedPipeline(metaclass=DummyObject):
+ _backends = ["paddle", "paddlenlp"]
+
+ def __init__(self, *args, **kwargs):
+ requires_backends(self, ["paddle", "paddlenlp"])
+
+ @classmethod
+ def from_config(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle", "paddlenlp"])
+
+ @classmethod
+ def from_pretrained(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle", "paddlenlp"])
+
+
+class VersatileDiffusionImageVariationPipeline(metaclass=DummyObject):
+ _backends = ["paddle", "paddlenlp"]
+
+ def __init__(self, *args, **kwargs):
+ requires_backends(self, ["paddle", "paddlenlp"])
+
+ @classmethod
+ def from_config(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle", "paddlenlp"])
+
+ @classmethod
+ def from_pretrained(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle", "paddlenlp"])
+
+
+class VersatileDiffusionPipeline(metaclass=DummyObject):
+ _backends = ["paddle", "paddlenlp"]
+
+ def __init__(self, *args, **kwargs):
+ requires_backends(self, ["paddle", "paddlenlp"])
+
+ @classmethod
+ def from_config(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle", "paddlenlp"])
+
+ @classmethod
+ def from_pretrained(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle", "paddlenlp"])
+
+
+class VersatileDiffusionTextToImagePipeline(metaclass=DummyObject):
+ _backends = ["paddle", "paddlenlp"]
+
+ def __init__(self, *args, **kwargs):
+ requires_backends(self, ["paddle", "paddlenlp"])
+
+ @classmethod
+ def from_config(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle", "paddlenlp"])
+
+ @classmethod
+ def from_pretrained(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle", "paddlenlp"])
+
+
+class VQDiffusionPipeline(metaclass=DummyObject):
+ _backends = ["paddle", "paddlenlp"]
+
+ def __init__(self, *args, **kwargs):
+ requires_backends(self, ["paddle", "paddlenlp"])
+
+ @classmethod
+ def from_config(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle", "paddlenlp"])
+
+ @classmethod
+ def from_pretrained(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle", "paddlenlp"])
diff --git a/ppdiffusers/utils/dummy_paddle_and_scipy_objects.py b/ppdiffusers/utils/dummy_paddle_and_scipy_objects.py
new file mode 100644
index 0000000000000000000000000000000000000000..31ef9031935c789c4a1eba79055301628413b06e
--- /dev/null
+++ b/ppdiffusers/utils/dummy_paddle_and_scipy_objects.py
@@ -0,0 +1,49 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+# Copyright 2022 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+# This file is autogenerated by the command `make fix-copies`, do not edit.
+# flake8: noqa
+
+from . import DummyObject, requires_backends
+
+
+class LMSDiscreteScheduler(metaclass=DummyObject):
+ _backends = ["paddle", "scipy"]
+
+ def __init__(self, *args, **kwargs):
+ requires_backends(self, ["paddle", "scipy"])
+
+ @classmethod
+ def from_config(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle", "scipy"])
+
+ @classmethod
+ def from_pretrained(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle", "scipy"])
+
+
+class PreconfigLMSDiscreteScheduler(metaclass=DummyObject):
+ _backends = ["paddle", "scipy"]
+
+ def __init__(self, *args, **kwargs):
+ requires_backends(self, ["paddle", "scipy"])
+
+ @classmethod
+ def from_config(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle", "scipy"])
+
+ @classmethod
+ def from_pretrained(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle", "scipy"])
diff --git a/ppdiffusers/utils/dummy_paddle_objects.py b/ppdiffusers/utils/dummy_paddle_objects.py
new file mode 100644
index 0000000000000000000000000000000000000000..5325b5f20e36a54401898e637c92ca9588b77565
--- /dev/null
+++ b/ppdiffusers/utils/dummy_paddle_objects.py
@@ -0,0 +1,617 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+# Copyright 2022 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+# This file is autogenerated by the command `make fix-copies`, do not edit.
+# flake8: noqa
+
+from . import DummyObject, requires_backends
+
+
+class ModelMixin(metaclass=DummyObject):
+ _backends = ["paddle"]
+
+ def __init__(self, *args, **kwargs):
+ requires_backends(self, ["paddle"])
+
+ @classmethod
+ def from_config(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle"])
+
+ @classmethod
+ def from_pretrained(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle"])
+
+
+class AutoencoderKL(metaclass=DummyObject):
+ _backends = ["paddle"]
+
+ def __init__(self, *args, **kwargs):
+ requires_backends(self, ["paddle"])
+
+ @classmethod
+ def from_config(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle"])
+
+ @classmethod
+ def from_pretrained(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle"])
+
+
+class PriorTransformer(metaclass=DummyObject):
+ _backends = ["paddle"]
+
+ def __init__(self, *args, **kwargs):
+ requires_backends(self, ["paddle"])
+
+ @classmethod
+ def from_config(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle"])
+
+ @classmethod
+ def from_pretrained(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle"])
+
+
+class Transformer2DModel(metaclass=DummyObject):
+ _backends = ["paddle"]
+
+ def __init__(self, *args, **kwargs):
+ requires_backends(self, ["paddle"])
+
+ @classmethod
+ def from_config(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle"])
+
+ @classmethod
+ def from_pretrained(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle"])
+
+
+class UNet1DModel(metaclass=DummyObject):
+ _backends = ["paddle"]
+
+ def __init__(self, *args, **kwargs):
+ requires_backends(self, ["paddle"])
+
+ @classmethod
+ def from_config(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle"])
+
+ @classmethod
+ def from_pretrained(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle"])
+
+
+class UNet2DConditionModel(metaclass=DummyObject):
+ _backends = ["paddle"]
+
+ def __init__(self, *args, **kwargs):
+ requires_backends(self, ["paddle"])
+
+ @classmethod
+ def from_config(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle"])
+
+ @classmethod
+ def from_pretrained(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle"])
+
+
+class UNet2DModel(metaclass=DummyObject):
+ _backends = ["paddle"]
+
+ def __init__(self, *args, **kwargs):
+ requires_backends(self, ["paddle"])
+
+ @classmethod
+ def from_config(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle"])
+
+ @classmethod
+ def from_pretrained(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle"])
+
+
+class VQModel(metaclass=DummyObject):
+ _backends = ["paddle"]
+
+ def __init__(self, *args, **kwargs):
+ requires_backends(self, ["paddle"])
+
+ @classmethod
+ def from_config(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle"])
+
+ @classmethod
+ def from_pretrained(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle"])
+
+
+def get_constant_schedule(*args, **kwargs):
+ requires_backends(get_constant_schedule, ["paddle"])
+
+
+def get_constant_schedule_with_warmup(*args, **kwargs):
+ requires_backends(get_constant_schedule_with_warmup, ["paddle"])
+
+
+def get_cosine_schedule_with_warmup(*args, **kwargs):
+ requires_backends(get_cosine_schedule_with_warmup, ["paddle"])
+
+
+def get_cosine_with_hard_restarts_schedule_with_warmup(*args, **kwargs):
+ requires_backends(get_cosine_with_hard_restarts_schedule_with_warmup, ["paddle"])
+
+
