import os import time from huggingface_hub import HfApi, HfFileSystem import time import pandas as pd import threading import gradio as gr from gradio_space_ci import enable_space_ci from functions import commit enable_space_ci() HF_TOKEN = os.getenv('HF_TOKEN') BOT_HF_TOKEN = os.getenv('BOT_HF_TOKEN') api = HfApi() fs = HfFileSystem() def refresh(how_much=3600): # default to 1 hour time.sleep(how_much) try: api.restart_space(repo_id="Weyaxi/leaderboard-results-to-modelcard") except Exception as e: print(f"Error while scraping leaderboard, trying again... {e}") refresh(600) # 10 minutes if any error happens gradio_title="🧐 Open LLM Leaderboard Results PR Opener" gradio_desc= """🎯 This tool's aim is to provide [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) results in the model card. ## 💭 What Does This Tool Do: - This tool adds the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) result of your model at the end of your model card. - This tool also adds evaluation results as your model's metadata to showcase the evaluation results as a widget. ## 🛠️ Backend The leaderboard's backend mainly runs on the [Hugging Face Hub API](https://huggingface.co/docs/huggingface_hub/v0.5.1/en/package_reference/hf_api). ## 🤝 Acknowledgements - Special thanks to [Clémentine Fourrier (clefourrier)](https://huggingface.co/clefourrier) for her help and contributions to the code. - Special thanks to [Lucain Pouget (Wauplin)](https://huggingface.co/Wauplin) for assisting with the [Hugging Face Hub API](https://huggingface.co/docs/huggingface_hub/v0.5.1/en/package_reference/hf_api). """ with gr.Blocks() as demo: gr.HTML(f"""