import os import json import logging import pandas as pd import gradio as gr import multiprocessing from src.backend import pull_search_results from src.envs import ( API, START_COMMIT_ID, HF_CACHE_DIR, SUBMIT_INFOS_DIR, SUBMIT_INFOS_FILE_NAME, HF_SEARCH_RESULTS_REPO_DIR, HF_EVAL_RESULTS_REPO_DIR, SUBMIT_INFOS_REPO, UNZIP_TARGET_DIR, TIME_DURATION, EVAL_K_VALUES, SUBMIT_INFOS_TABLE_COLS ) from src.css_html_js import custom_css logger = logging.getLogger(__name__) logging.basicConfig( level=logging.WARNING, datefmt='%Y-%m-%d %H:%M:%S', format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', force=True ) # def restart_space(): # API.restart_space(repo_id=REPO_ID) def load_submit_infos_df(): # Pull the submit infos API.snapshot_download( repo_id=SUBMIT_INFOS_REPO, repo_type="dataset", local_dir=SUBMIT_INFOS_DIR, etag_timeout=30 ) submit_infos_save_path = os.path.join(SUBMIT_INFOS_DIR, SUBMIT_INFOS_FILE_NAME) if os.path.exists(submit_infos_save_path): with open(submit_infos_save_path, 'r', encoding='utf-8') as f: submit_infos = json.load(f) else: submit_infos = [] if submit_infos: submit_infos_df = pd.DataFrame(submit_infos)[SUBMIT_INFOS_TABLE_COLS] else: submit_infos_df = pd.DataFrame(columns=SUBMIT_INFOS_TABLE_COLS) return submit_infos_df with gr.Blocks(css=custom_css) as demo: gr.Markdown("## Submission Infos Table") table = gr.components.Dataframe( value=load_submit_infos_df(), elem_id="submission-infos-table", interactive=False, ) refresh_button = gr.Button("Refresh Submission Infos") refresh_button.click( fn=load_submit_infos_df, outputs=table, ) if __name__ == "__main__": process = multiprocessing.Process( target=pull_search_results, args=( HF_SEARCH_RESULTS_REPO_DIR, HF_EVAL_RESULTS_REPO_DIR, UNZIP_TARGET_DIR, SUBMIT_INFOS_DIR, SUBMIT_INFOS_FILE_NAME, EVAL_K_VALUES, HF_CACHE_DIR, TIME_DURATION, START_COMMIT_ID, ), ) process.start() demo.launch()