+def get_linear_schedule_with_warmup(*args, **kwargs):
+ requires_backends(get_linear_schedule_with_warmup, ["paddle"])
+
+
+def get_polynomial_decay_schedule_with_warmup(*args, **kwargs):
+ requires_backends(get_polynomial_decay_schedule_with_warmup, ["paddle"])
+
+
+def get_scheduler(*args, **kwargs):
+ requires_backends(get_scheduler, ["paddle"])
+
+
+class DiffusionPipeline(metaclass=DummyObject):
+ _backends = ["paddle"]
+
+ def __init__(self, *args, **kwargs):
+ requires_backends(self, ["paddle"])
+
+ @classmethod
+ def from_config(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle"])
+
+ @classmethod
+ def from_pretrained(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle"])
+
+
+class DanceDiffusionPipeline(metaclass=DummyObject):
+ _backends = ["paddle"]
+
+ def __init__(self, *args, **kwargs):
+ requires_backends(self, ["paddle"])
+
+ @classmethod
+ def from_config(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle"])
+
+ @classmethod
+ def from_pretrained(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle"])
+
+
+class DDIMPipeline(metaclass=DummyObject):
+ _backends = ["paddle"]
+
+ def __init__(self, *args, **kwargs):
+ requires_backends(self, ["paddle"])
+
+ @classmethod
+ def from_config(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle"])
+
+ @classmethod
+ def from_pretrained(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle"])
+
+
+class DDPMPipeline(metaclass=DummyObject):
+ _backends = ["paddle"]
+
+ def __init__(self, *args, **kwargs):
+ requires_backends(self, ["paddle"])
+
+ @classmethod
+ def from_config(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle"])
+
+ @classmethod
+ def from_pretrained(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle"])
+
+
+class KarrasVePipeline(metaclass=DummyObject):
+ _backends = ["paddle"]
+
+ def __init__(self, *args, **kwargs):
+ requires_backends(self, ["paddle"])
+
+ @classmethod
+ def from_config(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle"])
+
+ @classmethod
+ def from_pretrained(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle"])
+
+
+class LDMPipeline(metaclass=DummyObject):
+ _backends = ["paddle"]
+
+ def __init__(self, *args, **kwargs):
+ requires_backends(self, ["paddle"])
+
+ @classmethod
+ def from_config(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle"])
+
+ @classmethod
+ def from_pretrained(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle"])
+
+
+class LDMSuperResolutionPipeline(metaclass=DummyObject):
+ _backends = ["paddle"]
+
+ def __init__(self, *args, **kwargs):
+ requires_backends(self, ["paddle"])
+
+ @classmethod
+ def from_config(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle"])
+
+ @classmethod
+ def from_pretrained(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle"])
+
+
+class KDPM2AncestralDiscreteScheduler(metaclass=DummyObject):
+ _backends = ["paddle"]
+
+ def __init__(self, *args, **kwargs):
+ requires_backends(self, ["paddle"])
+
+ @classmethod
+ def from_config(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle"])
+
+ @classmethod
+ def from_pretrained(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle"])
+
+
+class KDPM2DiscreteScheduler(metaclass=DummyObject):
+ _backends = ["paddle"]
+
+ def __init__(self, *args, **kwargs):
+ requires_backends(self, ["paddle"])
+
+ @classmethod
+ def from_config(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle"])
+
+ @classmethod
+ def from_pretrained(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle"])
+
+
+class PNDMPipeline(metaclass=DummyObject):
+ _backends = ["paddle"]
+
+ def __init__(self, *args, **kwargs):
+ requires_backends(self, ["paddle"])
+
+ @classmethod
+ def from_config(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle"])
+
+ @classmethod
+ def from_pretrained(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle"])
+
+
+class RePaintPipeline(metaclass=DummyObject):
+ _backends = ["paddle"]
+
+ def __init__(self, *args, **kwargs):
+ requires_backends(self, ["paddle"])
+
+ @classmethod
+ def from_config(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle"])
+
+ @classmethod
+ def from_pretrained(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle"])
+
+
+class ScoreSdeVePipeline(metaclass=DummyObject):
+ _backends = ["paddle"]
+
+ def __init__(self, *args, **kwargs):
+ requires_backends(self, ["paddle"])
+
+ @classmethod
+ def from_config(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle"])
+
+ @classmethod
+ def from_pretrained(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle"])
+
+
+class ScoreSdeVpPipeline(metaclass=DummyObject):
+ _backends = ["paddle"]
+
+ def __init__(self, *args, **kwargs):
+ requires_backends(self, ["paddle"])
+
+ @classmethod
+ def from_config(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle"])
+
+ @classmethod
+ def from_pretrained(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle"])
+
+
+class DDIMScheduler(metaclass=DummyObject):
+ _backends = ["paddle"]
+
+ def __init__(self, *args, **kwargs):
+ requires_backends(self, ["paddle"])
+
+ @classmethod
+ def from_config(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle"])
+
+ @classmethod
+ def from_pretrained(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle"])
+
+
+class DDPMScheduler(metaclass=DummyObject):
+ _backends = ["paddle"]
+
+ def __init__(self, *args, **kwargs):
+ requires_backends(self, ["paddle"])
+
+ @classmethod
+ def from_config(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle"])
+
+ @classmethod
+ def from_pretrained(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle"])
+
+
+class DPMSolverMultistepScheduler(metaclass=DummyObject):
+ _backends = ["paddle"]
+
+ def __init__(self, *args, **kwargs):
+ requires_backends(self, ["paddle"])
+
+ @classmethod
+ def from_config(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle"])
+
+ @classmethod
+ def from_pretrained(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle"])
+
+
+class DPMSolverSinglestepScheduler(metaclass=DummyObject):
+ _backends = ["paddle"]
+
+ def __init__(self, *args, **kwargs):
+ requires_backends(self, ["paddle"])
+
+ @classmethod
+ def from_config(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle"])
+
+ @classmethod
+ def from_pretrained(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle"])
+
+
+class EulerAncestralDiscreteScheduler(metaclass=DummyObject):
+ _backends = ["paddle"]
+
+ def __init__(self, *args, **kwargs):
+ requires_backends(self, ["paddle"])
+
+ @classmethod
+ def from_config(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle"])
+
+ @classmethod
+ def from_pretrained(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle"])
+
+
+class PreconfigEulerAncestralDiscreteScheduler(metaclass=DummyObject):
+ _backends = ["paddle"]
+
+ def __init__(self, *args, **kwargs):
+ requires_backends(self, ["paddle"])
+
+ @classmethod
+ def from_config(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle"])
+
+ @classmethod
+ def from_pretrained(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle"])
+
+
+class EulerDiscreteScheduler(metaclass=DummyObject):
+ _backends = ["paddle"]
+
+ def __init__(self, *args, **kwargs):
+ requires_backends(self, ["paddle"])
+
+ @classmethod
+ def from_config(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle"])
