# AUTOGENERATED! DO NOT EDIT! File to edit: ../nbs/12_optimizer.ipynb. # %% ../nbs/12_optimizer.ipynb 2 from __future__ import annotations from .torch_basics import * # %% auto 0 __all__ = ['pytorch_hp_map', 'Optimizer', 'sgd_step', 'weight_decay', 'l2_reg', 'average_grad', 'average_sqr_grad', 'momentum_step', 'SGD', 'rms_prop_step', 'RMSProp', 'step_stat', 'debias', 'adam_step', 'Adam', 'radam_step', 'RAdam', 'qhadam_step', 'QHAdam', 'larc_layer_lr', 'larc_step', 'Larc', 'lamb_step', 'Lamb', 'Lookahead', 'ranger', 'detuplify_pg', 'set_item_pg', 'OptimWrapper'] # %% ../nbs/12_optimizer.ipynb 6 class _BaseOptimizer(): "Common functionality between `Optimizer` and `OptimWrapper`" def all_params(self, n:slice|int=slice(None), # Extended slicing over the optimizer `param_lists` with_grad:bool=False # Get all param tuples. If `True` select only those with a gradient ): res = L((p,pg,self.state[p],hyper) for pg,hyper in zip(self.param_lists[n],self.hypers[n]) for p in pg) return L(o for o in res if hasattr(o[0], 'grad') and o[0].grad is not None) if with_grad else res def _set_require_grad(self, rg:bool, # Requires grad: if `True` sets gradient for parameters, else uses state `state["force_train"]` p:Tensor, # Parameters to set gradient pg, # Param groups (unused but needed because unpack *o) state: dict, h # Hyperparameter (unused but needed because unpack *o) ): p.requires_grad_(rg or state.get('force_train', False)) def freeze_to(self, n:int # Freeze up to `n` layers ): self.frozen_idx = n if n >= 0 else len(self.param_lists) + n if self.frozen_idx >= len(self.param_lists): warn(f"Freezing {self.frozen_idx} groups; model has {len(self.param_lists)}; whole model is frozen.") for o in self.all_params(slice(n, None)): self._set_require_grad(True, *o) for o in self.all_params(slice(None, n)): self._set_require_grad(False, *o) def freeze(self): assert(len(self.param_lists)>1) self.freeze_to(-1) def set_hypers(self, **kwargs): L(kwargs.items()).starmap(self.set_hyper) def _set_hyper(self, k, # Hyperparameter key v # Hyperparameter value ): for v_,h in zip(v, self.hypers): h[k] = v_ def set_hyper(self, k, # Hyperparameter key or slice of keys v # Hyperparameter value or slice of values ): if isinstance(v, slice): if v.start: v = even_mults(v.start, v.stop, len(self.param_lists)) else: v = [v.stop/10]*(len(self.param_lists)-1) + [v.stop] v = L(v, use_list=None) if len(v)==1: v = v*len(self.param_lists) assert len(v) == len(self.hypers), f"Trying to set {len(v)} values for {k} but there are {len(self.param_lists)} parameter groups." self._set_hyper(k, v) def unfreeze(self): self.freeze_to(0) @property def param_groups(self): return [{**{'params': pg}, **hp} for pg,hp in zip(self.param_lists, self.hypers)] @param_groups.setter def param_groups(self, v:dict # List of dicts to set `params` and other hyper parameters ): for pg,v_ in zip(self.param_lists,v): pg = v_['params'] for hyper,v_ in zip(self.hypers,v): for k,t in v_.items(): if k != 'params': hyper[k] = t # %% ../nbs/12_optimizer.ipynb 8 def _update( state:dict, new=None # New values to update `state` dict ): if new is None: return state if isinstance(new, dict): state.update(new) return