"""
Controlled Chat is a graphical and chat interface to Representation Engineering.
It creates a single Gradio application to be run locally or on a Hugging Face space.
This version is intended to run on CPU, and so uses Llama 3.2 1B.
It is hosted online at https://huggingface.co/spaces/Abrak/Controlled_Chat_CPU/.
There is also a GPU version based on Mistral 0.3 9B, requiring 16GB of VRAM.
Find it at https://huggingface.co/spaces/Abrak/Controlled_Chat.
You can also run thie application locally: create a venv, install the requirements, and run this script.
If you want to port this to another model, you'll need to do a few things:
1. Change the model path on the first line of code
2. Experiment with different ranges of layers in the call to ControlModel()
3. Change out the construct_prompt_* function to fit the model's prompt syntax
4. Call train_models()
If you clone this project, you can add new models into the control_models directory and everyting should work.
This file's code is licensed under MIT. See the README.MD and LLAMA LICENSE.TXT.
"""
import os
import threading
import json
import csv
import torch
import re
import tempfile
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from repeng import ControlVector, ControlModel, DatasetEntry
import gradio as gr
# Initialize model and tokenizer
from huggingface_hub import login
# Initialize model and tokenizer
llama_path = "meta-llama/Llama-3.2-1B-Instruct"
#llama_path = r"E:/language_models/models/mistral"
access_token = os.getenv("llamaaccesstoken")
login(access_token)
tokenizer = AutoTokenizer.from_pretrained(llama_path)
tokenizer.pad_token_id = 0
model = AutoModelForCausalLM.from_pretrained(
llama_path,
torch_dtype=torch.float16,
trust_remote_code=True,
use_safetensors=True
)
cuda = torch.cuda.is_available()
print(f"Is CUDA available: {cuda}")
model = model.to("cuda:0" if cuda else "cpu")
if cuda:
print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}")
# in mistral, there are 32 layers from -31 to 0. set to 13 layers from -5 to -18
# model = ControlModel(model, list(range(-5, -18, -1)))
# in llama 3.2 there are 32 layers from 0 to 15. With some experimentation, I found setting layers 10 through 5 is best
model = ControlModel(model, list(range(10, 5, -1)))
# Generation settings
# Generation settings
default_generation_settings = {
"pad_token_id": tokenizer.eos_token_id,
"do_sample": False, # Deterministic output
"max_new_tokens": 384,
"repetition_penalty": 1.1, # Reduce repetition
}
# List available control vectors
control_vector_files = [f for f in os.listdir('control_models') if f.endswith('.gguf')]
if not control_vector_files:
pass
#raise FileNotFoundError("No .gguf control vector files found in the control_models directory.")
# Function to toggle slider visibility based on checkbox state
def toggle_slider(checked):
return gr.update(visible=checked)
def construct_prompt_mistral(history, system_prompt, user_message):
"""
Converts the history (list of tuples) back into the string format Mistral expects
"""
formatted_prompt = ""
user_tag, asst_tag = "[INST]", "[/INST]"
# [INST] user message[/INST] assistant message[INST] new user message[/INST]
# Mistral expects the history to be wrapped in history, so it's added here
if len(history) > 0:
formatted_prompt += ""
# Append the system prompt if provided
if system_prompt.strip():
formatted_prompt += f"{user_tag} {system_prompt}{asst_tag} "
# Construct the formatted prompt based on history
if len(history) > 0:
for turn in history:
user_msg, asst_msg = turn
asst_msg = asst_msg.split("\n")[1:]
formatted_prompt += f"{user_tag} {user_msg} {asst_tag} {asst_msg}"
if len(history) > 0:
formatted_prompt += ""
# Append the new user message
formatted_prompt += f"{user_tag} {user_message} {asst_tag}"
return formatted_prompt
def construct_prompt_llama(history, system_prompt, user_message):
"""
Converts the history (list of tuples) back into the string format LLama expects
LLama prompt format:
<|begin_of_text|><|start_header_id|>system<|end_header_id|>
Cutting Knowledge Date: December 2023
Today Date: 23 July 2024
You are a helpful assistant
<|eot_id|>
<|start_header_id|>user<|end_header_id|>
What is the capital of France?