+
+ @classmethod
+ def from_pretrained(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle"])
+
+
+class HeunDiscreteScheduler(metaclass=DummyObject):
+ _backends = ["paddle"]
+
+ def __init__(self, *args, **kwargs):
+ requires_backends(self, ["paddle"])
+
+ @classmethod
+ def from_config(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle"])
+
+ @classmethod
+ def from_pretrained(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle"])
+
+
+class IPNDMScheduler(metaclass=DummyObject):
+ _backends = ["paddle"]
+
+ def __init__(self, *args, **kwargs):
+ requires_backends(self, ["paddle"])
+
+ @classmethod
+ def from_config(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle"])
+
+ @classmethod
+ def from_pretrained(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle"])
+
+
+class KarrasVeScheduler(metaclass=DummyObject):
+ _backends = ["paddle"]
+
+ def __init__(self, *args, **kwargs):
+ requires_backends(self, ["paddle"])
+
+ @classmethod
+ def from_config(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle"])
+
+ @classmethod
+ def from_pretrained(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle"])
+
+
+class PNDMScheduler(metaclass=DummyObject):
+ _backends = ["paddle"]
+
+ def __init__(self, *args, **kwargs):
+ requires_backends(self, ["paddle"])
+
+ @classmethod
+ def from_config(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle"])
+
+ @classmethod
+ def from_pretrained(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle"])
+
+
+class RePaintScheduler(metaclass=DummyObject):
+ _backends = ["paddle"]
+
+ def __init__(self, *args, **kwargs):
+ requires_backends(self, ["paddle"])
+
+ @classmethod
+ def from_config(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle"])
+
+ @classmethod
+ def from_pretrained(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle"])
+
+
+class SchedulerMixin(metaclass=DummyObject):
+ _backends = ["paddle"]
+
+ def __init__(self, *args, **kwargs):
+ requires_backends(self, ["paddle"])
+
+ @classmethod
+ def from_config(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle"])
+
+ @classmethod
+ def from_pretrained(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle"])
+
+
+class ScoreSdeVeScheduler(metaclass=DummyObject):
+ _backends = ["paddle"]
+
+ def __init__(self, *args, **kwargs):
+ requires_backends(self, ["paddle"])
+
+ @classmethod
+ def from_config(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle"])
+
+ @classmethod
+ def from_pretrained(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle"])
+
+
+class UnCLIPScheduler(metaclass=DummyObject):
+ _backends = ["paddle"]
+
+ def __init__(self, *args, **kwargs):
+ requires_backends(self, ["paddle"])
+
+ @classmethod
+ def from_config(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle"])
+
+ @classmethod
+ def from_pretrained(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle"])
+
+
+class VQDiffusionScheduler(metaclass=DummyObject):
+ _backends = ["paddle"]
+
+ def __init__(self, *args, **kwargs):
+ requires_backends(self, ["paddle"])
+
+ @classmethod
+ def from_config(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle"])
+
+ @classmethod
+ def from_pretrained(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle"])
+
+
+class EMAModel(metaclass=DummyObject):
+ _backends = ["paddle"]
+
+ def __init__(self, *args, **kwargs):
+ requires_backends(self, ["paddle"])
+
+ @classmethod
+ def from_config(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle"])
+
+ @classmethod
+ def from_pretrained(cls, *args, **kwargs):
+ requires_backends(cls, ["paddle"])
diff --git a/ppdiffusers/utils/import_utils.py b/ppdiffusers/utils/import_utils.py
new file mode 100644
index 0000000000000000000000000000000000000000..a620a9f68a1eb02be935aa5732d8433a220ba032
--- /dev/null
+++ b/ppdiffusers/utils/import_utils.py
@@ -0,0 +1,331 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+# Copyright 2022 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""
+Import utilities: Utilities related to imports and our lazy inits.
+"""
+import importlib.util
+import operator as op
+import os
+import sys
+from collections import OrderedDict
+from typing import Union
+
+from packaging.version import Version, parse
+
+from . import logging
+
+# The package importlib_metadata is in a different place, depending on the python version.
+if sys.version_info < (3, 8):
+ import importlib_metadata
+else:
+ import importlib.metadata as importlib_metadata
+
+logger = logging.get_logger(__name__) # pylint: disable=invalid-name
+
+ENV_VARS_TRUE_VALUES = {"1", "ON", "YES", "TRUE"}
+ENV_VARS_TRUE_AND_AUTO_VALUES = ENV_VARS_TRUE_VALUES.union({"AUTO"})
+
+USE_PADDLE = os.environ.get("USE_PADDLE", "AUTO").upper()
+
+STR_OPERATION_TO_FUNC = {">": op.gt, ">=": op.ge, "==": op.eq, "!=": op.ne, "<=": op.le, "<": op.lt}
+
+_paddle_version = "N/A"
+if USE_PADDLE in ENV_VARS_TRUE_AND_AUTO_VALUES:
+ _paddle_available = importlib.util.find_spec("paddle") is not None
+ if _paddle_available:
+ try:
+ import paddle
+
+ _paddle_version = paddle.__version__
+ logger.info(f"Paddle version {_paddle_version} available.")
+ except importlib_metadata.PackageNotFoundError:
+ _paddle_available = False
+else:
+ logger.info("Disabling Paddle because USE_PADDLE is not set.")
+ _paddle_available = False
+
+_paddlenlp_available = importlib.util.find_spec("paddlenlp") is not None
+try:
+ _paddlenlp_version = importlib_metadata.version("paddlenlp")
+ logger.debug(f"Successfully imported paddlenlp version {_paddlenlp_version}")
+except importlib_metadata.PackageNotFoundError:
+ _paddlenlp_available = False
+
+_inflect_available = importlib.util.find_spec("inflect") is not None
+try:
+ _inflect_version = importlib_metadata.version("inflect")
+ logger.debug(f"Successfully imported inflect version {_inflect_version}")
+except importlib_metadata.PackageNotFoundError:
+ _inflect_available = False
+
+_unidecode_available = importlib.util.find_spec("unidecode") is not None
+try:
+ _unidecode_version = importlib_metadata.version("unidecode")
+ logger.debug(f"Successfully imported unidecode version {_unidecode_version}")
+except importlib_metadata.PackageNotFoundError:
+ _unidecode_available = False
+
+_modelcards_available = importlib.util.find_spec("modelcards") is not None
+try:
+ _modelcards_version = importlib_metadata.version("modelcards")
+ logger.debug(f"Successfully imported modelcards version {_modelcards_version}")
+except importlib_metadata.PackageNotFoundError:
+ _modelcards_available = False
+
+_onnxruntime_version = "N/A"
+_onnx_available = importlib.util.find_spec("onnxruntime") is not None
+if _onnx_available:
+ candidates = (
+ "onnxruntime",
+ "onnxruntime-gpu",
+ "onnxruntime-directml",
+ "onnxruntime-openvino",
+ "ort_nightly_directml",
+ )
+ _onnxruntime_version = None
+ # For the metadata, we have to look for both onnxruntime and onnxruntime-gpu
+ for pkg in candidates:
+ try:
+ _onnxruntime_version = importlib_metadata.version(pkg)
+ break
+ except importlib_metadata.PackageNotFoundError:
+ pass
+ _onnx_available = _onnxruntime_version is not None
+ if _onnx_available:
+ logger.debug(f"Successfully imported onnxruntime version {_onnxruntime_version}")
+
+_scipy_available = importlib.util.find_spec("scipy") is not None