state # %% ../nbs/12_optimizer.ipynb 10 class Optimizer(_BaseOptimizer): "Base optimizer class for the fastai library, updating `params` with `cbs`" _keep_on_clear = ['force_train', 'do_wd'] def __init__(self, params:Tensor|Iterable, # Model parameters cbs:callable|MutableSequence, # `Optimizer` step callbacks **defaults # Hyper parameters default values ): if 'train_bn' in defaults.keys(): _ = defaults.pop('train_bn') warn('Setting `train_bn` in `Optimizer` has no effect. Set `train_bn` on `Learner` init instead') params = L(params) self.cbs,self.state = L(cbs),defaultdict(dict) defaults = merge(*self.cbs.attrgot('defaults'), defaults) self.param_lists = L(L(p) for p in params) if isinstance(params[0], (L,list)) else L([params]) self.hypers = L({} for _ in range_of(self.param_lists)) self.set_hypers(**defaults) self.frozen_idx = 0 def zero_grad(self): for p,*_ in self.all_params(with_grad=True): p.grad.detach_() p.grad.zero_() def step(self, closure=None): if closure is not None: raise NotImplementedError("fastai optimizers currently do not support closure") for p,pg,state,hyper in self.all_params(with_grad=True): for cb in self.cbs: state = _update(state, cb(p, **{**state, **hyper})) self.state[p] = state def clear_state(self): for p,pg,state,hyper in self.all_params(): self.state[p] = {k: state[k] for k in self._keep_on_clear if k in state} def state_dict(self): state = [self.state[p] for p,*_ in self.all_params()] return {'state': state, 'hypers': self.hypers} def load_state_dict(self, sd:dict # State dict with `hypers` and `state` to load on the optimizer ): assert len(sd["hypers"]) == len(self.param_lists) assert len(sd["state"]) == sum([len(pg) for pg in self.param_lists]) self.hypers = sd['hypers'] self.state = {p: s for p,s in zip(self.all_params().itemgot(0), sd['state'])} # %% ../nbs/12_optimizer.ipynb 21 def sgd_step(p, lr, **kwargs): p.data.add_(p.grad.data, alpha=-lr) # %% ../nbs/12_optimizer.ipynb 24 def weight_decay(p, lr, wd, do_wd=True, **kwargs): "Weight decay as decaying `p` with `lr*wd`" if do_wd and wd!=0: p.data.mul_(1 - lr*wd) weight_decay.defaults = dict(wd=0.) # %% ../nbs/12_optimizer.ipynb 26 def l2_reg(p, lr, wd, do_wd=True, **kwargs): "L2 regularization as adding `wd*p` to `p.grad`" if do_wd and wd!=0: p.grad.data.add_(p.data, alpha=wd) l2_reg.defaults = dict(wd=0.) # %% ../nbs/12_optimizer.ipynb 41 def average_grad(p, mom, dampening=False, grad_avg=None, **kwargs): "Keeps track of the avg grads of `p` in `state` with `mom`." if grad_avg is None: grad_avg = torch.zeros_like(p.grad.data) damp = 1-mom if dampening else 1. grad_avg.mul_(mom).add_(p.grad.data, alpha=damp) return {'grad_avg': grad_avg} average_grad.defaults = dict(mom=0.9) # %% ../nbs/12_optimizer.ipynb 44 def average_sqr_grad(p, sqr_mom, dampening=True, sqr_avg=None, **kwargs): if sqr_avg is None: sqr_avg = torch.zeros_like(p.grad.data) damp = 1-sqr_mom if dampening else 1. sqr_avg.mul_(sqr_mom).addcmul_(p.grad.data, p.grad.data, value=damp) return {'sqr_avg': sqr_avg} average_sqr_grad.defaults = dict(sqr_mom=0.99) # %% ../nbs/12_optimizer.ipynb 62 def momentum_step(p, lr, grad_avg, **kwargs): "Step for SGD with