import pandas as pd import openai from data import data as df import numpy as np import os openai.api_key = os.environ.get("openai") def cosine_similarity(a, b): return np.dot(a, b) / (np.linalg.norm(a) * np.linalg.norm(b)) def get_embedding(text, model="text-embedding-ada-002"): try: text = text.replace("\n", " ") except: None return openai.Embedding.create(input = [text], model=model).data[0].embedding def get_embedding2(text, model="text-embedding-ada-002"): try: text = text.replace("\n", " ") except: None try: return openai.Embedding.create(input = [text], model=model)['data'][0]['embedding'] except: time.sleep(2) def search_cv(search, nb=3, pprint=True): embedding = get_embedding(search, model='text-embedding-ada-002') df_replicate = df.copy() def wrap_cos(x,y): try: res = cosine_similarity(x,y) except: res = 0 return res df_replicate['similarities'] = df_replicate.embedding.apply(lambda x: wrap_cos(x, embedding)) res = df_replicate.sort_values('similarities', ascending=False).head(int(nb)) return res def get_cv(text, nb): result = search_cv(text,nb).to_dict(orient="records") final_str = "" for r in result: final_str += "#### Candidat avec " + str(round(r["similarities"]*100,2)) + "% de similarité :\n"+ str(r["summary"]).replace("#","") final_str += "\n\n[-> Lien vers le CV complet]("+ str(r["url"]) + ')' final_str += "\n\n-----------------------------------------------------------------------------------------------------\n\n" final_str = final_str.replace("`", "") return final_str