+try:
+ _scipy_version = importlib_metadata.version("scipy")
+ logger.debug(f"Successfully imported scipy version {_scipy_version}")
+except importlib_metadata.PackageNotFoundError:
+ _scipy_available = False
+
+_librosa_available = importlib.util.find_spec("librosa") is not None
+try:
+ _librosa_version = importlib_metadata.version("librosa")
+ logger.debug(f"Successfully imported librosa version {_librosa_version}")
+except importlib_metadata.PackageNotFoundError:
+ _librosa_available = False
+
+_fastdeploy_available = importlib.util.find_spec("fastdeploy") is not None
+if _fastdeploy_available:
+ candidates = ("fastdeploy_gpu_python", "fastdeploy_python")
+ _fastdeploy_version = None
+ # For the metadata, we have to look for both fastdeploy_python and fastdeploy_gpu_python
+ for pkg in candidates:
+ try:
+ _fastdeploy_version = importlib_metadata.version(pkg)
+ break
+ except importlib_metadata.PackageNotFoundError:
+ pass
+ _fastdeploy_available = _fastdeploy_version is not None
+ if _fastdeploy_available:
+ logger.debug(f"Successfully imported fastdeploy version {_fastdeploy_version}")
+
+
+_k_diffusion_available = importlib.util.find_spec("k_diffusion") is not None
+try:
+ _k_diffusion_version = importlib_metadata.version("k_diffusion")
+ logger.debug(f"Successfully imported k-diffusion version {_k_diffusion_version}")
+except importlib_metadata.PackageNotFoundError:
+ _k_diffusion_available = True
+
+_wandb_available = importlib.util.find_spec("wandb") is not None
+try:
+ _wandb_version = importlib_metadata.version("wandb")
+ logger.debug(f"Successfully imported wandb version {_wandb_version }")
+except importlib_metadata.PackageNotFoundError:
+ _wandb_available = False
+
+
+def is_paddle_available():
+ return _paddle_available
+
+
+def is_paddlenlp_available():
+ return _paddlenlp_available
+
+
+def is_inflect_available():
+ return _inflect_available
+
+
+def is_unidecode_available():
+ return _unidecode_available
+
+
+def is_modelcards_available():
+ return _modelcards_available
+
+
+def is_onnx_available():
+ return _onnx_available
+
+
+def is_scipy_available():
+ return _scipy_available
+
+
+def is_librosa_available():
+ return _librosa_available
+
+
+def is_fastdeploy_available():
+ return _fastdeploy_available
+
+
+def is_k_diffusion_available():
+ return _k_diffusion_available
+
+
+def is_wandb_available():
+ return _wandb_available
+
+
+# docstyle-ignore
+FASTDEPLOY_IMPORT_ERROR = """
+{0} requires the fastdeploy library but it was not found in your environment. You can install it with pip: `pip install
+fastdeploy-gpu-python -f https://www.paddlepaddle.org.cn/whl/fastdeploy.html`
+"""
+
+# docstyle-ignore
+INFLECT_IMPORT_ERROR = """
+{0} requires the inflect library but it was not found in your environment. You can install it with pip: `pip install
+inflect`
+"""
+
+# docstyle-ignore
+PADDLE_IMPORT_ERROR = """
+{0} requires the Paddle library but it was not found in your environment. Checkout the instructions on the
+installation page: https://www.paddlepaddle.org.cn/install/quick and follow the ones that match your environment.
+"""
+
+# docstyle-ignore
+LIBROSA_IMPORT_ERROR = """
+{0} requires the librosa library but it was not found in your environment. Checkout the instructions on the
+installation page: https://librosa.org/doc/latest/install.html and follow the ones that match your environment.
+"""
+
+# docstyle-ignore
+ONNX_IMPORT_ERROR = """
+{0} requires the onnxruntime library but it was not found in your environment. You can install it with pip: `pip
+install onnxruntime`
+"""
+
+# docstyle-ignore
+SCIPY_IMPORT_ERROR = """
+{0} requires the scipy library but it was not found in your environment. You can install it with pip: `pip install
+scipy`
+"""
+
+# docstyle-ignore
+PADDLENLP_IMPORT_ERROR = """
+{0} requires the paddlenlp library but it was not found in your environment. You can install it with pip: `pip
+install paddlenlp`
+"""
+
+# docstyle-ignore
+UNIDECODE_IMPORT_ERROR = """
+{0} requires the unidecode library but it was not found in your environment. You can install it with pip: `pip install
+Unidecode`
+"""
+
+# docstyle-ignore
+K_DIFFUSION_IMPORT_ERROR = """
+{0} requires the k-diffusion library but it was not found in your environment. You can install it with pip: `pip
+install k-diffusion`
+"""
+
+# docstyle-ignore
+WANDB_IMPORT_ERROR = """
+{0} requires the wandb library but it was not found in your environment. You can install it with pip: `pip
+install wandb`
+"""
+
+BACKENDS_MAPPING = OrderedDict(
+ [
+ ("fastdeploy", (is_fastdeploy_available, FASTDEPLOY_IMPORT_ERROR)),
+ ("inflect", (is_inflect_available, INFLECT_IMPORT_ERROR)),
+ ("onnx", (is_onnx_available, ONNX_IMPORT_ERROR)),
+ ("scipy", (is_scipy_available, SCIPY_IMPORT_ERROR)),
+ ("paddle", (is_paddle_available, PADDLE_IMPORT_ERROR)),
+ ("paddlenlp", (is_paddlenlp_available, PADDLENLP_IMPORT_ERROR)),
+ ("unidecode", (is_unidecode_available, UNIDECODE_IMPORT_ERROR)),
+ ("librosa", (is_librosa_available, LIBROSA_IMPORT_ERROR)),
+ ("k_diffusion", (is_k_diffusion_available, K_DIFFUSION_IMPORT_ERROR)),
+ ("wandb", (is_wandb_available, WANDB_IMPORT_ERROR)),
+ ]
+)
+
+
+def requires_backends(obj, backends):
+ if not isinstance(backends, (list, tuple)):
+ backends = [backends]
+
+ name = obj.__name__ if hasattr(obj, "__name__") else obj.__class__.__name__
+ checks = (BACKENDS_MAPPING[backend] for backend in backends)
+ failed = [msg.format(name) for available, msg in checks if not available()]
+ if failed:
+ raise ImportError("".join(failed))
+
+
+class DummyObject(type):
+ """
+ Metaclass for the dummy objects. Any class inheriting from it will return the ImportError generated by
+ `requires_backend` each time a user tries to access any method of that class.
+ """
+
+ def __getattr__(cls, key):
+ if key.startswith("_"):
+ return super().__getattr__(cls, key)
+ requires_backends(cls, cls._backends)
+
+
+# This function was copied from: https://github.com/huggingface/accelerate/blob/874c4967d94badd24f893064cc3bef45f57cadf7/src/accelerate/utils/versions.py#L319
+def compare_versions(library_or_version: Union[str, Version], operation: str, requirement_version: str):
+ """
+ Args:
+ Compares a library version to some requirement using a given operation.
+ library_or_version (`str` or `packaging.version.Version`):
+ A library name or a version to check.
+ operation (`str`):
+ A string representation of an operator, such as `">"` or `"<="`.
+ requirement_version (`str`):
+ The version to compare the library version against
+ """
+ if operation not in STR_OPERATION_TO_FUNC.keys():
+ raise ValueError(f"`operation` must be one of {list(STR_OPERATION_TO_FUNC.keys())}, received {operation}")
+ operation = STR_OPERATION_TO_FUNC[operation]
+ if isinstance(library_or_version, str):
+ library_or_version = parse(importlib_metadata.version(library_or_version))
+ return operation(library_or_version, parse(requirement_version))
+
+
+# This function was copied from: https://github.com/huggingface/accelerate/blob/874c4967d94badd24f893064cc3bef45f57cadf7/src/accelerate/utils/versions.py#L338
+def is_paddle_version(operation: str, version: str):
+ """
+ Args:
+ Compares the current Paddle version to a given reference with an operation.
