import os, glob import json from datetime import datetime, timezone from dataclasses import dataclass from datasets import load_dataset, Dataset import pandas as pd import gradio as gr from huggingface_hub import HfApi, snapshot_download, ModelInfo, list_models from enum import Enum OWNER = "AIEnergyScore" COMPUTE_SPACE = f"{OWNER}/launch-computation-example" TOKEN = os.environ.get("DEBUG") API = HfApi(token=TOKEN) task_mappings = { 'automatic speech recognition': 'automatic-speech-recognition', 'Object Detection': 'object-detection', 'Text Classification': 'text-classification', 'Image to Text': 'image-to-text', 'Question Answering': 'question-answering', 'Text Generation': 'text-generation', 'Image Classification': 'image-classification', 'Sentence Similarity': 'sentence-similarity', 'Image Generation': 'image-generation', 'Summarization': 'summarization' } @dataclass class ModelDetails: name: str display_name: str = "" symbol: str = "" # emoji def start_compute_space(): API.restart_space(COMPUTE_SPACE) gr.Info(f"Okay! {COMPUTE_SPACE} should be running now!") def get_model_size(model_info: ModelInfo): """Gets the model size from the configuration, or the model name if the configuration does not contain the information.""" try: model_size = round(model_info.safetensors["total"] / 1e9, 3) except (AttributeError, TypeError): return 0 # Unknown model sizes are indicated as 0, see NUMERIC_INTERVALS in app.py return model_size def add_docker_eval(zip_file): new_fid_list = zip_file.split("/") new_fid = new_fid_list[-1] if new_fid.endswith('.zip'): API.upload_file( path_or_fileobj=zip_file, repo_id="AIEnergyScore/tested_proprietary_models", path_in_repo='submitted_models/' + new_fid, repo_type="dataset", commit_message="Adding logs via submission Space.", token=TOKEN ) gr.Info('Uploaded logs to dataset! We will validate their validity and add them to the next version of the leaderboard.') else: gr.Info('You can only upload .zip files here!') def add_new_eval(repo_id: str, task: str): model_owner = repo_id.split("/")[0] model_name = repo_id.split("/")[1] current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ") requests = load_dataset("AIEnergyScore/requests_debug", split="test", token=TOKEN) requests_dset = requests.to_pandas() model_list = requests_dset[requests_dset['status'] == 'COMPLETED']['model'].tolist() task_models = list(API.list_models(filter=task_mappings[task])) task_model_names = [m.id for m in task_models] if repo_id in model_list: gr.Info('This model has already been run!') elif repo_id not in task_model_names: gr.Info("This model isn't compatible with the chosen task! Pick a different model-task combination") else: # Is the model info correctly filled? try: model_info = API.model_info(repo_id=repo_id) model_size = get_model_size(model_info=model_info) likes = model_info.likes except Exception: gr.Info("Could not find information for model %s" % (model_name)) model_size = None likes = None gr.Info("Adding request") request_dict = { "model": repo_id, "status": "PENDING", "submitted_time": pd.to_datetime(current_time), "task": task_mappings[task], "likes": likes, "params": model_size, "leaderboard_version": "v0", } print("Writing out request file to dataset") df_request_dict = pd.DataFrame([request_dict]) print(df_request_dict) df_final = pd.concat([requests_dset, df_request_dict], ignore_index=True) updated_dset = Dataset.from_pandas(df_final) updated_dset.push_to_hub("AIEnergyScore/requests_debug", split="test", token=TOKEN) gr.Info("Starting compute space at %s " % COMPUTE_SPACE) return start_compute_space() def print_existing_models(): requests = load_dataset("AIEnergyScore/requests_debug", split="test", token=TOKEN) requests_dset = requests.to_pandas() model_df = requests_dset[['model', 'status']] model_df = model_df[model_df['status'] == 'COMPLETED'] return model_df def highlight_cols(x): df = x.copy() df[df['status'] == 'COMPLETED'] = 'color: green' df[df['status'] == 'PENDING'] = 'color: orange' df[df['status'] == 'FAILED'] = 'color: red' return df # Applying the style function existing_models = print_existing_models() formatted_df = existing_models.style.apply(highlight_cols, axis=None) def get_leaderboard_models(): path = r'leaderboard_v0_data/energy' filenames = glob.glob(path + "/*.csv") data = [] for filename in filenames: data.append(pd.read_csv(filename)) leaderboard_data = pd.concat(data, ignore_index=True) return leaderboard_data[['model', 'task']] # A placeholder for get_zip_data_link() -- replace with your actual implementation if available. def get_zip_data_link(): return ( 'Download Logs' ) with gr.Blocks() as demo: # --- Header Links (at the very top, evenly spaced) --- gr.HTML("""
Leaderboard Label Generator FAQ Documentation Community
""") # --- Logo (centered) --- gr.HTML("""
Logo
""") gr.Markdown('

Submission Portal

') gr.Markdown('
If you want us to evaluate a model hosted on the 🤗 Hub, enter the model ID and choose the corresponding task from the dropdown list below, then click Run Analysis to launch the benchmarking process.
') gr.Markdown('
If you\'ve used the Docker file to run your own evaluation, please submit the resulting log files at the bottom of the page.
') gr.Markdown('
The Project Leaderboard will be updated on a biannual basis (last updated in February 2025).
') with gr.Row(): with gr.Column(): task = gr.Dropdown( choices=list(task_mappings.keys()), label="Choose a benchmark task", value='Text Generation', multiselect=False, interactive=True, ) with gr.Column(): model_name_textbox = gr.Textbox(label="Model name (user_name/model_name)") with gr.Row(): with gr.Column(): submit_button = gr.Button("Submit for Analysis") submission_result = gr.Markdown() submit_button.click( fn=add_new_eval, inputs=[model_name_textbox, task], outputs=submission_result, ) with gr.Row(): with gr.Column(): with gr.Accordion("Submit log files from a Docker run:", open=False): gr.Markdown(""" **⚠️ Warning: By uploading the zip file, you confirm that you have read and agree to the following terms:** - **Public Data Sharing:** You consent to the public sharing of the energy performance data derived from your submission. No additional information related to this model, including proprietary configurations, will be disclosed. - **Data Integrity:** You certify that the log files submitted are accurate, unaltered, and generated directly from testing your model as per the specified benchmarking procedures. - **Model Representation:** You affirm that the model tested and submitted is representative of the production-level version, including its level of quantization and any other relevant characteristics impacting energy efficiency and performance. """) file_output = gr.File(visible=False) u = gr.UploadButton("Upload a zip file with logs", file_count="single", interactive=True) u.upload(add_docker_eval, u, file_output) with gr.Row(): with gr.Column(): with gr.Accordion("Models that are in the latest leaderboard version:", open=False, visible=False): gr.Dataframe(get_leaderboard_models()) with gr.Accordion("Models that have been benchmarked recently:", open=False, visible=False): gr.Dataframe(formatted_df) demo.launch()