momentum with `lr`" p.data.add_(grad_avg, alpha=-lr) # %% ../nbs/12_optimizer.ipynb 63 def SGD( params:Tensor|Iterable, # Model parameters lr:float|slice, # Default learning rate mom:float=0., # Gradient moving average (β1) coefficient wd:Real=0., # Optional weight decay (true or L2) decouple_wd:bool=True # Apply true weight decay or L2 regularization (SGD) ) -> Optimizer: "A SGD `Optimizer`" cbs = [weight_decay] if decouple_wd else [l2_reg] if mom != 0: cbs.append(average_grad) cbs.append(sgd_step if mom==0 else momentum_step) return Optimizer(params, cbs, lr=lr, mom=mom, wd=wd) # %% ../nbs/12_optimizer.ipynb 70 def rms_prop_step(p, lr, sqr_avg, eps, grad_avg=None, **kwargs): "Step for RMSProp with momentum with `lr`" denom = sqr_avg.sqrt().add_(eps) p.data.addcdiv_((grad_avg if grad_avg is not None else p.grad), denom, value=-lr) rms_prop_step.defaults = dict(eps=1e-8) # %% ../nbs/12_optimizer.ipynb 71 def RMSProp( params:Tensor|Iterable, # Model parameters lr:float|slice, # Default learning rate mom:float=0., # Gradient moving average (β1) coefficient sqr_mom:float=0.99, # Gradient squared moving average (β2) coefficient eps:float=1e-8, # Added for numerical stability wd:Real=0., # Optional weight decay (true or L2) decouple_wd:bool=True # Apply true weight decay or L2 regularization (RMSProp) ) -> Optimizer: "A RMSProp `Optimizer`" cbs = [weight_decay] if decouple_wd else [l2_reg] cbs += ([average_sqr_grad] if mom==0. else [average_grad, average_sqr_grad]) cbs.append(rms_prop_step) return Optimizer(params, cbs, lr=lr, mom=mom, sqr_mom=sqr_mom, wd=wd) # %% ../nbs/12_optimizer.ipynb 76 def step_stat(p, step=0, **kwargs): "Register the number of steps done in `state` for `p`" step += 1 return {'step' : step} # %% ../nbs/12_optimizer.ipynb 78 def debias(mom, damp, step): return damp * (1 - mom**step) / (1-mom) # %% ../nbs/12_optimizer.ipynb 79 def adam_step(p, lr, mom, step, sqr_mom, grad_avg, sqr_avg, eps, **kwargs): "Step for Adam with `lr` on `p`" debias1 = debias(mom, 1-mom, step) debias2 = debias(sqr_mom, 1-sqr_mom, step) p.data.addcdiv_(grad_avg, (sqr_avg/debias2).sqrt() + eps, value = -lr / debias1) return p adam_step._defaults = dict(eps=1e-5) # %% ../nbs/12_optimizer.ipynb 80 def Adam( params:Tensor|Iterable, # Model parameters lr:float|slice, # Default learning rate mom:float=0.9, # Gradient moving average (β1) coefficient sqr_mom:float=0.99, # Gradient squared moving average (β2) coefficient eps:float=1e-5, # Added for numerical stability wd:Real=0.01, # Optional weight decay (true or L2) decouple_wd:bool=True # Apply true weight decay (AdamW) or L2 regularization (Adam) ) -> Optimizer: "A Adam/AdamW `Optimizer`" cbs = [weight_decay] if decouple_wd else [l2_reg] cbs += [partial(average_grad, dampening=True), average_sqr_grad, step_stat, adam_step] return Optimizer(params, cbs, lr=lr, mom=mom, sqr_mom=sqr_mom, eps=eps, wd=wd) # %% ../nbs/12_optimizer.ipynb 85 def radam_step(p, lr, mom, step, sqr_mom, grad_avg, sqr_avg, eps, beta, **kwargs): "Step for RAdam with `lr` on `p`" debias1 = debias(mom, 1-mom, step) debias2 = debias(sqr_mom, 1-sqr_mom, step) r_inf = 2/(1-sqr_mom) - 1 r = r_inf - 