+ operation (`str`):
+ A string representation of an operator, such as `">"` or `"<="`
+ version (`str`):
+ A string version of Paddle
+ """
+ return compare_versions(parse(_paddle_version), operation, version)
+
+
+class OptionalDependencyNotAvailable(BaseException):
+ """An error indicating that an optional dependency of Diffusers was not found in the environment."""
diff --git a/ppdiffusers/utils/logging.py b/ppdiffusers/utils/logging.py
new file mode 100644
index 0000000000000000000000000000000000000000..83bc27bfd350276199bfacb1e7963ca6aaee0964
--- /dev/null
+++ b/ppdiffusers/utils/logging.py
@@ -0,0 +1,339 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+# Copyright 2020 Optuna, Hugging Face
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" Logging utilities."""
+
+import logging
+import os
+import sys
+import threading
+from logging import CRITICAL # NOQA
+from logging import DEBUG # NOQA
+from logging import ERROR # NOQA
+from logging import FATAL # NOQA
+from logging import INFO # NOQA
+from logging import NOTSET # NOQA
+from logging import WARN # NOQA
+from logging import WARNING # NOQA
+from typing import Optional
+
+from tqdm import auto as tqdm_lib
+
+_lock = threading.Lock()
+_default_handler: Optional[logging.Handler] = None
+
+log_levels = {
+ "debug": logging.DEBUG,
+ "info": logging.INFO,
+ "warning": logging.WARNING,
+ "error": logging.ERROR,
+ "critical": logging.CRITICAL,
+}
+
+_default_log_level = logging.WARNING
+
+_tqdm_active = True
+
+
+def _get_default_logging_level():
+ """
+ If PPDIFFUSERS_VERBOSITY env var is set to one of the valid choices return that as the new default level. If it is
+ not - fall back to `_default_log_level`
+ """
+ env_level_str = os.getenv("PPDIFFUSERS_VERBOSITY", None)
+ if env_level_str:
+ if env_level_str in log_levels:
+ return log_levels[env_level_str]
+ else:
+ logging.getLogger().warning(
+ f"Unknown option PPDIFFUSERS_VERBOSITY={env_level_str}, "
+ f"has to be one of: { ', '.join(log_levels.keys()) }"
+ )
+ return _default_log_level
+
+
+def _get_library_name() -> str:
+ return __name__.split(".")[0]
+
+
+def _get_library_root_logger() -> logging.Logger:
+ return logging.getLogger(_get_library_name())
+
+
+def _configure_library_root_logger() -> None:
+ global _default_handler
+
+ with _lock:
+ if _default_handler:
+ # This library has already configured the library root logger.
+ return
+ _default_handler = logging.StreamHandler() # Set sys.stderr as stream.
+ _default_handler.flush = sys.stderr.flush
+
+ # Apply our default configuration to the library root logger.
+ library_root_logger = _get_library_root_logger()
+ library_root_logger.addHandler(_default_handler)
+ library_root_logger.setLevel(_get_default_logging_level())
+ library_root_logger.propagate = False
+
+
+def _reset_library_root_logger() -> None:
+ global _default_handler
+
+ with _lock:
+ if not _default_handler:
+ return
+
+ library_root_logger = _get_library_root_logger()
+ library_root_logger.removeHandler(_default_handler)
+ library_root_logger.setLevel(logging.NOTSET)
+ _default_handler = None
+
+
+def get_log_levels_dict():
+ return log_levels
+
+
+def get_logger(name: Optional[str] = None) -> logging.Logger:
+ """
+ Return a logger with the specified name.
+
+ This function is not supposed to be directly accessed unless you are writing a custom ppdiffusers module.
+ """
+
+ if name is None:
+ name = _get_library_name()
+
+ _configure_library_root_logger()
+ return logging.getLogger(name)
+
+
+def get_verbosity() -> int:
+ """
+ Return the current level for the PaddleNLP PPDiffusers' root logger as an int.
+
+ Returns:
+ `int`: The logging level.
+
+
+
+ PaddleNLP PPDiffusers has following logging levels:
+
+ - 50: `ppdiffusers.logging.CRITICAL` or `ppdiffusers.logging.FATAL`
+ - 40: `ppdiffusers.logging.ERROR`
+ - 30: `ppdiffusers.logging.WARNING` or `ppdiffusers.logging.WARN`
+ - 20: `ppdiffusers.logging.INFO`
+ - 10: `ppdiffusers.logging.DEBUG`
+
+ """
+
+ _configure_library_root_logger()
+ return _get_library_root_logger().getEffectiveLevel()
+
+
+def set_verbosity(verbosity: int) -> None:
+ """
+ Set the verbosity level for the PaddleNLP PPDiffusers' root logger.
+
+ Args:
+ verbosity (`int`):
+ Logging level, e.g., one of:
+
+ - `ppdiffusers.logging.CRITICAL` or `ppdiffusers.logging.FATAL`
+ - `ppdiffusers.logging.ERROR`
+ - `ppdiffusers.logging.WARNING` or `ppdiffusers.logging.WARN`
+ - `ppdiffusers.logging.INFO`
+ - `ppdiffusers.logging.DEBUG`
+ """
+
+ _configure_library_root_logger()
+ _get_library_root_logger().setLevel(verbosity)
+
+
+def set_verbosity_info():
+ """Set the verbosity to the `INFO` level."""
+ return set_verbosity(INFO)
+
+
+def set_verbosity_warning():
+ """Set the verbosity to the `WARNING` level."""
+ return set_verbosity(WARNING)
+
+
+def set_verbosity_debug():
+ """Set the verbosity to the `DEBUG` level."""
+ return set_verbosity(DEBUG)
+
+
+def set_verbosity_error():
+ """Set the verbosity to the `ERROR` level."""
+ return set_verbosity(ERROR)
+
+
+def disable_default_handler() -> None:
+ """Disable the default handler of the PaddleNLP PPDiffusers' root logger."""
+
+ _configure_library_root_logger()
+
+ assert _default_handler is not None
+ _get_library_root_logger().removeHandler(_default_handler)
+
+
+def enable_default_handler() -> None:
+ """Enable the default handler of the PaddleNLP PPDiffusers' root logger."""
+
+ _configure_library_root_logger()
+
+ assert _default_handler is not None
+ _get_library_root_logger().addHandler(_default_handler)
+
+
+def add_handler(handler: logging.Handler) -> None:
+ """adds a handler to the PaddleNLP PPDiffusers' root logger."""
+
+ _configure_library_root_logger()
+
+ assert handler is not None
+ _get_library_root_logger().addHandler(handler)
+
+
+def remove_handler(handler: logging.Handler) -> None:
+ """removes given handler from the PaddleNLP PPDiffusers' root logger."""
+
+ _configure_library_root_logger()
+
+ assert handler is not None and handler not in _get_library_root_logger().handlers
+ _get_library_root_logger().removeHandler(handler)
+
+
+def disable_propagation() -> None:
+ """
+ Disable propagation of the library log outputs. Note that log propagation is disabled by default.
+ """
+
+ _configure_library_root_logger()
+ _get_library_root_logger().propagate = False
+
+
+def enable_propagation() -> None:
+ """
+ Enable propagation of the library log outputs. Please disable the PaddleNLP PPDiffusers' default handler to prevent
+ double logging if the root logger has been configured.
+ """
+
+ _configure_library_root_logger()
+ _get_library_root_logger().propagate = True
+
+
+def enable_explicit_format() -> None:
+ """
+ Enable explicit formatting for every PaddleNLP PPDiffusers' logger. The explicit formatter is as follows:
+ ```
+ [LEVELNAME|FILENAME|LINE NUMBER] TIME >> MESSAGE
+ ```
+ All handlers currently bound to the root logger are affected by this method.