<|eot_id|>
<|start_header_id|>assistant<|end_header_id|>
"""
formatted_prompt = ""
# Begin the prompt with the start token
formatted_prompt += "<|begin_of_text|>\n"
# Append the system prompt if provided
if system_prompt.strip():
formatted_prompt += "<|start_header_id|>system<|end_header_id|>\n"
formatted_prompt += f"{system_prompt.strip()}"
formatted_prompt += "<|eot_id|>\n"
# Construct the formatted prompt based on history
for user_msg, asst_msg in history:
# Append the user message
formatted_prompt += "<|start_header_id|>user<|end_header_id|>\n"
formatted_prompt += f"{user_msg.strip()}"
formatted_prompt += "<|eot_id|>\n"
# Append the assistant's response
formatted_prompt += "<|start_header_id|>assistant<|end_header_id|>\n"
formatted_prompt += f"{asst_msg.strip()}"
formatted_prompt += "<|eot_id|>\n"
# Append the new user message
formatted_prompt += "<|start_header_id|>user<|end_header_id|>\n"
formatted_prompt += f"{user_message.strip()}"
formatted_prompt += "<|eot_id|>\n"
# Indicate that the assistant should provide a response
formatted_prompt += "<|start_header_id|>assistant<|end_header_id|>\n"
return formatted_prompt
def generate_response(system_prompt, user_message, history, max_new_tokens, repitition_penalty, do_sample, user_model, input_checkbox, input_slider, *args):
"""
Applies the control vectors and calls the language model.
Returns a list of tuples, the user message and the assistant response,
which Gradio uses to update the chatbot history
"""
global previous_turn
previous_turn = user_message
combined_vector = None
assistant_message_title = ""
# args not included in test_generate
if args:
# Separate checkboxes and sliders based on type
# The first x in args are the checkbox names (the file names)
# The second x in args are the slider values
checkboxes = []
sliders = []
for i in range(len(control_vector_files)):
checkboxes.append(args[i])
sliders.append(args[len(control_vector_files) + i])
# Apply selected control vectors with their corresponding weights
control_vectors = []
for i in range(len(control_vector_files)):
if checkboxes[i]:
cv_file = control_vector_files[i]
weight = sliders[i]
# Set the control vector's weight (and sign) by multiplying by its slider value
control_vectors.append(ControlVector.import_gguf(f"control_models/{cv_file}") * weight)
assistant_message_title += f"{cv_file.split('.')[0]}: {weight};"
# The control model takes a sum of positive and negative control vectors
for i in range(len(control_vectors)):
if combined_vector is None:
combined_vector = control_vectors[i]
else:
combined_vector += control_vectors[i]
if input_checkbox:
# User has uploaded their own gguf control vector
input_vector = ControlVector.import_gguf(user_model)
if combined_vector is None:
combined_vector = input_vector * input_slider
else:
combined_vector += input_vector * input_slider
assistant_message_title += f"Uploaded: {input_slider};"
# Set the combined set of vectors as the control for the model
try:
if combined_vector is not None:
model.reset()
model.set_control(combined_vector)
except Exception as e:
print(f"Failed to set Control: {e}")
formatted_prompt = construct_prompt_llama(history, system_prompt, user_message)
# Tokenize the input
input_ids = tokenizer(formatted_prompt, return_tensors="pt").to(model.device)
generation_settings = {
"pad_token_id": tokenizer.eos_token_id,
"do_sample": do_sample,
"max_new_tokens": int(max_new_tokens),
"repetition_penalty": repetition_penalty.value,
}
timeout = 120.0
if cuda:
timeout = 15.0
_streamer = TextIteratorStreamer(tokenizer, timeout=timeout, skip_prompt=True, skip_special_tokens=False,)
generate_kwargs = dict(
input_ids,
streamer=_streamer,
pad_token_id= tokenizer.eos_token_id,
do_sample= do_sample,
max_new_tokens= int(max_new_tokens),
repetition_penalty= repetition_penalty.value,
)
t = threading.Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
# Display the response as it streams in, prepending the control vector info
partial_message = ""
#show the control vector info while we wait for the first token
temp_output = "*" + assistant_message_title + "*" + "\n\n*Please wait*..." + partial_message
yield history + [(user_message, temp_output)]
for new_token in _streamer:
if new_token != '<' and new_token != '': # seems to hit EOS correctly without this needed
partial_message += new_token
partial_with_title = "*" + assistant_message_title + "*" + "\n\n" + partial_message
temp_history = history + [(user_message, partial_with_title)]
yield temp_history
else:
_streamer.end()
# remove the trailing if present
# it won't be present if the model ran out from max_tokens
def get_assistant_response(input_string):