2*step*sqr_mom**step/(1-sqr_mom**step) if r > 5: v = math.sqrt(((r-4) * (r-2) * r_inf)/((r_inf-4)*(r_inf-2)*r)) denom = (sqr_avg/debias2).sqrt() if eps: denom += eps if beta: denom = F.softplus(denom, beta) p.data.addcdiv_(grad_avg, denom, value = -lr*v / debias1) else: p.data.add_(grad_avg, alpha=-lr / debias1) return p radam_step._defaults = dict(eps=1e-5) # %% ../nbs/12_optimizer.ipynb 86 def RAdam( params:Tensor|Iterable, # Model parameters lr:float|slice, # Default learning rate mom:float=0.9, # Gradient moving average (β1) coefficient sqr_mom:float=0.99, # Gradient squared moving average (β2) coefficient eps:float=1e-5, # Added for numerical stability wd:Real=0., # Optional weight decay (true or L2) beta:float=0., # Set to enable SAdam decouple_wd:bool=True # Apply true weight decay (RAdamW) or L2 regularization (RAdam) ) -> Optimizer: "A RAdam/RAdamW `Optimizer`" cbs = [weight_decay] if decouple_wd else [l2_reg] cbs += [partial(average_grad, dampening=True), average_sqr_grad, step_stat, radam_step] return Optimizer(params, cbs, lr=lr, mom=mom, sqr_mom=sqr_mom, eps=eps, wd=wd, beta=beta) # %% ../nbs/12_optimizer.ipynb 92 def qhadam_step(p, lr, mom, sqr_mom, sqr_avg, nu_1, nu_2, step, grad_avg, eps, **kwargs): debias1 = debias(mom, 1-mom, step) debias2 = debias(sqr_mom, 1-sqr_mom, step) p.data.addcdiv_(((1-nu_1) * p.grad.data) + (nu_1 * (grad_avg / debias1)), (((1 - nu_2) * (p.grad.data)**2) + (nu_2 * (sqr_avg / debias2))).sqrt() + eps, value = -lr) return p qhadam_step._defaults = dict(eps=1e-8) # %% ../nbs/12_optimizer.ipynb 93 def QHAdam( params:Tensor|Iterable, # Model parameters lr:float|slice, # Default learning rate mom:float=0.999, # Gradient moving average (β1) coefficient sqr_mom:float=0.999, # Gradient squared moving average (β2) coefficient nu_1:float=0.7, # QH immediate discount factor nu_2:float=1.0, # QH momentum discount factor eps:float=1e-8, # Added for numerical stability wd:Real=0., # Optional weight decay (true or L2) decouple_wd:bool=True, # Apply true weight decay (QHAdamW) or L2 regularization (QHAdam) ) -> Optimizer: "A QHAdam/QHAdamW `Optimizer`" cbs = [weight_decay] if decouple_wd else [l2_reg] cbs += [partial(average_grad, dampening=True), partial(average_sqr_grad, dampening=True), step_stat, qhadam_step] return Optimizer(params, cbs, lr=lr, nu_1=nu_1, nu_2=nu_2 , mom=mom, sqr_mom=sqr_mom, eps=eps, wd=wd) # %% ../nbs/12_optimizer.ipynb 96 def larc_layer_lr(p, lr, trust_coeff, wd, eps, clip=True, **kwargs): "Computes the local lr before weight decay is applied" p_norm,g_norm = torch.norm(p.data),torch.norm(p.grad.data) local_lr = lr*trust_coeff * (p_norm) / (g_norm + p_norm * wd + eps) return {'local_lr': min(lr, local_lr) if clip else local_lr} larc_layer_lr.defaults = dict(trust_coeff=0.02, wd=0., eps=1e-8) # %% ../nbs/12_optimizer.ipynb 97 def larc_step(p, local_lr, grad_avg=None, **kwargs): "Step for LARC `local_lr` on `p`" p.data.add_(p.grad.data if grad_avg is None else grad_avg, alpha = -local_lr) # %% ../nbs/12_optimizer.ipynb 98 def Larc( params:Tensor|Iterable, # Model parameters lr:float|slice, # Default learning rate mom:float=0.9, # Gradient moving average (β1) coefficient clip:bool=True, # LARC if clip=True, LARS if clip=False trust_coeff:float=0.02, # Trust coeffiecnet for calculating layerwise LR eps:float=1e-8, # Added for numerical stability wd:Real=0., # Optional weight decay (true or L2) decouple_wd:bool=True # Apply true weight decay or L2 regularization ) -> Optimizer: "A LARC/LARS `Optimizer`" cbs = [weight_decay] if decouple_wd else [l2_reg] if mom!