+ """
+ handlers = _get_library_root_logger().handlers
+
+ for handler in handlers:
+ formatter = logging.Formatter("[%(levelname)s|%(filename)s:%(lineno)s] %(asctime)s >> %(message)s")
+ handler.setFormatter(formatter)
+
+
+def reset_format() -> None:
+ """
+ Resets the formatting for PaddleNLP PPDiffusers' loggers.
+
+ All handlers currently bound to the root logger are affected by this method.
+ """
+ handlers = _get_library_root_logger().handlers
+
+ for handler in handlers:
+ handler.setFormatter(None)
+
+
+def warning_advice(self, *args, **kwargs):
+ """
+ This method is identical to `logger.warning()`, but if env var PPDIFFUSERS_NO_ADVISORY_WARNINGS=1 is set, this
+ warning will not be printed
+ """
+ no_advisory_warnings = os.getenv("PPDIFFUSERS_NO_ADVISORY_WARNINGS", False)
+ if no_advisory_warnings:
+ return
+ self.warning(*args, **kwargs)
+
+
+logging.Logger.warning_advice = warning_advice
+
+
+class EmptyTqdm:
+ """Dummy tqdm which doesn't do anything."""
+
+ def __init__(self, *args, **kwargs): # pylint: disable=unused-argument
+ self._iterator = args[0] if args else None
+
+ def __iter__(self):
+ return iter(self._iterator)
+
+ def __getattr__(self, _):
+ """Return empty function."""
+
+ def empty_fn(*args, **kwargs): # pylint: disable=unused-argument
+ return
+
+ return empty_fn
+
+ def __enter__(self):
+ return self
+
+ def __exit__(self, type_, value, traceback):
+ return
+
+
+class _tqdm_cls:
+ def __call__(self, *args, **kwargs):
+ if _tqdm_active:
+ return tqdm_lib.tqdm(*args, **kwargs)
+ else:
+ return EmptyTqdm(*args, **kwargs)
+
+ def set_lock(self, *args, **kwargs):
+ self._lock = None
+ if _tqdm_active:
+ return tqdm_lib.tqdm.set_lock(*args, **kwargs)
+
+ def get_lock(self):
+ if _tqdm_active:
+ return tqdm_lib.tqdm.get_lock()
+
+
+tqdm = _tqdm_cls()
+
+
+def is_progress_bar_enabled() -> bool:
+ """Return a boolean indicating whether tqdm progress bars are enabled."""
+ global _tqdm_active
+ return bool(_tqdm_active)
+
+
+def enable_progress_bar():
+ """Enable tqdm progress bar."""
+ global _tqdm_active
+ _tqdm_active = True
+
+
+def disable_progress_bar():
+ """Disable tqdm progress bar."""
+ global _tqdm_active
+ _tqdm_active = False
diff --git a/ppdiffusers/utils/outputs.py b/ppdiffusers/utils/outputs.py
new file mode 100644
index 0000000000000000000000000000000000000000..c2682001b7d3cb78139f914ba346f73ba9ff8fc8
--- /dev/null
+++ b/ppdiffusers/utils/outputs.py
@@ -0,0 +1,117 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+# Copyright 2022 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""
+Generic utilities
+"""
+
+from collections import OrderedDict
+from dataclasses import fields
+from typing import Any, Tuple
+
+import numpy as np
+
+from .import_utils import is_paddle_available
+
+
+def is_tensor(x):
+ """
+ Tests if `x` is a `paddle.Tensor` or `np.ndarray`.
+ """
+ if is_paddle_available():
+ import paddle
+
+ return paddle.is_tensor(x)
+
+ return isinstance(x, np.ndarray)
+
+
+class BaseOutput(OrderedDict):
+ """
+ Base class for all model outputs as dataclass. Has a `__getitem__` that allows indexing by integer or slice (like a
+ tuple) or strings (like a dictionary) that will ignore the `None` attributes. Otherwise behaves like a regular
+ python dictionary.
+
+
+
+ You can't unpack a `BaseOutput` directly. Use the [`~utils.BaseOutput.to_tuple`] method to convert it to a tuple
+ before.
+
+
+ """
+
+ def __post_init__(self):
+ class_fields = fields(self)
+
+ # Safety and consistency checks
+ if not len(class_fields):
+ raise ValueError(f"{self.__class__.__name__} has no fields.")
+
+ first_field = getattr(self, class_fields[0].name)
+ other_fields_are_none = all(getattr(self, field.name) is None for field in class_fields[1:])
+
+ if other_fields_are_none and isinstance(first_field, dict):
+ for key, value in first_field.items():
+ self[key] = value
+ else:
+ for field in class_fields:
+ v = getattr(self, field.name)
+ if v is not None:
+ self[field.name] = v
+
+ def __delitem__(self, *args, **kwargs):
+ raise Exception(f"You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.")
+
+ def setdefault(self, *args, **kwargs):
+ raise Exception(f"You cannot use ``setdefault`` on a {self.__class__.__name__} instance.")
+
+ def pop(self, *args, **kwargs):
+ raise Exception(f"You cannot use ``pop`` on a {self.__class__.__name__} instance.")
+
+ def update(self, *args, **kwargs):
+ raise Exception(f"You cannot use ``update`` on a {self.__class__.__name__} instance.")
+
+ def __getitem__(self, k):
+ if isinstance(k, str):
+ inner_dict = {k: v for (k, v) in self.items()}
+ return inner_dict[k]
+ else:
+ return self.to_tuple()[k]
+
+ def __setattr__(self, name, value):
+ if name in self.keys() and value is not None:
+ # Don't call self.__setitem__ to avoid recursion errors
+ super().__setitem__(name, value)
+ super().__setattr__(name, value)
+
+ def __setitem__(self, key, value):
+ # Will raise a KeyException if needed
+ super().__setitem__(key, value)
+ # Don't call self.__setattr__ to avoid recursion errors
+ super().__setattr__(key, value)
+
+ def to_tuple(self) -> Tuple[Any]:
+ """
+ Convert self to a tuple containing all the attributes/keys that are not `None`.
+ """
+ # try to fix: https://github.com/PaddlePaddle/PaddleNLP/issues/3355
+ # when trying to get the keys of `OrderedDict`, `keys` method return empty values.