if len(input_string) >= 10:
if input_string[-10:] == "<|eot_id|>":
return input_string[:-10]
else:
return input_string
else:
return input_string
# Update conversation history
assistant_response = get_assistant_response(partial_message)
assistant_response_display = f"*{assistant_message_title}*\n\n{assistant_response}"
# Update conversation history
history.append((user_message, assistant_response_display))
yield history
return
def generate_response_with_retry(system_prompt, user_message, history, max_new_tokens, repitition_penalty, do_sample, user_model, input_checkbox, input_slider, *args):
# Remove last user input and assistant response from history, then call generate_response()
global previous_turn
previous_ueser_message = previous_turn
if history:
history = history[0:-1]
# Using the previous turn's text, even though it isn't in the textbox anymore
for output in generate_response(system_prompt, previous_ueser_message, history, max_new_tokens, repetition_penalty, do_sample, user_model, input_checkbox, input_slider, *args):
yield [output, previous_ueser_message]
# Function to reset the conversation history
def reset_chat():
# returns a blank state
return [], ""
def get_checkboxes():
# rebuilding the list of checkboxes, so that these presets don't have to change
# when adding a new control model
# Warning: adding any new components into the header before the checkboxes is going to break this path
checkbox_column = app.children[0].children[0].children[2].children[0].children
#checkbox_column = app.children[2].children[0].children
model_names_and_indexes = {}
checkbox_index = 0
for i in range(len(checkbox_column)):
if isinstance(checkbox_column[i], gr.Row):
try:
model_name = checkbox_column[i].children[0].children[0].label
model_names_and_indexes[model_name] = checkbox_index
checkbox_index += 1
except IndexError:
# allow for other rows to be in the interface
pass
except AttributeError:
pass
return model_names_and_indexes
def set_preset_helpful(*args):
# gets the list of all checkboxes and sliders
# sets checkboxes and sliders accordingly to this persona
# args is a list of checkboxes and then slider values
# must return the updated list of checkboxes and sliders
new_checkbox_values = []
new_slider_values = []
model_names_and_indexes = get_checkboxes()
for check in model_names_and_indexes:
if check == "Empathetic":
new_checkbox_values.append(True)
new_slider_values.append(1.0)
elif check == "Optimistic":
new_checkbox_values.append(True)
new_slider_values.append(1.0)
else:
new_checkbox_values.append(False)
new_slider_values.append(0.0)
return new_checkbox_values + new_slider_values
def set_preset_conspiracist(*args):
# gets the list of all checkboxes and sliders
# sets checkboxes and sliders accordingly to this persona
# args is a list of checkboxes and then slider values
# must return the updated list of checkboxes and sliders
new_checkbox_values = []
new_slider_values = []
model_names_and_indexes = get_checkboxes()
for check in model_names_and_indexes:
if check == "Conspiracist":
new_checkbox_values.append(True)
new_slider_values.append(1.5)
elif check == "Creative":
new_checkbox_values.append(True)
new_slider_values.append(1.0)
elif check == "Lazy":
new_checkbox_values.append(True)
new_slider_values.append(-0.5)
elif check == "Honest":
new_checkbox_values.append(True)
new_slider_values.append(-1.0)
else:
new_checkbox_values.append(False)
new_slider_values.append(0.0)
return new_checkbox_values + new_slider_values
def set_preset_stoner(*args):
# gets the list of all checkboxes and sliders
# sets checkboxes and sliders accordingly to this persona
# args is a list of checkboxes and then slider values
# must return the updated list of checkboxes and sliders
new_checkbox_values = []
new_slider_values = []
model_names_and_indexes = get_checkboxes()
for check in model_names_and_indexes:
if check == "Angry":
new_checkbox_values.append(True)
new_slider_values.append(0.3)
elif check == "Conservative":
new_checkbox_values.append(True)
new_slider_values.append(-0.5)
elif check == "Tripping":
new_checkbox_values.append(True)
new_slider_values.append(1.0)
else:
new_checkbox_values.append(False)
new_slider_values.append(0.0)
return new_checkbox_values + new_slider_values
def set_preset_facts(*args):
# gets the list of all checkboxes and sliders
# sets checkboxes and sliders accordingly to this persona
# args is a list of checkboxes and then slider values
# must return the updated list of checkboxes and sliders
new_checkbox_values = []
new_slider_values = []
model_names_and_indexes = get_checkboxes()
for check in model_names_and_indexes:
if check == "Worried":
new_checkbox_values.append(True)