=0.: cbs.append(average_grad) cbs += [partial(larc_layer_lr, clip=clip), larc_step] return Optimizer(params, cbs, lr=lr, mom=mom, trust_coeff=trust_coeff, eps=eps, wd=wd) # %% ../nbs/12_optimizer.ipynb 103 def lamb_step(p, lr, mom, step, sqr_mom, grad_avg, sqr_avg, eps, **kwargs): "Step for LAMB with `lr` on `p`" debias1 = debias(mom, 1-mom, step) debias2 = debias(sqr_mom, 1-sqr_mom, step) r1 = p.data.pow(2).mean().sqrt() step = (grad_avg/debias1) / ((sqr_avg/debias2).sqrt()+eps) r2 = step.pow(2).mean().sqrt() q = 1 if r1 == 0 or r2 == 0 else min(r1/r2,10) p.data.add_(step, alpha = -lr * q) lamb_step._defaults = dict(eps=1e-6, wd=0.) # %% ../nbs/12_optimizer.ipynb 104 def Lamb( params:Tensor|Iterable, # Model parameters lr:float|slice, # Default learning rate mom:float=0.9, # Gradient moving average (β1) coefficient sqr_mom:float=0.99, # Gradient squared moving average (β2) coefficient eps:float=1e-5, # Added for numerical stability wd:Real=0., # Optional weight decay (true or L2) decouple_wd:bool=True # Apply true weight decay or L2 regularization ) -> Optimizer: "A LAMB `Optimizer`" cbs = [weight_decay] if decouple_wd else [l2_reg] cbs += [partial(average_grad, dampening=True), average_sqr_grad, step_stat, lamb_step] return Optimizer(params, cbs, lr=lr, mom=mom, sqr_mom=sqr_mom, eps=eps, wd=wd) # %% ../nbs/12_optimizer.ipynb 109 class Lookahead(Optimizer, GetAttr): "Wrap `opt` in a lookahead optimizer" _default='opt' def __init__(self, opt:Optimizer, # `Optimizer` to wrap with Lookahead k:int=6, # How often to conduct Lookahead step alpha:float=0.5, # Slow weight moving average coefficient ): store_attr('opt,k,alpha') self._init_state() def step(self, closure=None): if closure is not None: raise NotImplementedError("fastai optimizers currently do not support closure") if self.slow_weights is None: self._copy_weights() self.opt.step() self.count += 1 if self.count%self.k != 0: return for slow_pg,fast_pg in zip(self.slow_weights,self.param_lists): for slow_p,fast_p in zip(slow_pg,fast_pg): slow_p.data.add_(fast_p.data-slow_p.data, alpha=self.alpha) fast_p.data.copy_(slow_p.data) def clear_state(self): self.opt.clear_state() self._init_state() def state_dict(self): state = self.opt.state_dict() state.update({'count': self.count, 'slow_weights': self.slow_weights}) return state def load_state_dict(self, sd): self.count = sd.pop('count') self.slow_weights = sd.pop('slow_weights') self.opt.load_state_dict(sd) def _init_state(self): self.count,self.slow_weights = 0,None def _copy_weights(self): self.slow_weights = L(L(p.clone().detach() for p in pg) for pg in self.param_lists) @property def param_lists(self): return self.opt.param_lists @param_lists.setter def param_lists(self, v): self.opt.param_lists = v # %% ../nbs/12_optimizer.ipynb 111 @delegates(RAdam) def ranger( params:Tensor|Iterable, # Model parameters lr:float|slice, # Default learning rate mom:float=0.95, # Gradient moving average (β1) coefficient wd:Real=0.01, # Optional weight decay (true or L2) eps:float=1e-6, # Added for numerical stability k:int=6, # How often to conduct Lookahead step alpha:float=0.5, # Slow weight moving average coefficient **kwargs ) -> Lookahead: "Convenience method for `Lookahead` with `RAdam`" return Lookahead(RAdam(params, lr=lr, mom=mom, wd=wd, eps=eps, **kwargs), k=k, alpha=alpha) # %% ../nbs/12_optimizer.ipynb 114 def detuplify_pg(d): res = {} for k,v in d.items(): if k == 'params': continue if is_listy(v): res.update(**{f'{k}__{i}': v_ for i,v_ in enumerate(v)}) else: res[k] = v return res # %% ../nbs/12_optimizer.ipynb 116 def set_item_pg(pg, k, v): if '__' not in k: pg[k] = v else: name,idx = k.split('__') pg[name] = tuple(v if i==int(idx) else pg[name][i] for i in range_of(pg[name])) return pg # %% ../nbs/12_optimizer.ipynb 118 pytorch_hp_map = {'momentum': 'mom', 'weight_decay': 'wd', 'alpha': 'sqr_mom', 'betas__0': 'mom', 'betas__1': 'sqr_mom'} # %% ../nbs/12_optimizer.ipynb 119 def _convert_params(o:list) -> list: splitter = [] for group in o: if isinstance(group, dict): splitter.append(group) else: splitter.append({'params':group}) return splitter # %% ../nbs/12_optimizer.ipynb 120 class OptimWrapper(_BaseOptimizer, GetAttr): "A wrapper class for existing PyTorch optimizers" _xtra=['zero_grad', 'step', 'state_dict', 'load_state_dict'] _default='opt' def __init__(self, params:Tensor|Iterable=None, # Model parameters. Don't set if using a built optimizer opt:callable|torch.optim.Optimizer=None, # A torch optimizer constructor, or an already built optimizer hp_map:dict=None, # A dictionary converting PyTorch optimizer keys to fastai's `Optimizer` keys. Defaults to `pytorch_hp_map` convert_groups:bool=True, # Convert parameter groups from splitter or pass unaltered to `opt` **kwargs ): if params is None and opt is None: raise ValueError("Both `params` and `opt` cannot be None.") if callable(opt): if convert_groups: params = L(params) convert_groups = isinstance(params[0], (L,list)) self.opt = opt(_convert_params(params), **kwargs) if convert_groups else opt(params, **kwargs) else: if params is not None: raise ValueError("Tried using both `params` and a built optimizer. Just pass in `opt`.") self.opt = opt if hp_map is None: hp_map = pytorch_hp_map self.fwd_map = {k: hp_map[k] if k in hp_map else k for k in detuplify_pg(self.opt.param_groups[0]).keys()} self.bwd_map = {v:k for k,v in self.fwd_map.items()} self.state = defaultdict(dict, {}) self.frozen_idx = 0 @property def hypers(self): return [{self.fwd_map.get(k, k):v for k,v in detuplify_pg(pg).items() if k != 'params'} for pg in self.opt.param_groups] def _set_hyper(self, k, v): for pg,v_ in zip(self.opt.param_groups,v): pg = set_item_pg(pg, self.bwd_map[k], v_) def clear_state(self): self.opt.state = defaultdict(dict, {}) @property def param_lists(self): return [pg['params'] for pg in self.opt.param_groups] @param_lists.setter def param_lists(self, v): for pg,v_ in zip(self.opt.param_groups,v): pg['params'] = v_