+ # TODO(wj-Mcat): this bug should be fixed in Paddle framework
+ tuples = ()
+ for field in fields(self):
+ if getattr(self, field.name, None) is None:
+ continue
+ tuples = tuples + (getattr(self, field.name),)
+
+ return tuples
diff --git a/ppdiffusers/utils/pil_utils.py b/ppdiffusers/utils/pil_utils.py
new file mode 100644
index 0000000000000000000000000000000000000000..4b027229360e8eb58a67f0a7b636ce7ae0b2f249
--- /dev/null
+++ b/ppdiffusers/utils/pil_utils.py
@@ -0,0 +1,35 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+# Copyright 2022 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import PIL.Image
+import PIL.ImageOps
+from packaging import version
+
+if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("9.1.0"):
+ PIL_INTERPOLATION = {
+ "linear": PIL.Image.Resampling.BILINEAR,
+ "bilinear": PIL.Image.Resampling.BILINEAR,
+ "bicubic": PIL.Image.Resampling.BICUBIC,
+ "lanczos": PIL.Image.Resampling.LANCZOS,
+ "nearest": PIL.Image.Resampling.NEAREST,
+ }
+else:
+ PIL_INTERPOLATION = {
+ "linear": PIL.Image.LINEAR,
+ "bilinear": PIL.Image.BILINEAR,
+ "bicubic": PIL.Image.BICUBIC,
+ "lanczos": PIL.Image.LANCZOS,
+ "nearest": PIL.Image.NEAREST,
+ }
diff --git a/ppdiffusers/utils/testing_utils.py b/ppdiffusers/utils/testing_utils.py
new file mode 100644
index 0000000000000000000000000000000000000000..53d3dc7f53326e3fb10b4bf98c75cda75fb4edf2
--- /dev/null
+++ b/ppdiffusers/utils/testing_utils.py
@@ -0,0 +1,409 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+# Copyright 2022 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import inspect
+import logging
+import os
+import random
+import re
+import unittest
+import urllib.parse
+from io import BytesIO, StringIO
+from pathlib import Path
+from typing import Union
+
+import numpy as np
+import PIL.Image
+import PIL.ImageOps
+import requests
+
+from paddlenlp.trainer.argparser import strtobool
+
+from .import_utils import is_fastdeploy_available, is_paddle_available
+
+if is_paddle_available():
+ import paddle
+
+global_rng = random.Random()
+
+
+def image_grid(imgs, rows, cols):
+ assert len(imgs) == rows * cols
+ w, h = imgs[0].size
+ grid = PIL.Image.new("RGB", size=(cols * w, rows * h))
+
+ for i, img in enumerate(imgs):
+ grid.paste(img, box=(i % cols * w, i // cols * h))
+ return grid
+
+
+def paddle_all_close(a, b, *args, **kwargs):
+ if not is_paddle_available():
+ raise ValueError("Paddle needs to be installed to use this function.")
+
+ if not paddle.allclose(a, b, *args, **kwargs):
+ assert False, f"Max diff is absolute {(a - b).abs().max()}. Diff tensor is {(a - b).abs()}."
+ return True
+
+
+def get_tests_dir(append_path=None):
+ """
+ Args:
+ append_path: optional path to append to the tests dir path
+ Return:
+ The full path to the `tests` dir, so that the tests can be invoked from anywhere. Optionally `append_path` is
+ joined after the `tests` dir the former is provided.
+ """
+ # this function caller's __file__
+ caller__file__ = inspect.stack()[1][1]
+ tests_dir = os.path.abspath(os.path.dirname(caller__file__))
+
+ while not tests_dir.endswith("tests"):
+ tests_dir = os.path.dirname(tests_dir)
+
+ if append_path:
+ return os.path.join(tests_dir, append_path)
+ else:
+ return tests_dir
+
+
+def parse_flag_from_env(key, default=False):
+ try:
+ value = os.environ[key]
+ except KeyError:
+ # KEY isn't set, default to `default`.
+ _value = default
+ else:
+ # KEY is set, convert it to True or False.
+ try:
+ _value = strtobool(value)
+ except ValueError:
+ # More values are supported, but let's keep the message simple.
+ raise ValueError(f"If set, {key} must be yes or no.")
+ return _value
+
+
+_run_slow_tests = parse_flag_from_env("RUN_SLOW", default=False)
+_run_nightly_tests = parse_flag_from_env("RUN_NIGHTLY", default=False)
+
+
+def floats_tensor(shape, scale=1.0, rng=None, name=None):
+ """Creates a random float32 tensor"""
+ if rng is None:
+ rng = global_rng
+
+ total_dims = 1
+ for dim in shape:
+ total_dims *= dim
+
+ values = []
+ for _ in range(total_dims):
+ values.append(rng.random() * scale)
+
+ return paddle.to_tensor(data=values, dtype=paddle.float32).reshape(shape)
+
+
+def slow(test_case):
+ """
+ Decorator marking a test as slow.
+
+ Slow tests are skipped by default. Set the RUN_SLOW environment variable to a truthy value to run them.
+
+ """
+ return unittest.skipUnless(_run_slow_tests, "test is slow")(test_case)
+
+
+def require_paddle(test_case):
+ """
+ Decorator marking a test that requires Paddle. These tests are skipped when Paddle isn't installed.
+ """
+ return unittest.skipUnless(is_paddle_available(), "test requires Paddle")(test_case)
+
+
+def nightly(test_case):
+ """
+ Decorator marking a test that runs nightly in the diffusers CI.
+ Slow tests are skipped by default. Set the RUN_NIGHTLY environment variable to a truthy value to run them.
+ """
+ return unittest.skipUnless(_run_nightly_tests, "test is nightly")(test_case)
+
+
+def require_fastdeploy(test_case):
+ """
+ Decorator marking a test that requires fastdeploy. These tests are skipped when fastdeploy isn't installed.
+ """
+ return unittest.skipUnless(is_fastdeploy_available(), "test requires fastdeploy")(test_case)
+
+
+def load_numpy(arry: Union[str, np.ndarray]) -> np.ndarray:
+ if isinstance(arry, str):
+ if arry.startswith("http://") or arry.startswith("https://"):
+ response = requests.get(arry)
+ response.raise_for_status()
+ arry = np.load(BytesIO(response.content))
+ elif os.path.isfile(arry):
+ arry = np.load(arry)
+ else:
+ raise ValueError(
+ f"Incorrect path or url, URLs must start with `http://` or `https://`, and {arry} is not a valid path"
+ )
+ elif isinstance(arry, np.ndarray):
+ pass
+ else:
+ raise ValueError(
+ "Incorrect format used for numpy ndarray. Should be an url linking to an image, a local path, or a"
+ " ndarray."
+ )
+
+ return arry
+
+
+def load_image(image: Union[str, PIL.Image.Image]) -> PIL.Image.Image:
+ """
+ Args:
+ Loads `image` to a PIL Image.
+ image (`str` or `PIL.Image.Image`):
+ The image to convert to the PIL Image format.
+ Returns:
+ `PIL.Image.Image`: A PIL Image.
+ """
+ if isinstance(image, str):
+ if image.startswith("http://") or image.startswith("https://"):
+ image = PIL.Image.open(requests.get(image, stream=True).raw)
+ elif os.path.isfile(image):
+ image = PIL.Image.open(image)
+ else:
+ raise ValueError(
+ f"Incorrect path or url, URLs must start with `http://` or `https://`, and {image} is not a valid path"
+ )
+ elif isinstance(image, PIL.Image.Image):
+ image = image
+ else:
+ raise ValueError(
+ "Incorrect format used for image. Should be an url linking to an image, a local path, or a PIL image."
+ )
+ image = PIL.ImageOps.exif_transpose(image)
+ image = image.convert("RGB")
+ return image
+
+
+def load_hf_numpy(path) -> np.ndarray:
+ if not path.startswith("http://") or path.startswith("https://"):
+ path = os.path.join(
+ "https://huggingface.co/datasets/fusing/diffusers-testing/resolve/main", urllib.parse.quote(path)
+ )
+
+ return load_numpy(path)
+
+
+def load_ppnlp_numpy(path) -> np.ndarray:
+ if not path.startswith("http://") or path.startswith("https://"):
+ path = os.path.join(
+ "https://paddlenlp.bj.bcebos.com/models/community/CompVis/data/diffusers-testing", urllib.parse.quote(path)
+ )
+ return load_numpy(path)
+
+
+# --- pytest conf functions --- #
+
+# to avoid multiple invocation from tests/conftest.py and examples/conftest.py - make sure it's called only once
+pytest_opt_registered = {}
+
+
+def pytest_addoption_shared(parser):
+ """
+ This function is to be called from `conftest.py` via `pytest_addoption` wrapper that has to be defined there.