new_slider_values.append(-0.5)
elif check == "Joking":
new_checkbox_values.append(True)
new_slider_values.append(-0.5)
elif check == "Lazy":
new_checkbox_values.append(True)
new_slider_values.append(-0.5)
elif check == "Honest":
new_checkbox_values.append(True)
new_slider_values.append(0.5)
else:
new_checkbox_values.append(False)
new_slider_values.append(0.0)
return new_checkbox_values + new_slider_values
def disable_controls():
return gr.update(interactive= False, value= "⌛ Processing"), gr.update(interactive=False)
def enable_controls():
return gr.update(interactive= True, value= "💬 Submit"), gr.update(interactive= True)
def clear_input(input_textbox):
return ""
def make_dataset(
template: str,
positive_personas: list[str],
negative_personas: list[str],
suffix_list: list[str]
) -> list[DatasetEntry]:
dataset = []
# Tags for prompt formatting with Llama
user_tag = "<|start_header_id|>user<|end_header_id|>\n\n"
asst_tag = "<|eot_id|>\n<|start_header_id|>assistant<|end_header_id|>"
for suffix in suffix_list:
for positive_persona, negative_persona in zip(positive_personas, negative_personas):
positive_template = template.format(persona=positive_persona)
negative_template = template.format(persona=negative_persona)
dataset.append(
DatasetEntry(
positive=f"{user_tag} {positive_template} {asst_tag} {suffix}",
negative=f"{user_tag} {negative_template} {asst_tag} {suffix}",
)
)
return dataset
def train_model_persona(positive_text, negative_text):
positive_list = positive_text.split('\n')
negative_list = negative_text.split('\n')
with open("all_truncated_outputs.json") as f:
output_suffixes = json.load(f)
dataset = make_dataset(
"Act as if you are an extremely {persona} person",
positive_list,
negative_list,
output_suffixes)
model.reset()
output_model = ControlVector.train(model, tokenizer, dataset)
# Write file to temporary directory returning the path to Gradio for download
filename = re.sub(r'[ <>:"/\\|?*]', '', positive_list[0]) + '_'
temp_file = tempfile.NamedTemporaryFile(
prefix=filename,
suffix=".gguf",
delete= False
)
ControlVector.export_gguf(output_model, temp_file.name)
temp_file.close()
return temp_file.name
def train_model_facts(positive_text, negative_text):
with open("true_facts.csv") as f:
reader = csv.reader(f)
fact_suffixes = list(reader)
dataset = make_dataset(
"Pretend to be a {persona} making statements about the world.",
positive_text,
negative_text,
fact_suffixes
)
output_model = ControlVector.train(model, tokenizer, dataset)
filename = re.sub(r'[ <>:"/\\|?*]', '', positive_text) + '_'
temp_file = tempfile.NamedTemporaryFile(
prefix=filename,
suffix=".gguf",
delete= False
)
ControlVector.export_gguf(output_model, temp_file.name)
temp_file.close()
return temp_file.name
tooltip_css = """
/* Tooltip container */
.tooltip {
position: relative;
display: inline-block;
cursor: help;
}
/* Tooltip text */
.tooltip .tooltiptext {
visibility: hidden;
width: 200px;
background-color: #1f2937;
color: #f3f4f6;
text-align: left;
border-radius: 6px;
padding: 8px;
position: absolute;
z-index: 1;
bottom: 125%; /* Position above the element */
left: 50%;
margin-left: -100px;
opacity: 0;
transition: opacity 0.3s;
}
/* Tooltip arrow */
.tooltip .tooltiptext::after {
content: "";
position: absolute;
top: 100%; /* At the bottom of tooltip */
left: 50%;
margin-left: -5px;
border-width: 5px;
border-style: solid;
border-color: #1f2937 transparent transparent transparent;
}
/* Show the tooltip text when hovering */
.tooltip:hover .tooltiptext {
visibility: visible;
opacity: 1;"""
dark_theme = gr.Theme.from_hub("ParityError/Anime").set(
# body_background_fill= "url(https://image uri) #000000 no-repeat right bottom / auto 100svh padding-box fixed;",
# body_background_fill_dark= "url(https://image uri) #000000 no-repeat right bottom / auto 100svh padding-box fixed;",
)
with gr.Blocks(
theme=dark_theme,
css=tooltip_css,
) as app:
with gr.Tab(
label="Use"
):
# Header
if cuda:
gr.Markdown("# 🧠 LLM Mind Control (Llama 3.2 1B)")
else:
gr.Markdown("""# 🧠 LLM Mind Control ((Llama 3.2 1B))
*Warning: although using a small model, running on CPU will still be very slow (30+ seconds to first token)*""")
gr.Markdown("""Unlike prompting, direct weight manipulation lets you fine-tune the amount of a personality
trait or topic. Enabled through [Representation Engineering](https://arxiv.org/abs/2310.01405)
via the [repeng](https://pypi.org/project/repeng) library.
[Watch a demo](https://youtu.be/gYZPGVafD7M) for usage tips.""")
with gr.Row():
# Left Column: Control Vectors and advanced settings
with gr.Column(scale=1):
gr.Markdown("### ⚡ Control Vectors")
control_vector_label = gr.HTML("""