import streamlit as st import numpy as np import plotly.express as px import pandas as pd import plotly.graph_objects as go st.set_page_config(page_title="Plotly Graphing Libraries",layout='wide') uploaded_files = st.file_uploader("Choose a CSV file", accept_multiple_files=True) for uploaded_file in uploaded_files: bytes_data = uploaded_file.read() st.write("filename:", uploaded_file.name) st.write(bytes_data) if st.checkbox("FileDetails"): filevalue = uploaded_file.getvalue() st.write(filevalue) st.write(uploaded_file.name) st.write(uploaded_file.type) st.write(uploaded_file.size) #st.write(uploaded_file.last_modified) #st.write(uploaded_file.charset) st.write(uploaded_file.getbuffer()) st.write(uploaded_file.getbuffer().nbytes) st.write(uploaded_file.getbuffer().tobytes()) st.write(uploaded_file.getbuffer().tolist()) st.write(uploaded_file.getbuffer().itemsize) st.write(uploaded_file.getbuffer().ndim) st.write(uploaded_file.getbuffer().shape) st.write(uploaded_file.getbuffer().strides) st.write(uploaded_file.getbuffer().suboffsets) st.write(uploaded_file.getbuffer().readonly) st.write(uploaded_file.getbuffer().c_contiguous) st.write(uploaded_file.getbuffer().f_contiguous) st.write(uploaded_file.getbuffer().contiguous) st.write(uploaded_file.getbuffer().itemsize) st.write(uploaded_file.getbuffer().nbytes) st.write(uploaded_file.getbuffer().ndim) st.write(uploaded_file.getbuffer().shape) st.write(uploaded_file.getbuffer().strides) st.write(uploaded_file.getbuffer().suboffsets) st.write(uploaded_file.getbuffer().readonly) st.write(uploaded_file.getbuffer().c_contiguous) st.write(uploaded_file.getbuffer().f_contiguous) st.write(uploaded_file.getbuffer().contiguous) st.write(uploaded_file.getbuffer().itemsize) st.write(uploaded_file.getbuffer().nbytes) st.write(uploaded_file.getbuffer().ndim) st.write(uploaded_file.getbuffer().shape) st.write(uploaded_file.getbuffer().strides) st.write(uploaded_file.getbuffer().suboffsets) st.write(uploaded_file.getbuffer().readonly) st.write(uploaded_file.getbuffer().c_contiguous) st.write(uploaded_file.getbuffer().f_contiguous) myDF = pd.DataFrame(uploaded_file.getbuffer().tolist()) st.markdown("# Treemaps from upload data file: https://plotly.com/python/treemaps/") #df = myDF.query("year == 2007") df = myDF fig = px.treemap(df, path=[px.Constant("time"), 'message', 'name'], values='content', color='lifeExp', hover_data=['iso_alpha'], color_continuous_scale='RdBu', color_continuous_midpoint=np.average(df['name'], weights=df['content'])) # todo - debug this and get it working with the data fig.update_layout(margin = dict(t=50, l=25, r=25, b=25)) #fig.show() st.plotly_chart(fig, use_container_width=True) #show replace if st.checkbox("replace"): mydf = st.dataframe(df) columns = st.selectbox("Select column", df.columns) old_values = st.multiselect("Current Values",list(df[columns].unique()),list(df[columns].unique())) with st.form(key='my_form'): col1,col2 = st.beta_columns(2) st_input = st.number_input if is_numeric_dtype(df[columns]) else st.text_input with col1: old_val = st_input("old value") with col2: new_val = st_input("new value") if st.form_submit_button("Replace"): df[columns]=df[columns].replace(old_val,new_val) st.success("{} replace with {} successfully ".format(old_val,new_val)) excel = df.to_excel(r"book2.xlsx", index = False, header=True,encoding="utf-8") df =pd.read_excel(r"book2.xlsx") mydf.add_rows(df) #st.markdown("WebGL Rendering with 1,000,000 Points") N = 1000000 fig = go.Figure() fig.add_trace( go.Scattergl( x = np.random.randn(N), y = np.random.randn(N), mode = 'markers', marker = dict( line = dict( width = 1, color = 'DarkSlateGrey') ) ) ) fig.show() st.plotly_chart(fig, use_container_width=True) st.markdown("# WebGL Graph - ScatterGL") fig = go.Figure() trace_num = 10 point_num = 5000 for i in range(trace_num): fig.add_trace( go.Scattergl( x = np.linspace(0, 1, point_num), y = np.random.randn(point_num)+(i*5) ) ) fig.update_layout(showlegend=False) #fig.show() st.plotly_chart(fig, use_container_width=True) st.markdown("# Treemaps: https://plotly.com/python/treemaps/") df = px.data.gapminder().query("year == 2007") fig = px.treemap(df, path=[px.Constant("world"), 'continent', 'country'], values='pop', color='lifeExp', hover_data=['iso_alpha'], color_continuous_scale='RdBu', color_continuous_midpoint=np.average(df['lifeExp'], weights=df['pop'])) fig.update_layout(margin = dict(t=50, l=25, r=25, b=25)) #fig.show() st.plotly_chart(fig, use_container_width=True) st.markdown("# Sunburst: https://plotly.com/python/sunburst-charts/") st.markdown("# Life Expectancy Sunburst") df = px.data.gapminder().query("year == 2007") fig = px.sunburst(df, path=['continent', 'country'], values='pop', color='lifeExp', hover_data=['iso_alpha'], color_continuous_scale='RdBu', color_continuous_midpoint=np.average(df['lifeExp'], weights=df['pop'])) st.plotly_chart(fig, use_container_width=True) st.markdown("# Coffee Aromas and Tastes Sunburst") df1 = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/718417069ead87650b90472464c7565dc8c2cb1c/sunburst-coffee-flavors-complete.csv') df2 = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/718417069ead87650b90472464c7565dc8c2cb1c/coffee-flavors.csv') fig = go.Figure() fig.add_trace(go.Sunburst( ids=df1.ids, labels=df1.labels, parents=df1.parents, domain=dict(column=0) )) fig.add_trace(go.Sunburst( ids=df2.ids, labels=df2.labels, parents=df2.parents, domain=dict(column=1), maxdepth=2 )) fig.update_layout( grid= dict(columns=2, rows=1), margin = dict(t=0, l=0, r=0, b=0) ) st.plotly_chart(fig, use_container_width=True) # Sunburst #data = dict( # character=["Eve", "Cain", "Seth", "Enos", "Noam", "Abel", "Awan", "Enoch", "Azura"], # parent=["", "Eve", "Eve", "Seth", "Seth", "Eve", "Eve", "Awan", "Eve" ], # value=[10, 14, 12, 10, 2, 6, 6, 4, 4]) #fig = px.sunburst( # data, # names='character', # parents='parent', # values='value', #) #fig.show() #st.plotly_chart(fig, use_container_width=True) df = px.data.tips() fig = px.treemap(df, path=[px.Constant("all"), 'sex', 'day', 'time'], values='total_bill', color='time', color_discrete_map={'(?)':'lightgrey', 'Lunch':'gold', 'Dinner':'darkblue'}) fig.update_layout(margin = dict(t=50, l=25, r=25, b=25)) #fig.show() fig.update_traces(marker=dict(cornerradius=5)) st.plotly_chart(fig, use_container_width=True) df = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/96c0bd/sunburst-coffee-flavors-complete.csv') fig = go.Figure(go.Treemap( ids = df.ids, labels = df.labels, parents = df.parents, pathbar_textfont_size=15, root_color="lightgrey" )) fig.update_layout( uniformtext=dict(minsize=10, mode='hide'), margin = dict(t=50, l=25, r=25, b=25) ) #fig.show() st.plotly_chart(fig, use_container_width=True) df = pd.read_pickle('bloom_dataset.pkl') fig = px.treemap(df, path=[px.Constant("ROOTS"), 'Macroarea', 'Family', 'Genus', 'Language', 'dataset_name'], values='num_bytes', maxdepth=4) fig.update_traces(root_color="pink") fig.update_layout(margin = dict(t=50, l=25, r=25, b=25)) st.plotly_chart(fig, use_container_width=True)