+
+ It allows loading both `conftest.py` files at once without causing a failure due to adding the same `pytest`
+ option.
+
+ """
+ option = "--make-reports"
+ if option not in pytest_opt_registered:
+ parser.addoption(
+ option,
+ action="store",
+ default=False,
+ help="generate report files. The value of this option is used as a prefix to report names",
+ )
+ pytest_opt_registered[option] = 1
+
+
+def pytest_terminal_summary_main(tr, id):
+ """
+ Generate multiple reports at the end of test suite run - each report goes into a dedicated file in the current
+ directory. The report files are prefixed with the test suite name.
+
+ This function emulates --duration and -rA pytest arguments.
+
+ This function is to be called from `conftest.py` via `pytest_terminal_summary` wrapper that has to be defined
+ there.
+
+ Args:
+ - tr: `terminalreporter` passed from `conftest.py`
+ - id: unique id like `tests` or `examples` that will be incorporated into the final reports filenames - this is
+ needed as some jobs have multiple runs of pytest, so we can't have them overwrite each other.
+
+ NB: this functions taps into a private _pytest API and while unlikely, it could break should
+ pytest do internal changes - also it calls default internal methods of terminalreporter which
+ can be hijacked by various `pytest-` plugins and interfere.
+
+ """
+ from _pytest.config import create_terminal_writer
+
+ if not len(id):
+ id = "tests"
+
+ config = tr.config
+ orig_writer = config.get_terminal_writer()
+ orig_tbstyle = config.option.tbstyle
+ orig_reportchars = tr.reportchars
+
+ dir = "reports"
+ Path(dir).mkdir(parents=True, exist_ok=True)
+ report_files = {
+ k: f"{dir}/{id}_{k}.txt"
+ for k in [
+ "durations",
+ "errors",
+ "failures_long",
+ "failures_short",
+ "failures_line",
+ "passes",
+ "stats",
+ "summary_short",
+ "warnings",
+ ]
+ }
+
+ # custom durations report
+ # note: there is no need to call pytest --durations=XX to get this separate report
+ # adapted from https://github.com/pytest-dev/pytest/blob/897f151e/src/_pytest/runner.py#L66
+ dlist = []
+ for replist in tr.stats.values():
+ for rep in replist:
+ if hasattr(rep, "duration"):
+ dlist.append(rep)
+ if dlist:
+ dlist.sort(key=lambda x: x.duration, reverse=True)
+ with open(report_files["durations"], "w") as f:
+ durations_min = 0.05 # sec
+ f.write("slowest durations\n")
+ for i, rep in enumerate(dlist):
+ if rep.duration < durations_min:
+ f.write(f"{len(dlist)-i} durations < {durations_min} secs were omitted")
+ break
+ f.write(f"{rep.duration:02.2f}s {rep.when:<8} {rep.nodeid}\n")
+
+ def summary_failures_short(tr):
+ # expecting that the reports were --tb=long (default) so we chop them off here to the last frame
+ reports = tr.getreports("failed")
+ if not reports:
+ return
+ tr.write_sep("=", "FAILURES SHORT STACK")
+ for rep in reports:
+ msg = tr._getfailureheadline(rep)
+ tr.write_sep("_", msg, red=True, bold=True)
+ # chop off the optional leading extra frames, leaving only the last one
+ longrepr = re.sub(r".*_ _ _ (_ ){10,}_ _ ", "", rep.longreprtext, 0, re.M | re.S)
+ tr._tw.line(longrepr)
+ # note: not printing out any rep.sections to keep the report short
+
+ # use ready-made report funcs, we are just hijacking the filehandle to log to a dedicated file each
+ # adapted from https://github.com/pytest-dev/pytest/blob/897f151e/src/_pytest/terminal.py#L814
+ # note: some pytest plugins may interfere by hijacking the default `terminalreporter` (e.g.
+ # pytest-instafail does that)
+
+ # report failures with line/short/long styles
+ config.option.tbstyle = "auto" # full tb
+ with open(report_files["failures_long"], "w") as f:
+ tr._tw = create_terminal_writer(config, f)
+ tr.summary_failures()
+
+ # config.option.tbstyle = "short" # short tb
+ with open(report_files["failures_short"], "w") as f:
+ tr._tw = create_terminal_writer(config, f)
+ summary_failures_short(tr)
+
+ config.option.tbstyle = "line" # one line per error
+ with open(report_files["failures_line"], "w") as f:
+ tr._tw = create_terminal_writer(config, f)
+ tr.summary_failures()
+
+ with open(report_files["errors"], "w") as f:
+ tr._tw = create_terminal_writer(config, f)
+ tr.summary_errors()
+
+ with open(report_files["warnings"], "w") as f:
+ tr._tw = create_terminal_writer(config, f)
+ tr.summary_warnings() # normal warnings
+ tr.summary_warnings() # final warnings
+
+ tr.reportchars = "wPpsxXEf" # emulate -rA (used in summary_passes() and short_test_summary())
+ with open(report_files["passes"], "w") as f:
+ tr._tw = create_terminal_writer(config, f)
+ tr.summary_passes()
+
+ with open(report_files["summary_short"], "w") as f:
+ tr._tw = create_terminal_writer(config, f)
+ tr.short_test_summary()
+
+ with open(report_files["stats"], "w") as f:
+ tr._tw = create_terminal_writer(config, f)
+ tr.summary_stats()
+
+ # restore:
+ tr._tw = orig_writer
+ tr.reportchars = orig_reportchars
+ config.option.tbstyle = orig_tbstyle
+
+
+class CaptureLogger:
+ """
+ Args:
+ Context manager to capture `logging` streams
+ logger: 'logging` logger object
+ Returns:
+ The captured output is available via `self.out`
+ Example:
+ ```python
+ >>> from ppdiffusers import logging
+ >>> from ppdiffusers.testing_utils import CaptureLogger
+
+ >>> msg = "Testing 1, 2, 3"
+ >>> logging.set_verbosity_info()
+ >>> logger = logging.get_logger("ppdiffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.py")
+ >>> with CaptureLogger(logger) as cl:
+ ... logger.info(msg)
+ >>> assert cl.out, msg + "\n"
+ ```
+ """
+
+ def __init__(self, logger):
+ self.logger = logger
+ self.io = StringIO()
+ self.sh = logging.StreamHandler(self.io)
+ self.out = ""
+
+ def __enter__(self):
+ self.logger.addHandler(self.sh)
+ return self
+
+ def __exit__(self, *exc):
+ self.logger.removeHandler(self.sh)
+ self.out = self.io.getvalue()
+
+ def __repr__(self):
+ return f"captured: {self.out}\n"
diff --git a/ppdiffusers/version.py b/ppdiffusers/version.py
new file mode 100644
index 0000000000000000000000000000000000000000..657b89ee325da9d8c2cb6aaefc77c63b66730f55
--- /dev/null
+++ b/ppdiffusers/version.py
@@ -0,0 +1,17 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+# this file will be generated by tools
+# please not modify it.
+VERSION = "0.0.0"
diff --git a/requirements.txt b/requirements.txt
new file mode 100644
index 0000000000000000000000000000000000000000..59167ed50ceefd1417064fffdec5c80b48995874
--- /dev/null
+++ b/requirements.txt
@@ -0,0 +1,3 @@
+paddlenlp==2.5.1
+ppdiffusers
+paddlepaddle
\ No newline at end of file